A Study of IFN-α-Induced Chemokines CCL2, CXCL10 and CCL19 in Patients with Systemic Lupus Erythematosu
Abstract
:1. Introduction
2. Materials and Methods
3. Laboratory Analysis
- Patients with proven systemic lupus erythematosus (covering ACR criteria)
- Patients with systemic lupus erythematosus (covering ACR criteria) on treatment with stable doses of corticosteroids, belimumab, DMARDs (hydroxychloroquine, methotrexate, leflunomide);
- Patients who have capacity and no mental health comorbidities;
- Patients who consented to participate by signing an informed consent form.
- Patients who refused to give informed consent;
- Patients diagnosed with a rheumatic disease other than SLE;
- Patients with decompensated cardiovascular, pulmonary or renal failure;
- Pregnant or lactating women.
4. Statistical Analysis
5. Discussion
6. Conclusions
- CCL2, CXCL10 and CCL19 serum levels correlate with patients’ age and disease duration. The mean values of CCL2, CXCL10 and CCL19 were higher in patients with SLE compared to healthy controls (p < 0.01). A strong significant association (p = 0.001) was found between the concentration of CCL2, CXCL10 and CCL19 and disease activity measures SLEDAI and SLICC.
- The level of IFN-induced chemokines (CCL2, CXCL10 and CCL19) has a prognostic value in terms of SLE disease activity and degree of organ damage.
- CCL2, CXCL10 and CCL19 chemokines can be used as biomarkers for systemic lupus activity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
Abbreviations
ACR | American College of Rheumatology |
anti-RNP | anti-ribonucleoprotein antibodies |
BLyS | B lymphocyte stimulator |
CCL2 | monocyte chemotaxis protein-1 (MCP-1) |
CXCL10 | IFN-gamma-inducible protein 10 (IP-10) |
CCL19 | Chemokine (C-C motif) ligand 19 |
ds | DNA double-stranded DNA () |
ELISA | enzyme-linked immunosorbent assay |
IFN-α | Interferon α |
IFNAR | IFN-α receptors |
IRF | IFN-regulatory factor |
ISRE | IFN-stimulated response element |
pg/mL | Picograms per millilitre |
pDCs | plasmacytoid dendritic cells |
SLE | systemic lupus erythematosus |
SLEDAI | Systemic Lupus Erythematosus Disease Activity Index |
SLICC | Systemic Lupus International Collaborating Clinics |
SPSS | Software Package Scientific Statistics |
TLRs | Toll-like receptors |
References
- Narváez, J. Lupus eritematoso sistémico 2020. Med. Clínica 2020, 155, 494–501. [Google Scholar] [CrossRef]
- Dörner, T.; Furie, R. Novel paradigms in systemic lupus erythematosus. Lancet 2019, 393, 2344–2358. [Google Scholar] [CrossRef]
- Stojan, G.; Petri, M. Epidemiology of systemic lupus erythematosus: An update. Curr. Opin. Rheumatol. 2018, 30, 144–150. [Google Scholar] [CrossRef]
- Zev Sthoeger, M.D.; Margalit Lorber, M.D.; Yuval Tal, M.D.; Elias Toubi, M.D.; Howard Amital, M.D.; Shaye Kivity, M.D.; Pnina Langevitz, M.D.; Ilan Asher, M.D.; Daniel Elbirt, M.D.; Nancy Agmon Levin, M.D. Anti-BLyS treatment of 36 Israeli Systemic Lupus Erythematosus patients. Isr. Med. Assoc. J. 2017, 19, 44–48. [Google Scholar]
- Riggs, J.M.; Hanna, R.N.; Rajan, B.; Zerrouki, K.; Karnell, J.L.; Sagar, D.; Vainshtein, I.; Farmer, E.; Rosenthal, K.; Morehouse, C.; et al. Characterisation of anifrolumab, a fully human anti-interferon receptor antagonist antibody for the treatment of systemic lupus erythematosus. Lupus Sci. Med. 2018, 5, e000261. [Google Scholar] [CrossRef] [PubMed]
- Weckerle, C.E.; Franek, B.S.; Kelly, J.A.; Kumabe, M.; Mikolaitis, R.A.; Green, S.L.; Utset, T.O.; Jolly, M.; James, J.A.; Harley, J.B.; et al. Network analysis of associations between serum interferon-α activity, autoantibodies, and clinical features in systemic lupus erythematosus. Arthritis Rheum. 2011, 63, 1044–1053. [Google Scholar] [CrossRef] [PubMed]
- Crow, M.K. Developments in the clinical understanding of lupus. Arthritis Res. Ther. 2009, 11, 245. [Google Scholar] [CrossRef] [Green Version]
- Le, Y.; Zhou, Y.; Iribarren, P.; Wang, J. Chemokines and chemokine receptors: Their manifold roles in homeostasis and disease. Cell. Mol. Immunol. 2004, 1, 95–104. [Google Scholar]
- Graham, G.J.; Locati, M.; Mantovani, A.; Rot, A.; Thelen, M. The biochemistry and biology of the atypical chemokine receptors. Immunol. Lett. 2012, 145, 30–38. [Google Scholar] [CrossRef]
- Crow, M.K. Type I Interferon in the Pathogenesis of Lupus. J. Immunol. 2014, 192, 5459–5468. [Google Scholar] [CrossRef]
- Bauer, J.W.; Petri, M.; Batliwalla, F.M.; Koeuth, T.; Wilson, J.; Slattery, C.; Panoskaltsis-Mortari, A.; Gregersen, P.K.; Behrens, T.W.; Baechler, E.C. Interferon-regulated chemokines as biomarkers of systemic lupus erythematosus disease activity. Arthritis Rheum. 2009, 60, 3098–3107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marie, M.A.; Khalil, R.A.; Habib, H.M. Urinary CXCL10: A marker of nephritis in lupus patients. Reumatismo 2014, 65, 292–297. [Google Scholar] [CrossRef] [Green Version]
- Zlotnik, A.; Yoshie, O. The Chemokine Superfamily Revisited. Immunity 2012, 36, 705–716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, M.C.; Mayo, K.H. Chemokines from a Structural Perspective. Int. J. Mol. Sci. 2017, 18, 2088. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, A. Chemokines and Bone. Nitric Oxide 2020, 262, 231–258. [Google Scholar] [CrossRef]
- Legler, D.F.; Thelen, M. Chemokines: Chemistry, Biochemistry and Biological Function. Chim. Int. J. Chem. 2016, 70, 856–859. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kulkarni, O.; Anders, H.J. Chemokines in lupus nephritis. Front. Biosci. 2008, 13, 3312–3320. [Google Scholar] [CrossRef] [Green Version]
- Dominguez-Gutierrez, P.R.; Ceribelli, A.; Satoh, M.; Sobel, E.S.; Reeves, W.H.; Chan, E.K. Elevated signal transducers and activators of transcription 1 correlates with increased C-C motif chemokine ligand 2 and C-X-C motif chemokine 10 levels in peripheral blood of patients with systemic lupus erythematosus. Arthritis Res. Ther. 2014, 16, R20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robertson, M.J. Role of chemokines in the biology of natural killer cells. J. Leukoc. Biol. 2002, 71, 173–183. [Google Scholar]
- Connelly, K.L.; Kandane-Rathnayake, R.; Huq, M.; Hoi, A.; Nikpour, M.; Morand, E.F. Longitudinal association of type 1 interferon-induced chemokines with disease activity in systemic lupus erythematosus. Sci. Rep. 2018, 8, 3268. [Google Scholar] [CrossRef]
- Murdoch, C.; Finn, A. Chemokine receptors and their role in inflammation and infectious diseases. Blood 2000, 95, 3032–3043. [Google Scholar] [CrossRef] [PubMed]
- Banchereau, R.; Hong, S.; Cantarel, B.; Baldwin, N.; Baisch, J.; Edens, M.; Cepika, A.-M.; Acs, P.; Turner, J.; Anguiano, E.; et al. Personalized Immunomonitoring Uncovers Molecular Networks that Stratify Lupus Patients. Cell 2016, 165, 1548–1550. [Google Scholar] [CrossRef]
- Xu, M.; Zheng, X.; Wang, D.; Fu, X.; Xing, Y.; Liu, Y.; Wang, H.; Kong, X. Blockage of C-X-C Motif Chemokine Receptor 2 (CXCR2) Suppressed Uric Acid (UA)-Induced Cardiac Remodeling. Front. Physiol. 2021, 12, 700338. [Google Scholar] [CrossRef] [PubMed]
- Koper-Lenkiewicz, O.; Kamińska, J.; Sawicki, K.; Kemona, H. CXCL9, CXCL10, CXCL11, and their receptor (CXCR3) in neuroinflammation and neurodegeneration. Adv. Clin. Exp. Med. 2018, 27, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Karin, N.; Razon, H. Chemokines beyond chemo-attraction: CXCL10 and its significant role in cancer and autoimmunity. Cytokine 2018, 109, 24–28. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Zhao, Y.D.; Wang, X.M. CXCL10 an important chemokine associated with cytokine storm in COVID-19 infected patients. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 7497–7505. [Google Scholar] [CrossRef]
- Bauer, J.W.; Baechler, E.C.; Petri, M.; Batliwalla, F.M.; Crawford, D.; Ortmann, W.A.; Espe, K.J.; Li, W.; Patel, D.D.; Gregersen, P.K.; et al. Elevated serum levels of interferon-regulated chemokines are biomarkers for active human systemic lupus erythematosus. PLoS Med. 2006, 3, e491. [Google Scholar] [CrossRef]
- Deijns, S.J.; Broen, J.C.; Kruyt, N.D.; Schubart, C.D.; Andreoli, L.; Tincani, A.; Limper, M. The immunologic etiology of psychiatric manifestations in systemic lupus erythematosus: A narrative review on the role of the blood brain barrier, antibodies, cytokines and chemokines. Autoimmun. Rev. 2020, 19, 102592. [Google Scholar] [CrossRef]
- Lu, R.; Guthridge, J.M.; Chen, H.; Bourn, R.L.; Kamp, S.; Munroe, M.E.; Macwana, S.R.; Bean, K.; Sridharan, S.; Merrill, J.T.; et al. Immunologic findings precede rapid lupus flare after transient steroid therapy. Sci. Rep. 2019, 9, 8590. [Google Scholar]
- Hochberg, M.C. Updating the American college of rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Care Res. 1997, 40, 1725. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.M.; Cohen, A.S.; Fries, J.F.; Masi, A.T.; Mcshane, D.J.; Rothfield, N.F.; Schaller, J.G.; Talal, N.; Winchester, R.J. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Care Res. 1982, 25, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Lam, G.K.W.; Petri, M. Assessment of systemic lupus erythematosus. Clin. Exp. Rheumatol. 2005, 23, S120–S132. [Google Scholar] [PubMed]
- Urowitz, M.B.; Gladman, D.D. 2 Measures of disease activity and damage in SLE. Baillière’s Clin. Rheumatol. 1998, 12, 405–413. [Google Scholar] [CrossRef]
- Gladman, D.D.; Urowitz, M.B.; Rahman, P.; Ibañez, M.; Tam, L.-S. Accrual of organ damage over time in patients with systemic lupus erythematosus. J. Rheumatol. 2003, 30, 1955–1959. [Google Scholar] [PubMed]
- Isenberg, D.; Ramsey-Goldman, R. Assessing patients with lupus: Towards a drug responder index. Rheumatology 1999, 38, 1045–1049. [Google Scholar] [CrossRef] [Green Version]
- Smiljanovic, B.; Grün, J.R.; Biesen, R.; Schulte-Wrede, U.; Baumgrass, R.; Stuhlmüller, B.; Maslinski, W.; Hiepe, F.; Burmester, G.R.; Radbruch, A.; et al. The multifaceted balance of TNF-α and type I/II interferon responses in SLE and RA: How monocytes manage the impact of cytokines. J. Mol. Med. 2012, 90, 1295–1309. [Google Scholar] [CrossRef]
- Ghazali, W.S.W.; Daud, S.M.M.; Mohammad, N.; Wong, K.K. SLICC damage index score in systemic lupus erythematosus patients and its associated factors. Medicine 2018, 97, e12787. [Google Scholar] [CrossRef]
- Petri, M.; Singh, S.; Tesfasyone, H.; Dedrick, R.; Fry, K.; Lal, P.; Williams, G.; Bauer, J.; Gregersen, P.; Behrens, T.; et al. Longitudinal expression of type I interferon responsive genes in systemic lupus erythematosus. Lupus 2009, 18, 980–989. [Google Scholar] [CrossRef] [Green Version]
- Bennett, L.; Palucka, A.K.; Arce, E.; Cantrell, V.; Borvak, J.; Banchereau, J.; Pascual, V. Interferon and Granulopoiesis Signatures in Systemic Lupus Erythematosus Blood. J. Exp. Med. 2003, 197, 711–723. [Google Scholar] [CrossRef] [Green Version]
Parametres | SLE n = 70 | Controls n = 30 | P1 |
---|---|---|---|
IFN-α pg/mL | 163.91 ± 7.16 | 42.1 ± 5.23 | 0.01 |
CCL2 pg/mL | 179.22 ± 41.81 | 11.67 ± 4.18 | 0.01 |
CXCL10 pg/mL | 45.24 ± 1.04 | 15.95 ± 1.96 | 0.01 |
CCL19 pg/mL | 531.25 ± 109 | 22.34 ± 4.98 | 0.01 |
Hg | 113.81 ± 5.87 | 145.9 ± 9.23 | 0.01 |
Leuc | 5.87 ± 2.67 | 9.34 ± 4.98 | NS |
Trom | 255.9 ± 33.23 | 267.9 ± 10.9 | NS |
CRP | 52.34 ± 4.98 | 6.89 ± 4.12 | 0.01 |
ESR | 40.87 ± 8.67 | 10.33 ± 2.98 | 0.01 |
ANA pos | 70 (100%) | 1 (3.33%) | 0.01 |
Anti-ds-DNA-pos | 58 (82.85%) | 0 | 0.01 |
Anti-Sm- pos | 45 (64.28) | 0 | 0.01 |
Parametres | SLE, SLEDAI < 8, n = 29 | SLE, SLEDAI ≥ 8, n = 41 | P1 |
---|---|---|---|
IFN-α pg/mL | 63.76 ± 4.23 | 204.1 ± 18.1 | 0.01 |
CCL2 pg/mL | 41.67 ± 4.18 | 131.45 ± 27.83 | 0.01 |
CXCL10 pg/mL | 29.24 ± 4.12 | 115.23 ± 5.22 | 0.01 |
CCL19 pg/mL | 231.25 ± 56.8 | 782.34 ± 11.93 | 0.01 |
Hg | 121.51 ± 6.89 | 104.2 ± 4.11 | 0.01 |
Leuc | 5.87 ± 1.67 | 9.34 ± 1.16 | 0.05 |
Trom | 301.2 ± 9.44 | 139.9 ± 10.2 | 0.05 |
CRP | 19.9 ± 4.31 | 56.44 ± 4.83 | 0.01 |
ESR | 21.33 ± 6.24 | 40.77 ± 3.81 | 0.01 |
ANA pos | 29 (100%) | 41 (100%) | NS |
Anti-ds-DNA -pos | 22 (75.86%) | 36 (87.80%) | 0.05 |
Anti-Sm- pos | 13 (44.82%) | 32 (78.04%) | 0.01 |
Parametres | SLE, n = 70 Month 0 | SLE, n = 70 Month 6 | SLE, n = 64 Month 12 | SLE, n = 61 Month 18 | SLE, n = 60 Month 24 |
---|---|---|---|---|---|
IFN-α pg/mL | 163.91 ± 7.16 | 154.1 ± 8.12 | 194.2 ± 3.89 | 157.2 ± 3.33 | 130.9 ± 4.3 * |
CCL2 pg/mL | 179.2 ± 41.81 | 201.6 ± 30.1 | 210.8 ± 9.8 | 279.4 ± 21.9 | 192.2 ± 14.5 ** |
CXCL10 g/mL | 45.24 ± 1.04 | 57.4 ± 2.08 | 65.3 ± 7.99 | 69.9 ± 2.67 | 71.78 ± 2.1 ** |
CCL19 pg/mL | 531.25 ± 109 | 543.3 ± 89.3 | 682.5 ± 11.4 | 567.5 ± 71.2 | 604.2 ± 87.7 ** |
SLEDAI | 11.67 ± 2.34 | 14.2 ± 1.34 | 16.76 ± 3,2 | 17.1 ± 3.81 | 14.1 ± 4.12 * |
SLICC | 13.78 ± 2.1 | 19.94 ± 1.1 | 22.4 ± 1.3 | 23.1 ± 2.7 | 25.2 ± 1.4 ** |
Parameters | Patients with SLE, Month 0, Visit 1 | Patients with SLE, Month 12, Visit 3 | Patients with SLE, Month 24, Visit 5 | ||||||
---|---|---|---|---|---|---|---|---|---|
n | r | p | n | r | p | n | r | p | |
IFN-α/SLEDAI CCL2/SLEDAI CXCL10/SLEDAI CCL19/SLEDAI CRP/SLEDAI ESR/SLEDAI | 70 | 0.319 0.341 0.299 0.266 0.389 0.401 | 0.001 0.027 0.013 0.016 0.024 0.001 | 60 | 0.322 0.389 0.306 0.296 0.404 0.297 | 0.001 0.031 0.015 0.016 0.016 0.001 | 60 | 0.319 0.320 0.397 0.356 0.341 0.391 | 0.001 0.033 0.001 0.002 0.026 0.001 |
IFN-α/SLICC CCL2/SLICC CXCL10/SLICC CCL19/SLICC CRP/SLICC ESR/SLICC | 70 | 0.420 0.345 −0.699 −0.615 −0.423 0.410 | 0.001 0.001 0.013 0.016 0.026 0.024 | 60 | 0.492 0.374 −0.642 −0.789 −0.423 0.309 | 0.001 0.001 0.013 0.015 0.001 0.021 | 60 | 0.429 0.320 −0.705 −0.789 −0.576 0.419 | 0.001 0.001 0.001 0.002 0.001 0.027 |
IFN-α/CCL2 IFN-α/CXCL10 IFN-α/CCL19 CCL2/CXCL10 CCL2/CXCL19 CXCL10/CXCL19 | 70 | 0.523 0.509 0.519 0.766 0.789 0.584 | 0.001 0.001 0.013 0.032 0.001 0.001 | 60 | 0.522 0.514 0.487 0.710 0.792 0.582 | 0.001 0.001 0.013 0.021 0.001 0.001 | 60 | 0.523 0.570 0.397 0.756 0.741 0.591 | 0.001 0.001 0.013 0.024 0.001 0.001 |
Parametres | SLE, Deterioration, n = 12 | SLE, No Change, n = 58 | P1 |
---|---|---|---|
IFN-α pg/mL | 363.76 ± 9.23 | 116.1 ± 22.1 | 0.001 |
CCL2 pg/mL | 278.3 ± 5.12 | 89.4 ± 12.8 | 0.001 |
CXCL10 pg/mL | 234.2 ± 6.13 | 115.23 ± 5.9 | 0.001 |
CCL19 pg/mL | 776.25 ± 5.1 | 651.34 ± 9.0 | 0.001 |
Hg | 110.51 ± 3.9 | 120.2 ± 9.1 | 0.001 |
Leuc | 3.54 ± 1.27 | 9.99 ± 1.8 | 0.001 |
Trom | 131.2 ± 9.78 | 186.9 ± 10.9 | 0.05 |
CRP | 58.5 ± 4.31 | 32.6. ± 4.55 | 0.001 |
ESR | 78.4 ± 6.99 | 40.21 ± 4.07 | 0.001 |
ANA pos | 12 (100%) | 58(100%) | NS |
Anti-ds-DNA -pos | 12 (100%) | 46 (79.31%) | 0.05 |
Anti-Sm- pos | 12 (100%) | 33 (56.89%) | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geneva-Popova, M.G.; Popova-Belova, S.D.; Gardzheva, P.N.; Kraev, K.I. A Study of IFN-α-Induced Chemokines CCL2, CXCL10 and CCL19 in Patients with Systemic Lupus Erythematosu. Life 2022, 12, 251. https://doi.org/10.3390/life12020251
Geneva-Popova MG, Popova-Belova SD, Gardzheva PN, Kraev KI. A Study of IFN-α-Induced Chemokines CCL2, CXCL10 and CCL19 in Patients with Systemic Lupus Erythematosu. Life. 2022; 12(2):251. https://doi.org/10.3390/life12020251
Chicago/Turabian StyleGeneva-Popova, Mariela Gencheva, Stanislava Dimitrova Popova-Belova, Petya Nikolova Gardzheva, and Krasimir Iliev Kraev. 2022. "A Study of IFN-α-Induced Chemokines CCL2, CXCL10 and CCL19 in Patients with Systemic Lupus Erythematosu" Life 12, no. 2: 251. https://doi.org/10.3390/life12020251
APA StyleGeneva-Popova, M. G., Popova-Belova, S. D., Gardzheva, P. N., & Kraev, K. I. (2022). A Study of IFN-α-Induced Chemokines CCL2, CXCL10 and CCL19 in Patients with Systemic Lupus Erythematosu. Life, 12(2), 251. https://doi.org/10.3390/life12020251