Predicting Heart Cell Types by Using Transcriptome Profiles and a Machine Learning Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Data Collection
2.3. Feature Ranked by LightGBM
2.4. IFS Method
2.5. Classifier Building with DT and RF
2.6. SMOTE
2.7. Performance Measurement
2.8. Functional Enrichment
3. Results
3.1. Results of LightGBM Method on the Dataset
3.2. Results of IFS Method with RF
3.3. Results of IFS method with DT
3.4. Classification Rules Generated by the Optimal DT Classifier
3.5. Functional Enrichment Analysis with Optimal Gene Set
4. Discussion
4.1. Candidate Gene Expression Features Discriminating Different Heart Cells
4.2. Candidate Gene Expression Rules Discriminating Different Heart Cells
4.2.1. Cardiomyocytes
4.2.2. Fibroblasts and Vascular, Stromal, and Mesothelial Cells
4.2.3. Adipocytes and Immune and Neuronal Cells
4.3. Functional Analysis of the Optimal Gene Set
4.4. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Nag, A.C. Study of non-muscle cells of the adult mammalian heart: A fine structural analysis and distribution. Cytobios 1980, 28, 41–61. [Google Scholar] [PubMed]
- Tucker, N.R.; Chaffin, M.; Fleming, S.J.; Hall, A.W.; Parsons, V.A.; Bedi, K.C., Jr.; Akkad, A.-D.; Herndon, C.N.; Arduini, A.; Papangeli, I. Transcriptional and cellular diversity of the human heart. Circulation 2020, 142, 466–482. [Google Scholar] [CrossRef] [PubMed]
- Souders, C.A.; Bowers, S.L.; Baudino, T.A. Cardiac fibroblast: The renaissance cell. Circ. Res. 2009, 105, 1164–1176. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, H.; Liu, Y.; Adams, S.; Eilken, H.; Stehling, M.; Corada, M.; Dejana, E.; Zhou, B.; Adams, R.H. Endothelial cells are progenitors of cardiac pericytes and vascular smooth muscle cells. Nat. Commun. 2016, 7, 12422. [Google Scholar] [CrossRef] [PubMed]
- Brutsaert, D.L. Cardiac endothelial-myocardial signaling: Its role in cardiac growth, contractile performance, and rhythmicity. Physiol. Rev. 2003, 83, 59–115. [Google Scholar] [CrossRef] [PubMed]
- Lother, A.; Bergemann, S.; Deng, L.; Moser, M.; Bode, C.; Hein, L. Cardiac endothelial cell transcriptome. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 566–574. [Google Scholar] [CrossRef] [Green Version]
- Elmadbouh, I.; Chen, Y.; Louedec, L.; Silberman, S.; Pouzet, B.; Meilhac, O.; Michel, J.-B. Mesothelial cell transplantation in the infarct scar induces neovascularization and improves heart function. Cardiovasc. Res. 2005, 68, 307–317. [Google Scholar] [CrossRef]
- Lin, Y.; Ding, S.; Chen, Y.; Xiang, M.; Xie, Y. Cardiac adipose tissue contributes to cardiac repair: A review. Stem Cell Rev. Rep. 2021, 17, 1137–1153. [Google Scholar] [CrossRef]
- Marchington, J.M.; Mattacks, C.A.; Pond, C.M. Adipose tissue in the mammalian heart and pericardium: Structure, foetal development and biochemical properties. Comp. Biochem. Physiol. B Comp. Biochem. 1989, 94, 225–232. [Google Scholar] [CrossRef]
- Swirski, F.K.; Nahrendorf, M. Cardioimmunology: The immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 2018, 18, 733–744. [Google Scholar] [CrossRef]
- Gibbons, D.D.; Southerland, E.M.; Hoover, D.B.; Beaumont, E.; Armour, J.A.; Ardell, J.L. Neuromodulation targets intrinsic cardiac neurons to attenuate neuronally mediated atrial arrhythmias. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2012, 302, R357–R364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.W.; O’Flanagan, C.; Chavez, E.A.; Lim, J.L.P.; Ceglia, N.; McPherson, A.; Wiens, M.; Walters, P.; Chan, T.; Hewitson, B.; et al. Probabilistic cell-type assignment of single-cell rna-seq for tumor microenvironment profiling. Nat. Methods 2019, 16, 1007–1015. [Google Scholar] [CrossRef] [PubMed]
- Aran, D.; Looney, A.P.; Liu, L.; Wu, E.; Fong, V.; Hsu, A.; Chak, S.; Naikawadi, R.P.; Wolters, P.J.; Abate, A.R.; et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 2019, 20, 163–172. [Google Scholar] [CrossRef]
- Johnson, E.K.; Matkovich, S.J.; Nerbonne, J.M. Regional differences in mrna and lncrna expression profiles in non-failing human atria and ventricles. Sci. Rep. 2018, 8, 13919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kalucka, J.; de Rooij, L.P.; Goveia, J.; Rohlenova, K.; Dumas, S.J.; Meta, E.; Conchinha, N.V.; Taverna, F.; Teuwen, L.-A.; Veys, K. Single-cell transcriptome atlas of murine endothelial cells. Cell 2020, 180, 764–779.e720. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.-S.; Zhou, H.-N.; He, S.-S.; Xue, M.-Y.; Li, T.; Liu, L.-M. Research advances in pericyte function and their roles in diseases. Chin. J. Traumatol. 2020, 23, 89–95. [Google Scholar] [CrossRef]
- Litviňuková, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Worth, C.L.; Lindberg, E.L.; Kanda, M.; Polanski, K.; Heinig, M.; Lee, M. Cells of the adult human heart. Nature 2020, 588, 466–472. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. Lightgbm: A Highly Efficient Gradient Boosting Decision Tree. In Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4 December 2017. [Google Scholar]
- Liu, H.; Setiono, R. Incremental feature selection. Appl. Intell. 1998, 9, 217–230. [Google Scholar] [CrossRef]
- Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man Cybern. 1991, 21, 660–674. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Kohavi, R. A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the 14th International Joint Conference on Artificial Intelligence-Volume 2; Morgan Kaufmann Publishers Inc.: Montreal, QC, Canada, 1995; pp. 1137–1143. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. Smote: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Li, Z.; Zeng, T.; Chen, L.; Li, H.; Huang, T.; Cai, Y.-D. Detecting the multiomics signatures of factor-specific inflammatory effects on airway smooth muscles. Front. Genet. 2021, 11, 599970. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, L. Identification of drug–disease associations by using multiple drug and disease networks. Curr. Bioinform. 2022, 17, 48–59. [Google Scholar] [CrossRef]
- Chen, W.; Chen, L.; Dai, Q. Impt-fdnpl: Identification of membrane protein types with functional domains and a natural language processing approach. Comput. Math. Methods Med. 2021, 2021, 7681497. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Hu, B.; Chen, L.; Lu, L. Identifying protein subcellular location with embedding features learned from networks. Curr. Proteom. 2021, 18, 646–660. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Zeng, T.; Chen, L.; Huang, T.; Cai, Y.-D. Determining protein–protein functional associations by functional rules based on gene ontology and kegg pathway. Biochim. Biophys. Acta (BBA)-Proteins Proteom. 2021, 1869, 140621. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.-H.; Li, H.; Zeng, T.; Chen, L.; Li, Z.; Huang, T.; Cai, Y.-D. Identifying transcriptomic signatures and rules for sars-cov-2 infection. Front. Cell Dev. Biol. 2021, 8, 627302. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V. Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Powers, D. Evaluation: From precision, recall and f-measure to roc., informedness, markedness & correlation. J. Mach. Learn. Technol. 2011, 2, 37–63. [Google Scholar]
- Jia, Y.; Zhao, R.; Chen, L. Similarity-based machine learning model for predicting the metabolic pathways of compounds. IEEE Access 2020, 8, 130687–130696. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, L.; Lu, J. A similarity-based method for prediction of drug side effects with heterogeneous information. Math. Biosci. 2018, 306, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Hu, E.; Xu, S.; Chen, M.; Guo, P.; Dai, Z.; Feng, T.; Zhou, L.; Tang, W.; Zhan, L.; et al. Clusterprofiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2021, 2, 100141. [Google Scholar] [CrossRef]
- Song, W.; Wang, H.; Wu, Q. Atrial natriuretic peptide in cardiovascular biology and disease (nppa). Gene 2015, 569, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bordicchia, M.; Liu, D.; Amri, E.-Z.; Ailhaud, G.; Dessì-Fulgheri, P.; Zhang, C.; Takahashi, N.; Sarzani, R.; Collins, S. Cardiac natriuretic peptides act via p38 mapk to induce the brown fat thermogenic program in mouse and human adipocytes. J. Clin. Investig. 2012, 122, 1022–1036. [Google Scholar] [CrossRef] [Green Version]
- Kuang, W.; Xu, H.; Vachon, P.H.; Engvall, E. Disruption of thelama2gene in embryonic stem cells: Laminin α2 is necessary for sustenance of mature muscle cells. Exp. Cell Res. 1998, 241, 117–125. [Google Scholar] [CrossRef]
- Finsterer, J.; Stöllberger, C. Primary myopathies and the heart. Scand. Cardiovasc. J. 2008, 42, 9–24. [Google Scholar] [CrossRef]
- Shih, Y.-P.; Yuan, S.Y.; Lo, S.H. Down-regulation of dlc1 in endothelial cells compromises the angiogenesis process. Cancer Lett. 2017, 398, 46–51. [Google Scholar] [CrossRef]
- Belevych, A.E.; Radwański, P.B.; Carnes, C.A.; Györke, S. ‘Ryanopathy’: Causes and manifestations of ryr2 dysfunction in heart failure. Cardiovasc. Res. 2013, 98, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, K.; Yamada, T. Ucp1 dependent and independent thermogenesis in brown and beige adipocytes. Front. Endocrinol. 2020, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Ji, G.; Feldman, M.E.; Greene, K.S.; Sorrentino, V.; Xin, H.-B.; Kotlikoff, M.I. Ryr2 proteins contribute to the formation of Ca2+ sparks in smooth muscle. J. Gen. Physiol. 2004, 123, 377–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.; Wang, Y.; Wang, Z.; Tan, H.; Kong, X.; Shu, Y.; Zhang, Y.; Huang, Y.; Zhu, Y.; Xu, H. Uncovering the rare variants of dlc1 isoform 1 and their functional effects in a chinese sporadic congenital heart disease cohort. PLoS ONE 2014, 9, e90215. [Google Scholar] [CrossRef] [PubMed]
- Gerull, B.; Gramlich, M.; Atherton, J.; McNabb, M.; Trombitás, K.; Sasse-Klaassen, S.; Seidman, J.; Seidman, C.; Granzier, H.; Labeit, S. Mutations of ttn, encoding the giant muscle filament titin, cause familial dilated cardiomyopathy. Nat. Genet. 2002, 30, 201–204. [Google Scholar] [CrossRef]
- Chauveau, C.; Rowell, J.; Ferreiro, A. A rising titan: Ttn review and mutation update. Hum. Mutat. 2014, 35, 1046–1059. [Google Scholar] [CrossRef]
- Li, J.H.; Liu, S.; Hui, Z.; Qu, L.H.; Yang, J.H. Starbase v2.0: Decoding mirna-cerna, mirna-ncrna and protein–rna interaction networks from large-scale clip-seq data. Nucleic Acids Res. 2014, 42, D92–D97. [Google Scholar] [CrossRef] [Green Version]
- Haremaki, T.; Sridharan, J.; Dvora, S.; Weinstein, D.C. Regulation of vertebrate embryogenesis by the exon junction complex core component eif4a3. Dev. Dyn. 2010, 239, 1977–1987. [Google Scholar] [CrossRef]
- Li, Y.; Ren, S.; Xia, J.; Wei, Y.; Xi, Y. Eif4a3-induced circ-bnip3 aggravated hypoxia-induced injury of h9c2 cells by targeting mir-27a-3p/bnip3. Mol. Ther.-Nucleic Acids 2020, 19, 533–545. [Google Scholar] [CrossRef]
- Jeyabal, P.; Thandavarayan, R.A.; Joladarashi, D.; Babu, S.S.; Krishnamurthy, S.; Bhimaraj, A.; Youker, K.A.; Kishore, R.; Krishnamurthy, P. Microrna-9 inhibits hyperglycemia-induced pyroptosis in human ventricular cardiomyocytes by targeting elavl1. Biochem. Biophys. Res. Commun. 2016, 471, 423–429. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.-Y.; Xiao, Z.-Z.; Ling, X.; Xu, R.-N.; Zhu, P.; Zheng, S.-Y. Elavl1 is transcriptionally activated by foxc1 and promotes ferroptosis in myocardial ischemia/reperfusion injury by regulating autophagy. Mol. Med. 2021, 27, 14. [Google Scholar] [CrossRef]
- Ma, H.; Yu, S.; Liu, X.; Zhang, Y.; Fakadej, T.; Liu, Z.; Yin, C.; Shen, W.; Locasale, J.W.; Taylor, J.M. Lin28a regulates pathological cardiac hypertrophic growth through pck2-mediated enhancement of anabolic synthesis. Circulation 2019, 139, 1725–1740. [Google Scholar] [CrossRef] [PubMed]
- Yuko, A.E.; Rigaud, V.O.C.; Kurian, J.; Lee, J.H.; Kasatkin, N.; Behanan, M.; Wang, T.; Luchesse, A.M.; Mohsin, S.; Koch, W.J. Lin28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury. Redox Biol. 2021, 47, 102162. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Liang, H.; Liu, L.; Chen, D.; Zhang, Q. Long noncoding rna neat1 sponges mir-125a-5p to suppress cardiomyocyte apoptosis via bcl2l12. Mol. Med. Rep. 2019, 19, 4468–4474. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Liu, G.; Xian, H.; Si, J.; Qi, S.; Yu, Y. Lncrna neat1 alleviates sepsis-induced myocardial injury by regulating the tlr2/nf-kappab signaling pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 4898–4907. [Google Scholar] [PubMed]
- Du, X.J.; Wei, J.; Tian, D.; Yan, C.; Hu, P.; Wu, X.; Yang, W.; Hu, X. Neat1 promotes myocardial ischemia-reperfusion injury via activating the mapk signaling pathway. J. Cell. Physiol. 2019, 234, 18773–18780. [Google Scholar] [CrossRef]
- Potter, L.R.; Abbey-Hosch, S.; Dickey, D.M. Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr. Rev. 2006, 27, 47–72. [Google Scholar] [CrossRef]
- Wang, Z.; Yue, L.; White, M.; Pelletier, G.; Nattel, S. Differential distribution of inward rectifier potassium channel transcripts in human atrium versus ventricle. Circulation 1998, 98, 2422–2428. [Google Scholar] [CrossRef] [Green Version]
- Kurabayashi, M.; Komuro, I.; Tsuchimochi, H.; Takaku, F.; Yazaki, Y. Molecular cloning and characterization of human atrial and ventricular myosin alkali light chain cdna clones. J. Biol. Chem. 1988, 263, 13930–13936. [Google Scholar] [CrossRef]
- Zhang, J.; McIntosh, B.E.; Wang, B.; Brown, M.E.; Probasco, M.D.; Webster, S.; Duffin, B.; Zhou, Y.; Guo, L.-W.; Burlingham, W.J. A human pluripotent stem cell-based screen for smooth muscle cell differentiation and maturation identifies inhibitors of intimal hyperplasia. Stem Cell Rep. 2019, 12, 1269–1281. [Google Scholar] [CrossRef] [Green Version]
- Rockey, D.C.; Weymouth, N.; Shi, Z. Smooth muscle α actin (acta2) and myofibroblast function during hepatic wound healing. PLoS ONE 2013, 8, e77166. [Google Scholar] [CrossRef] [Green Version]
- Guo, D.-C.; Papke, C.L.; Tran-Fadulu, V.; Regalado, E.S.; Avidan, N.; Johnson, R.J.; Kim, D.H.; Pannu, H.; Willing, M.C.; Sparks, E. Mutations in smooth muscle alpha-actin (acta2) cause coronary artery disease, stroke, and moyamoya disease, along with thoracic aortic disease. Am. J. Hum. Genet. 2009, 84, 617–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, S.-M. A-smooth muscle actin and acta2 gene expressions in vasculopathies. Braz. J. Cardiovasc. Surg. 2015, 30, 644–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Mae, M.A.; Sun, Y.; Muhl, L.; Nahar, K.; Liebanas, E.V.; Fagerlund, M.J.; Oldner, A.; Liu, J.; Genové, G. Pericyte-specific vascular expression of sars-cov-2 receptor ace2-implications for microvascular inflammation and hypercoagulopathy in covid-19 patients. BioRxiv 2020. [Google Scholar] [CrossRef]
- Dore-Duffy, P.; Cleary, K. Morphology and properties of pericytes. Blood-Brain Other Neural Barriers 2011, 49–68. [Google Scholar] [CrossRef]
- Kanaji, S.; Fahs, S.A.; Shi, Q.; Haberichter, S.L.; Montgomery, R.R. Contribution of platelet vs. Endothelial vwf to platelet adhesion and hemostasis. J. Thromb. Haemost. 2012, 10, 1646–1652. [Google Scholar] [CrossRef]
- Paulsson, M. Basement membrane proteins: Structure, assembly, and cellular interactions. Crit. Rev. Biochem. Mol. Biol. 1992, 27, 93–127. [Google Scholar]
- Südhof, T.C. Synaptic neurexin complexes: A molecular code for the logic of neural circuits. Cell 2017, 171, 745–769. [Google Scholar] [CrossRef] [Green Version]
- Noh, K.; Lee, H.; Choi, T.-Y.; Joo, Y.; Kim, S.-J.; Kim, H.; Kim, J.Y.; Jahng, J.W.; Lee, S.; Choi, S.-Y. Negr1 controls adult hippocampal neurogenesis and affective behaviors. Mol. Psychiatry 2019, 24, 1189–1205. [Google Scholar] [CrossRef]
- Moestrup, S.; Møller, H. Cd163: A regulated hemoglobin scavenger receptor with a role in the anti-inflammatory response. Ann. Med. 2004, 36, 347–354. [Google Scholar] [CrossRef]
- Casado-Díaz, A.; Anter, J.; Müller, S.; Winter, P.; Quesada-Gómez, J.M.; Dorado, G. Transcriptomic analyses of adipocyte differentiation from human mesenchymal stromal-cells (msc). J. Cell. Physiol. 2017, 232, 771–784. [Google Scholar] [CrossRef]
- Lee, R.A.; Harris, C.A.; Wang, J.-C. Glucocorticoid receptor and adipocyte biology. Nucl. Recept. Res. 2018, 5, 101373. [Google Scholar] [CrossRef]
- Kamisago, M.; Sharma, S.D.; DePalma, S.R.; Solomon, S.; Sharma, P.; McDonough, B.; Smoot, L.; Mullen, M.P.; Woolf, P.K.; Wigle, E.D. Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N. Engl. J. Med. 2000, 343, 1688–1696. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, N.; Kan-o, M.; Ushijima, T.; Kage, Y.; Tominaga, R.; Sumimoto, H.; Takeya, R. Transgenic expression of the formin protein fhod3 selectively in the embryonic heart: Role of actin-binding activity of fhod3 and its sarcomeric localization during myofibrillogenesis. PLoS ONE 2016, 11, e0148472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maron, B.J.; Maron, M.S. Hypertrophic cardiomyopathy. Lancet 2013, 381, 242–255. [Google Scholar] [CrossRef]
- Jefferies, J.L.; Towbin, J.A. Dilated cardiomyopathy. Lancet 2010, 375, 752–762. [Google Scholar] [CrossRef]
Index | Cell Type | Sample Size |
---|---|---|
1 | Adipocytes | 3799 |
2 | Atrial cardiomyocyte | 23,483 |
3 | Endothelial | 100,579 |
4 | Fibroblast | 59,341 |
5 | Lymphoid | 17,217 |
6 | Mesothelial | 718 |
7 | Myeloid | 23,028 |
8 | Neuronal | 3961 |
9 | Pericytes | 77,856 |
10 | Smooth muscle cells | 16,242 |
11 | Ventricular cardiomyocyte | 125,289 |
Index | Gene Symbol | Index | Gene Symbol |
---|---|---|---|
1 | LINC02019 | 11 | LAMA2 |
2 | CAMSAP3 | 12 | NPPA |
3 | AC128685.1 | 13 | LINC01958 |
4 | AL139125.1 | 14 | LMNTD2 |
5 | AL024508.2 | 15 | AC131009.2 |
6 | AL121772.1 | 16 | DLC1 |
7 | LINC02346 | 17 | AC020978.5 |
8 | GLB1L3 | 18 | RYR2 |
9 | C22orf15 | 19 | LDB2 |
10 | UPK3A | 20 | SPARCL1 |
Classification Algorithm | Number of Features | ACC | MCC | Macro F1 | Weighted F1 |
---|---|---|---|---|---|
Random forest | 470 | 0.981 | 0.977 | 0.973 | 0.981 |
Decision tree | 380 | 0.957 | 0.945 | 0.934 | 0.957 |
Rule Index | Cell Type | Passed Counts a | Rule Index | Cell Type | Passed Counts |
---|---|---|---|---|---|
Rules_4 | Atrial cardiomyocyte | 14,567 | Rules_12 | Endothelial | 2992 |
Rules_15 | Atrial cardiomyocyte | 2451 | Rules_159 | Mesothelial | 199 |
Rules_25 | Atrial cardiomyocyte | 1657 | Rules_269 | Mesothelial | 96 |
Rules_0 | Ventricular cardiomyocyte | 95,879 | Rules_287 | Mesothelial | 89 |
Rules_13 | Ventricular cardiomyocyte | 2856 | Rules_20 | Neuronal | 1950 |
Rules_14 | Ventricular cardiomyocyte | 2728 | Rules_182 | Neuronal | 165 |
Rules_2 | Fibroblast | 32,635 | Rules_189 | Neuronal | 159 |
Rules_9 | Fibroblast | 6595 | Rules_36 | Adipocytes | 1227 |
Rules_19 | Fibroblast | 2219 | Rules_52 | Adipocytes | 866 |
Rules_11 | Smooth muscle cells | 3115 | Rules_81 | Adipocytes | 486 |
Rules_17 | Smooth muscle cells | 2242 | Rules_20 | Neuronal | 1950 |
Rules_29 | Smooth muscle cells | 1565 | Rules_182 | Neuronal | 165 |
Rules_3 | Pericytes | 21,300 | Rules_189 | Neuronal | 159 |
Rules_8 | Pericytes | 7142 | Rules_5 | Lymphoid | 9681 |
Rules_10 | Pericytes | 4448 | Rules_24 | Lymphoid | 1673 |
Rules_1 | Endothelial | 62,186 | Rules_78 | Lymphoid | 503 |
Rules_7 | Endothelial | 8820 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, S.; Wang, D.; Zhou, X.; Chen, L.; Feng, K.; Xu, X.; Huang, T.; Li, Z.; Cai, Y. Predicting Heart Cell Types by Using Transcriptome Profiles and a Machine Learning Method. Life 2022, 12, 228. https://doi.org/10.3390/life12020228
Ding S, Wang D, Zhou X, Chen L, Feng K, Xu X, Huang T, Li Z, Cai Y. Predicting Heart Cell Types by Using Transcriptome Profiles and a Machine Learning Method. Life. 2022; 12(2):228. https://doi.org/10.3390/life12020228
Chicago/Turabian StyleDing, Shijian, Deling Wang, Xianchao Zhou, Lei Chen, Kaiyan Feng, Xianling Xu, Tao Huang, Zhandong Li, and Yudong Cai. 2022. "Predicting Heart Cell Types by Using Transcriptome Profiles and a Machine Learning Method" Life 12, no. 2: 228. https://doi.org/10.3390/life12020228
APA StyleDing, S., Wang, D., Zhou, X., Chen, L., Feng, K., Xu, X., Huang, T., Li, Z., & Cai, Y. (2022). Predicting Heart Cell Types by Using Transcriptome Profiles and a Machine Learning Method. Life, 12(2), 228. https://doi.org/10.3390/life12020228