Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Peptide Standards
2.3. Single-Step Dry-Down Reactions
2.4. Wet-Dry Cycling
2.5. MALDI-TOF Analysis
2.6. ESI-Mass Spectrometry
2.7. Liquid Chromatography-Mass Spectrometry
2.8. High-Performance Liquid Chromatography
2.9. NMR Spectroscopy
2.10. FTIR Spectroscopy
2.11. Circular Dichroism
3. Results
3.1. Alpha and Beta Amino and Hydroxy Acids Exhibit a Different Extent of Polymerization in Single-Step Dry-Down Reactions
3.2. Differential Polymerization of Alpha versus Beta Amino Acids in Single-Step Dry-Down Reactions
3.3. Comparison of Single-Step Dry-Down Reactions versus Wet-Dry Cycling
3.4. Polymerization during Extended Wet-Dry Cycling
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jacob, F. Evolution and Tinkering. Science 1977, 196, 1161–1166. [Google Scholar] [CrossRef] [Green Version]
- Butlerow, A. Formation synthétique d’une substance sucrée. CR Acad. Sci. 1861, 53, 145–147. [Google Scholar]
- Miller, S.L. A Production of Amino Acids under Possible Primitive Earth Conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [Green Version]
- Ring, D.; Wolman, Y.; Friedmann, N.; Miller, S.L. Prebiotic Synthesis of Hydrophobic and Protein Amino Acids. Proc. Natl. Acad. Sci. USA 1972, 69, 765–768. [Google Scholar] [CrossRef] [Green Version]
- Wolman, Y.; Haverland, W.J.; Miller, S.L. Nonprotein Amino Acids from Spark Discharges and Their Comparison with the Murchison Meteorite Amino Acids. Proc. Natl. Acad. Sci. USA 1972, 69, 809–811. [Google Scholar] [CrossRef] [Green Version]
- Lawless, J.G.; Boynton, C.D. Thermal Synthesis of Amino Acids from a Simulated Primitive Atmosphere. Nature 1973, 243, 405–407. [Google Scholar] [CrossRef]
- Miller, S.L. The atmosphere of the primitive earth and the prebiotic synthesis of amino acids. In Cosmochemical Evolution and the Origins of Life; Springer: Berlin/Heidelberg, Germany, 1974; pp. 139–151. [Google Scholar]
- Miller, S.L.; Urey, H.C.; Oró, J. Origin of organic compounds on the primitive earth and in meteorites. J. Mol. Evol. 1976, 9, 59–72. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.L. Prebiotic sugar synthesis: Hexose and hydroxy acid synthesis from glyceraldehyde catalyzed by iron(III) hydroxide oxide. J. Mol. Evol. 1992, 35, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, A. Molecular Origins of Life; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Cleaves, H.J., II. The prebiotic geochemistry of formaldehyde. Precambrian Res. 2008, 164, 111–118. [Google Scholar] [CrossRef]
- Parker, E.T.; Cleaves, H.; Dworkin, J.; Glavin, D.; Callahan, M.; Aubrey, A.; Lazcano, A.; Bada, J.L. Primordial synthesis of amines and amino acids in a 1958 Miller H2S-rich spark discharge experiment. Proc. Natl. Acad. Sci. USA 2011, 108, 5526–5531. [Google Scholar] [CrossRef] [Green Version]
- Eschenmoser, A. Etiology of Potentially Primordial Biomolecular Structures: From Vitamin B12 to the Nucleic Acids and an Inquiry into the Chemistry of Life’s Origin: A Retrospective. Angew. Chem. Int. Ed. 2011, 50, 12412–12472. [Google Scholar] [CrossRef]
- Sagi, V.N.; Punna, V.; Hu, F.; Meher, G.; Krishnamurthy, R. Exploratory Experiments on the Chemistry of the “Glyoxylate Scenario”: Formation of Ketosugars from Dihydroxyfumarate. J. Am. Chem. Soc. 2012, 134, 3577–3589. [Google Scholar] [CrossRef]
- Hud, N.V.; Cafferty, B.J.; Krishnamurthy, R.; Williams, L.D. The origin of RNA and “my grandfather’s axe”. Chem. Biol. 2013, 20, 466–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elsila, J.E.; Aponte, J.C.; Blackmond, D.G.; Burton, A.S.; Dworkin, J.P.; Glavin, D.P. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories. ACS Cent. Sci. 2016, 2, 370–379. [Google Scholar] [CrossRef]
- Kitadai, N.; Maruyama, S. Origins of building blocks of life: A review. Geosci. Front. 2018, 9, 1117–1153. [Google Scholar] [CrossRef]
- Yadav, M.; Kumar, R.; Krishnamurthy, R. Chemistry of Abiotic Nucleotide Synthesis. Chem. Rev. 2020, 120, 4766–4805. [Google Scholar] [CrossRef] [PubMed]
- Schneider, C.; Becker, S.; Okamura, H.; Crisp, A.; Amatov, T.; Stadlmeier, M.; Carell, T. Noncanonical RNA Nucleosides as Molecular Fossils of an Early Earth-Generation by Prebiotic Methylations and Carbamoylations. Angew. Chem. Int. Ed. 2018, 57, 5943–5946. [Google Scholar] [CrossRef] [PubMed]
- Deamer, D. The role of lipid membranes in life’s origin. Life 2017, 7, 5. [Google Scholar] [CrossRef]
- Kim, S.C.; Zhou, L.; Zhang, W.; O’Flaherty, D.K.; Rondo-Brovetto, V.; Szostak, J.W. A Model for the Emergence of RNA from a Prebiotically Plausible Mixture of Ribonucleotides, Arabinonucleotides, and 2′-Deoxynucleotides. J. Am. Chem. Soc. 2020, 142, 2317–2326. [Google Scholar] [CrossRef] [PubMed]
- Runnels, C.M.; Lanier, K.A.; Williams, J.K.; Bowman, J.C.; Petrov, A.S.; Hud, N.V.; Williams, L.D. Folding, Assembly, and Persistence: The Essential Nature and Origins of Biopolymers. J. Mol. Evol. 2018, 86, 598–610. [Google Scholar] [CrossRef] [Green Version]
- Lemmon, R.M. Chemical evolution. Chem. Rev. 1970, 70, 95–109. [Google Scholar] [CrossRef]
- Dickerson, R.E. Chemical Evolution and the Origin of Life. Sci. Am. 1978, 239, 70–87. [Google Scholar] [CrossRef] [PubMed]
- Frenkel-Pinter, M.; Samanta, M.; Ashkenasy, G.; Leman, L.J. Prebiotic Peptides: Molecular Hubs in the Origin of Life. Chem. Rev. 2020, 120, 4707–4765. [Google Scholar] [CrossRef]
- Li, Z.; Li, L.; McKenna, K.R.; Schmidt, M.; Pollet, P.; Gelbaum, L.; Fernández, F.M.; Krishnamurthy, R.; Liotta, C.L. The Oligomerization of Glucose under Plausible Prebiotic Conditions. Orig. Life Evol. Biosphere 2019, 49, 225–240. [Google Scholar] [CrossRef]
- Bhowmik, S.; Krishnamurthy, R. The role of sugar-backbone heterogeneity and chimeras in the simultaneous emergence of RNA and DNA. Nat. Chem. 2019, 11, 1009–1018. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Levitt, M. Simulating protein evolution in sequence and structure space. Curr. Opin. Struct. Biol. 2004, 14, 202–207. [Google Scholar] [CrossRef]
- Fahnestock, S.; Rich, A. Ribosome-Catalyzed Polyester Formation. Science 1971, 173, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Krishnamurthy, R. Life’s biological chemistry: A destiny or destination starting from prebiotic chemistry? Chem.-Eur. J. 2018, 24, 16708–16715. [Google Scholar] [CrossRef]
- Frenkel-Pinter, M.; Rajaei, V.; Glass, J.B.; Hud, N.V.; Williams, L.D. Water and Life: The Medium is the Message. J. Mol. Evol. 2021, 89, 2–11. [Google Scholar] [CrossRef]
- Frenkel-Pinter, M.; Haynes, J.W.; Martin, C.; Petrov, A.S.; Burcar, B.T.; Krishnamurthy, R.; Hud, N.V.; Leman, L.J.; Williams, L.D. Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc. Natl. Acad. Sci. USA 2019, 116, 16338–16346. [Google Scholar] [CrossRef] [Green Version]
- Ilardo, M.; Bose, R.; Meringer, M.; Rasulev, B.; Grefenstette, N.; Stephenson, J.; Freeland, S.; Gillams, R.J.; Butch, C.J.; Cleaves, H.J. Adaptive properties of the genetically encoded amino acid alphabet are inherited from its subsets. Sci. Rep. 2019, 9, 12468. [Google Scholar] [CrossRef] [PubMed]
- Ilardo, M.; Meringer, M.; Freeland, S.; Rasulev, B.; Cleaves, H.J., II. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids. Sci. Rep. 2015, 5, 9414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frenkel-Pinter, M.; Haynes, J.W.; Mohyeldin, A.M.; Martin, C.; Sargon, A.B.; Petrov, A.S.; Krishnamurthy, R.; Hud, N.V.; Williams, L.D.; Leman, L.J. Mutually stabilizing interactions between proto-peptides and RNA. Nat. Commun. 2020, 11, 3137. [Google Scholar] [CrossRef] [PubMed]
- Chandru, K.; Jia, T.Z.; Mamajanov, I.; Bapat, N.; Cleaves, H.J., II. Prebiotic oligomerization and self-assembly of structurally diverse xenobiological monomers. Sci. Rep. 2020, 10, 17560. [Google Scholar] [CrossRef]
- Jia, T.Z.; Chandru, K.; Hongo, Y.; Afrin, R.; Usui, T.; Myojo, K.; Cleaves, H.J. Membraneless polyester microdroplets as primordial compartments at the origins of life. Proc. Natl. Acad. Sci. USA 2019, 116, 15830–15835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mamajanov, I.; Macdonald, P.J.; Ying, J.; Duncanson, D.M.; Dowdy, G.R.; Walker, C.A.; Engelhart, A.; Fernández, F.M.; Grover, M.A.; Hud, N.; et al. Ester Formation and Hydrolysis during Wet–Dry Cycles: Generation of Far-from-Equilibrium Polymers in a Model Prebiotic Reaction. Macromolecules 2014, 47, 1334–1343. [Google Scholar] [CrossRef]
- Foden, C.S.; Islam, S.; Fernández-García, C.; Maugeri, L.; Sheppard, T.D.; Powner, M.W. Prebiotic synthesis of cysteine peptides that catalyze peptide ligation in neutral water. Science 2020, 370, 865–869. [Google Scholar] [CrossRef]
- Surman, A.J.; Rodriguez-Garcia, M.; Abul-Haija, Y.M.; Cooper, G.J.T.; Gromski, P.S.; Turk-MacLeod, R.; Mullin, M.; Mathis, C.; Walker, S.I.; Cronin, L. Environmental control programs the emergence of distinct functional ensembles from unconstrained chemical reactions. Proc. Natl. Acad. Sci. USA 2019, 116, 5387–5392. [Google Scholar] [CrossRef] [Green Version]
- Miller, S. Which organic compounds could have occurred on the prebiotic earth? In Cold Spring Harbor Symposia on Quantitative Biology; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1987; pp. 17–27. [Google Scholar]
- Polanco, C.; Buhse, T.; Samaniego, J.L.; González, J.A.C. A toy model of prebiotic peptide evolution: The possible role of relative amino acid abundances. Acta Biochim. Pol. 2013, 60, 175–182. [Google Scholar] [CrossRef] [Green Version]
- Zaia, D.A.; Zaia, C.T.B.; De Santana, H. Which amino acids should be used in prebiotic chemistry studies? Orig. Life Evol. Biosph. 2008, 38, 469–488. [Google Scholar] [CrossRef]
- Forsythe, J.G.; Petrov, A.S.; Millar, W.C.; Yu, S.-S.; Krishnamurthy, R.; Grover, M.A.; Hud, N.V.; Fernández, F.M. Surveying the sequence diversity of model prebiotic peptides by mass spectrometry. Proc. Natl. Acad. Sci. USA 2017, 114, E7652–E7659. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Forsythe, J.G.; Yu, S.-S.; Mamajanov, I.; Grover, M.A.; Krishnamurthy, R.; Fernández, F.M.; Hud, N.V. Ester-Mediated Amide Bond Formation Driven by Wet-Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth. Angew. Chem. Int. Ed. 2015, 54, 9871–9875. [Google Scholar] [CrossRef] [Green Version]
- Doran, D.; Abul-Haija, Y.M.; Cronin, L. Emergence of function and selection from recursively programmed polymerisation reactions in mineral environments. Angew. Chem. Int. Ed. 2019, 58, 11253–11256. [Google Scholar] [CrossRef]
- Frenkel-Pinter, M.; Sargon, A.B.; Glass, J.B.; Hud, N.V.; Williams, L.D. Transition metals enhance prebiotic depsipeptide oligomerization reactions involving histidine. RSC Adv. 2021, 11, 3534–3538. [Google Scholar] [CrossRef]
- Ross, D.S.; Deamer, D. Dry/Wet Cycling and the Thermodynamics and Kinetics of Prebiotic Polymer Synthesis. Life 2016, 6, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Brill, T.B. Spectroscopy of Hydrothermal Reactions. 27. Simultaneous Determination of Hydrolysis Rate Constants of Glycylglycine to Glycine and Glycylglycine—Diketopiperazine Equilibrium Constants at 310−330 °C and 275 bar. J. Phys. Chem. A 2003, 107, 8575–8577. [Google Scholar] [CrossRef]
- Marshall-Bowman, K.; Ohara, S.; Sverjensky, D.A.; Hazen, R.M.; Cleaves, H.J. Catalytic peptide hydrolysis by mineral surface: Implications for prebiotic chemistry. Geochim. Cosmochim. Acta 2010, 74, 5852–5861. [Google Scholar] [CrossRef]
- Radzicka, A.; Wolfenden, R. Rates of Uncatalyzed Peptide Bond Hydrolysis in Neutral Solution and the Transition State Affinities of Proteases. J. Am. Chem. Soc. 1996, 118, 6105–6109. [Google Scholar] [CrossRef]
- Cronin, J.R.; Chang, S.; Greenberg, J. The Chemistry of Life’s Origins; Greenberg, J.M., Mendoza-Gomez, C.X., Pirronello, V., Eds.; Kluwer: Dordrecht, The Netherlands, 1993; Volume 209. [Google Scholar]
- Parker, E.T.; Cleaves, H.J., II; Bada, J.L.; Fernández, F.M. Quantitation of α-hydroxy acids in complex prebiotic mixtures via liquid chromatography/tandem mass spectrometry. Rapid Commun. Mass Spectrom. 2016, 30, 2043–2051. [Google Scholar] [CrossRef]
- Forsythe, J.G.; English, S.L.; Simoneaux, R.E.; Weber, A.L. Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions. Orig. Life Evol. Biosphere 2018, 48, 201–211. [Google Scholar] [CrossRef]
- Liu, R.; Orgel, L.E. Efficient oligomerization of negatively-charged β-amino acids at −20 °C. J. Am. Chem. Soc. 1997, 119, 4791–4792. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Orgel, L.E. Polymerization of β-amino Acids in Aqueous Solution. Orig. Life Evol. Biosphere 1998, 28, 47–60. [Google Scholar] [CrossRef]
- Rousseau, P.; Piekarski, D.G.; Capron, M.; Domaracka, A.; Adoui, L.; Martín, F.; Alcamí, M.; Díaz-Tendero, S.; Huber, B.A. Polypeptide formation in clusters of β-alanine amino acids by single ion impact. Nat. Commun. 2020, 11, 3818. [Google Scholar] [CrossRef] [PubMed]
- Schwendinger, M.G.; Tattler, R.; Saetia, S.; Liedl, K.R.; Kroemer, R.T.; Rode, B.M. Salt induced peptide formation: On the selectivity of the copper induced peptide formation under possible prebiotic conditions. Inorg. Chim. Acta 1995, 228, 207–214. [Google Scholar] [CrossRef]
- Wu, L.-F.; Liu, Z.; Sutherland, J.D. pH-Dependent peptide bond formation by the selective coupling of α-amino acids in water. Chem. Commun. 2021, 57, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Mita, H.; Nomoto, S.; Terasaki, M.; Shimoyama, A.; Yamamoto, Y. Prebiotic formation of polyamino acids in molten urea. Int. J. Astrobiol. 2005, 4, 145–154. [Google Scholar] [CrossRef]
- Brack, A. Selective emergence and survival of early polypeptides in water. Orig. Life Evol. Biosphere 1987, 17, 367–379. [Google Scholar] [CrossRef]
- Zhao, Y.-F.; Cao, P.-S. Why nature chose a-amino acids. Pure Appl. Chem. 1999, 71, 1163–1166. [Google Scholar] [CrossRef] [Green Version]
- Weber, A.L.; Miller, S.L. Reasons for the occurrence of the twenty coded protein amino acids. J. Mol. Evol. 1981, 17, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Bates, F.S.; Hillmyer, M.A.; Lodge, T.P.; Bates, C.M.; Delaney, K.T.; Fredrickson, G.H. Multiblock polymers: Panacea or Pandora’s box? Science 2012, 336, 434–440. [Google Scholar] [CrossRef]
- Feng, Y.; Guo, J. Biodegradable Polydepsipeptides. Int. J. Mol. Sci. 2009, 10, 589–615. [Google Scholar] [CrossRef]
- Shaver, M.P.; Cameron, D.J.A. Tacticity Control in the Synthesis of Poly(lactic acid) Polymer Stars with Dipentaerythritol Cores. Biomacromolecules 2010, 11, 3673–3679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kivijärvi, T.; Pappalardo, D.; Olsén, P.; Finne-Wistrand, A. Inclusion of isolated α-amino acids along the polylactide chain through organocatalytic ring-opening copolymerization. Eur. Polym. J. 2020, 131, 109703. [Google Scholar] [CrossRef]
- Penczek, S.; Pretula, J.; Slomkowski, S. Ring-opening polymerization. Chem. Teach. Int. 2021, 2, 33–57. [Google Scholar] [CrossRef]
- Lahav, N.; Chang, S. The possible role of solid surface area in condensation reactions during chemical evolution: Reevaluation. J. Mol. Evol. 1976, 8, 357–380. [Google Scholar] [CrossRef] [PubMed]
Reaction | Overall Conversion—Single-Step Dry-Down (%) 1 | Overall Conversion—Wet-Dry Cycling (%) 1 | Reaction | Overall Conversion—Single-Step Dry-Down (%) 1 | Overall Conversion—Wet-Dry Cycling (%) 1 |
---|---|---|---|---|---|
glc+Gly | 98 | 90 | hpa+Gly | 29 | 30 |
glc+Ala | 40 | 40 | hpa+Ala | 13 | 28 |
glc+β-Ala | 96 | 88 | hpa+β-Ala | 94 | 79 |
glc+β-Aba | 60 | 44 | hpa+β-Aba | 72 | 63 |
lac+Gly | 35 | 44 | hba+Gly | 16 | 19 |
lac+Ala | 13 | 41 | hba+Ala | 8 | 30 |
lac+β-Ala | 77 | 60 | hba+β-Ala | 62 | 40 |
lac+β-Aba | 33 | 19 | hba+β-Aba | 4 | 11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frenkel-Pinter, M.; Jacobson, K.C.; Eskew-Martin, J.; Forsythe, J.G.; Grover, M.A.; Williams, L.D.; Hud, N.V. Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions. Life 2022, 12, 265. https://doi.org/10.3390/life12020265
Frenkel-Pinter M, Jacobson KC, Eskew-Martin J, Forsythe JG, Grover MA, Williams LD, Hud NV. Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions. Life. 2022; 12(2):265. https://doi.org/10.3390/life12020265
Chicago/Turabian StyleFrenkel-Pinter, Moran, Kaitlin C. Jacobson, Jonathan Eskew-Martin, Jay G. Forsythe, Martha A. Grover, Loren Dean Williams, and Nicholas V. Hud. 2022. "Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions" Life 12, no. 2: 265. https://doi.org/10.3390/life12020265
APA StyleFrenkel-Pinter, M., Jacobson, K. C., Eskew-Martin, J., Forsythe, J. G., Grover, M. A., Williams, L. D., & Hud, N. V. (2022). Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions. Life, 12(2), 265. https://doi.org/10.3390/life12020265