Potential Applications of Artificial Intelligence in Clinical Trials for Alzheimer’s Disease
Abstract
:1. Introduction
2. Databases and Performance Measurements
2.1. Databases
2.2. Performance Measurements
3. Eligibility Assessment
3.1. Protein Biomarkers for AD
3.2. MRI Biomarkers
4. Randomization
5. Challenges and Future Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ritchie, C.W.; Molinuevo, J.L.; Truyen, L.; Satlin, A.; Van der Geyten, S.; Lovestone, S.; European Prevention of Alzheimer’s Dementia Consortium. Development of interventions for the secondary prevention of Alzheimer’s dementia: The European Prevention of Alzheimer’s Dementia (EPAD) project. Lancet Psychiatry 2016, 3, 179–186. [Google Scholar] [CrossRef]
- Leal, S.L.; Lockhart, S.N.; Maass, A.; Bell, R.K.; Jagust, W.J. Subthreshold Amyloid Predicts Tau Deposition in Aging. J. Neurosci. 2018, 38, 4482–4489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karran, E.; Mercken, M.; De Strooper, B. The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat. Rev. Drug Discov. 2011, 10, 698–712. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Petersen, R.C.; Weiner, M.W.; Aisen, P.S.; Shaw, L.M.; Vemuri, P.; Wiste, H.J.; Weigand, S.D.; et al. Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 2013, 12, 207–216. [Google Scholar] [CrossRef] [Green Version]
- Hardy, J.A.; Higgins, G.A. Alzheimer’s disease: The amyloid cascade hypothesis. Science 1992, 256, 184–185. [Google Scholar] [CrossRef]
- Giannakopoulos, P.; Herrmann, F.R.; Bussiere, T.; Bouras, C.; Kovari, E.; Perl, D.P.; Morrison, J.H.; Gold, G.; Hof, P.R. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer’s disease. Neurology 2003, 60, 1495–1500. [Google Scholar] [CrossRef]
- Mangialasche, F.; Solomon, A.; Winblad, B.; Mecocci, P.; Kivipelto, M. Alzheimer’s disease: Clinical trials and drug development. Lancet Neurol. 2010, 9, 702–716. [Google Scholar] [CrossRef]
- Cummings, J.; Aisen, P.; Lemere, C.; Atri, A.; Sabbagh, M.; Salloway, S. Aducanumab produced a clinically meaningful benefit in association with amyloid lowering. Alzheimer’s Res. 2021, 13, 98. [Google Scholar] [CrossRef]
- Malzbender, K.; Lavin-Mena, L.; Hughes, L.; Bose, N.; Goldman, D.; Patel, D. Key Barriers to Clinical Trials for Alzheimer’s Disease; Leonard, D., Ed.; Schaeffer Center for Health Policy and Economics: Los Angeles, CA, USA, 2020. [Google Scholar]
- DeCarli, C. Mild cognitive impairment: Prevalence, prognosis, aetiology, and treatment. Lancet Neurol. 2003, 2, 15–21. [Google Scholar] [CrossRef]
- Nettiksimmons, J.; Harvey, D.; Brewer, J.; Carmichael, O.; DeCarli, C.; Jack, C.R., Jr.; Petersen, R.; Shaw, L.M.; Trojanowski, J.Q.; Weiner, M.W.; et al. Subtypes based on cerebrospinal fluid and magnetic resonance imaging markers in normal elderly predict cognitive decline. Neurobiol. Aging 2010, 31, 1419–1428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bali, J.; Bali, O. Artificial intelligence in ophthalmology and healthcare: An updated review of the techniques in use. Indian J. Ophthalmol. 2021, 69, 8–13. [Google Scholar] [CrossRef]
- Lovestone, S.; Francis, P.; Kloszewska, I.; Mecocci, P.; Simmons, A.; Soininen, H.; Spenger, C.; Tsolaki, M.; Vellas, B.; Wahlund, L.O.; et al. AddNeuroMed—The European collaboration for the discovery of novel biomarkers for Alzheimer’s disease. Ann. N. Y. Acad. Sci. 2009, 1180, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Gretton, A.; Borgwardt, K.M.; Rasch, M.J.; Scholkopf, B.; Smola, A. A kernel two-sample test. J. Mach. Learn. Res. 2012, 13, 723–773. [Google Scholar]
- Odena, A.; Olah, C.; Shlens, J. Conditional image synthesis with auxiliary classifier GANs. In Proceedings of the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; pp. 2642–2651. [Google Scholar]
- Islam, J.; Zhang, Y. GAN-based synthetic brain PET image generation. Brain Inf. 2020, 7, 3. [Google Scholar] [CrossRef] [PubMed]
- McKhann, G.; Drachman, D.; Folstein, M.; Katzman, R.; Price, D.; Stadlan, E.M. Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 1984, 34, 939–944. [Google Scholar] [CrossRef] [Green Version]
- McKhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Landau, S.M.; Horng, A.; Fero, A.; Jagust, W.J.; Alzheimer’s Disease Neuroimaging Initiative. Amyloid negativity in patients with clinically diagnosed Alzheimer disease and MCI. Neurology 2016, 86, 1377–1385. [Google Scholar] [CrossRef] [PubMed]
- Sevigny, J.; Suhy, J.; Chiao, P.; Chen, T.; Klein, G.; Purcell, D.; Oh, J.; Verma, A.; Sampat, M.; Barakos, J. Amyloid PET Screening for Enrichment of Early-Stage Alzheimer Disease Clinical Trials: Experience in a Phase 1b Clinical Trial. Alzheimer Dis. Assoc. Disord. 2016, 30, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Chetelat, G.; La Joie, R.; Villain, N.; Perrotin, A.; de La Sayette, V.; Eustache, F.; Vandenberghe, R. Amyloid imaging in cognitively normal individuals, at-risk populations and preclinical Alzheimer’s disease. Neuroimage Clin. 2013, 2, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Tosun, D.; Joshi, S.; Weiner, M.W.; Alzheimer’s Disease Neuroimaging Initiative. Neuroimaging predictors of brain amyloidosis in mild cognitive impairment. Ann. Neurol. 2013, 74, 188–198. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Byun, M.S.; Yi, D.; Sohn, B.K.; Jeon, S.Y.; Lee, Y.; Lee, J.Y.; Kim, Y.K.; Lee, Y.S.; Lee, D.Y. Prediction of Cerebral Amyloid With Common Information Obtained From Memory Clinic Practice. Front. Aging Neurosci. 2018, 10, 309. [Google Scholar] [CrossRef] [PubMed]
- Shan, G.; Bernick, C.; Caldwell, J.Z.K.; Ritter, A. Machine learning methods to predict amyloid positivity using domain scores from cognitive tests. Sci. Rep. 2021, 11, 4822. [Google Scholar] [CrossRef]
- Mielke, M.M.; Wiste, H.J.; Weigand, S.D.; Knopman, D.S.; Lowe, V.J.; Roberts, R.O.; Geda, Y.E.; Swenson-Dravis, D.M.; Boeve, B.F.; Senjem, M.L.; et al. Indicators of amyloid burden in a population-based study of cognitively normal elderly. Neurology 2012, 79, 1570–1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ansart, M.; Epelbaum, S.; Gagliardi, G.; Colliot, O.; Dormont, D.; Dubois, B.; Hampel, H.; Durrleman, S.; Alzheimer’s Disease Neuroimaging Initiative; INSIGHT-preAD Study. Reduction of recruitment costs in preclinical AD trials: Validation of automatic pre-screening algorithm for brain amyloidosis. Stat. Methods Med. Res. 2020, 29, 151–164. [Google Scholar] [CrossRef]
- Kim, J.P.; Kim, J.; Jang, H.; Kim, J.; Kang, S.H.; Kim, J.S.; Lee, J.; Na, D.L.; Kim, H.J.; Seo, S.W.; et al. Predicting amyloid positivity in patients with mild cognitive impairment using a radiomics approach. Sci. Rep. 2021, 11, 6954. [Google Scholar] [CrossRef]
- Ten Kate, M.; Redolfi, A.; Peira, E.; Bos, I.; Vos, S.J.; Vandenberghe, R.; Gabel, S.; Schaeverbeke, J.; Scheltens, P.; Blin, O.; et al. MRI predictors of amyloid pathology: Results from the EMIF-AD Multimodal Biomarker Discovery study. Alzheimer’s Res. 2018, 10, 100. [Google Scholar] [CrossRef] [PubMed]
- Petrone, P.M.; Casamitjana, A.; Falcon, C.; Artigues, M.; Operto, G.; Cacciaglia, R.; Molinuevo, J.L.; Vilaplana, V.; Gispert, J.D.; Alzheimer’s Disease Neuroimaging Initiative. Prediction of amyloid pathology in cognitively unimpaired individuals using voxel-wise analysis of longitudinal structural brain MRI. Alzheimer’s Res. 2019, 11, 72. [Google Scholar] [CrossRef]
- Leow, A.D.; Yanovsky, I.; Chiang, M.C.; Lee, A.D.; Klunder, A.D.; Lu, A.; Becker, J.T.; Davis, S.W.; Toga, A.W.; Thompson, P.M. Statistical properties of Jacobian maps and the realization of unbiased large-deformation nonlinear image registration. IEEE Trans. Med. Imaging 2007, 26, 822–832. [Google Scholar] [CrossRef] [PubMed]
- Dyrba, M.; Barkhof, F.; Fellgiebel, A.; Filippi, M.; Hausner, L.; Hauenstein, K.; Kirste, T.; Teipel, S.J.; EDSD Study Group. Predicting Prodromal Alzheimer’s Disease in Subjects with Mild Cognitive Impairment Using Machine Learning Classification of Multimodal Multicenter Diffusion-Tensor and Magnetic Resonance Imaging Data. J. Neuroimaging 2015, 25, 738–747. [Google Scholar] [CrossRef] [PubMed]
- Bahar-Fuchs, A.; Villemagne, V.; Ong, K.; Chetelat, G.; Lamb, F.; Reininger, C.B.; Woodward, M.; Rowe, C.C. Prediction of amyloid-beta pathology in amnestic mild cognitive impairment with neuropsychological tests. J. Alzheimer’s Dis. 2013, 33, 451–462. [Google Scholar] [CrossRef] [PubMed]
- Insel, P.S.; Palmqvist, S.; Mackin, R.S.; Nosheny, R.L.; Hansson, O.; Weiner, M.W.; Mattsson, N. Assessing risk for preclinical beta-amyloid pathology with APOE, cognitive, and demographic information. Alzheimer’s Dement. 2016, 4, 76–84. [Google Scholar] [CrossRef]
- Hahn, A.; Kim, Y.J.; Kim, H.J.; Jang, H.; Cho, H.; Choi, S.H.; Kim, B.C.; Park, K.W.; Na, D.L.; Chin, J.; et al. The preclinical amyloid sensitive composite to determine subtle cognitive differences in preclinical Alzheimer’s disease. Sci. Rep. 2020, 10, 13583. [Google Scholar] [CrossRef]
- Ashford, M.T.; Neuhaus, J.; Jin, C.; Camacho, M.R.; Fockler, J.; Truran, D.; Mackin, R.S.; Rabinovici, G.D.; Weiner, M.W.; Nosheny, R.L. Predicting amyloid status using self-report information from an online research and recruitment registry: The Brain Health Registry. Alzheimer’s Dement. 2020, 12, e12102. [Google Scholar] [CrossRef] [PubMed]
- Albright, J.; Ashford, M.T.; Jin, C.; Neuhaus, J.; Rabinovici, G.D.; Truran, D.; Maruff, P.; Mackin, R.S.; Nosheny, R.L.; Weiner, M.W. Machine learning approaches to predicting amyloid status using data from an online research and recruitment registry: The Brain Health Registry. Alzheimer’s Dement. 2021, 13, e12207. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Langford, O.; Raman, R.; Sperling, R.A.; Cummings, J.; Sun, C.K.; Jimenez-Maggiora, G.; Aisen, P.S.; Donohue, M.C. Predicting Amyloid Burden to Accelerate Recruitment of Secondary Prevention Clinical Trials. J. Prev. Alzheimer’s Dis. 2020, 7, 213–218. [Google Scholar] [CrossRef]
- Honig, L.S.; Vellas, B.; Woodward, M.; Boada, M.; Bullock, R.; Borrie, M.; Hager, K.; Andreasen, N.; Scarpini, E.; Liu-Seifert, H.; et al. Trial of Solanezumab for Mild Dementia Due to Alzheimer’s Disease. N. Engl. J. Med. 2018, 378, 321–330. [Google Scholar] [CrossRef]
- Salloway, S.; Farlow, M.; McDade, E.; Clifford, D.B.; Wang, G.; Llibre-Guerra, J.J.; Hitchcock, J.M.; Mills, S.L.; Santacruz, A.M.; Aschenbrenner, A.J.; et al. A trial of gantenerumab or solanezumab in dominantly inherited Alzheimer’s disease. Nat. Med. 2021, 27, 1187–1196. [Google Scholar] [CrossRef]
- Salloway, S.; Cummings, J. Aducanumab, Amyloid Lowering, and Slowing of Alzheimer Disease. Neurology 2021, 97, 543–544. [Google Scholar] [CrossRef]
- Ossenkoppele, R.; Smith, R.; Ohlsson, T.; Strandberg, O.; Mattsson, N.; Insel, P.S.; Palmqvist, S.; Hansson, O. Associations between tau, Abeta, and cortical thickness with cognition in Alzheimer disease. Neurology 2019, 92, e601–e612. [Google Scholar] [CrossRef] [Green Version]
- Bejanin, A.; Schonhaut, D.R.; La Joie, R.; Kramer, J.H.; Baker, S.L.; Sosa, N.; Ayakta, N.; Cantwell, A.; Janabi, M.; Lauriola, M.; et al. Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 2017, 140, 3286–3300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Park, Y.; Park, S.; Jang, H.; Kim, H.J.; Na, D.L.; Lee, H.; Seo, S.W. Prediction of tau accumulation in prodromal Alzheimer’s disease using an ensemble machine learning approach. Sci. Rep. 2021, 11, 5706. [Google Scholar] [CrossRef] [PubMed]
- Lang, A.; Weiner, M.W.; Tosun, D. What can structural MRI tell about A/T/N staging? Alzheimer’s Dement. 2019, 15, P1237–P1238. [Google Scholar] [CrossRef]
- Li, R.; Zhang, W.; Suk, H.I.; Wang, L.; Li, J.; Shen, D.; Ji, S. Deep learning based imaging data completion for improved brain disease diagnosis. Med. Image Comput. Comput. Assist. Interv. 2014, 17, 305–312. [Google Scholar] [CrossRef] [Green Version]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 2672–2680. [Google Scholar]
- Hu, S.; Yu, W.; Chen, Z.; Wang, S. Medical image reconstruction using generative adversarial network for Alzheimer disease assessment with class-imbalance problem. In Proceedings of the 2020 IEEE 6th International Conference on Computer and Communications (ICCC), Chengdu, China, 11–14 December 2020; pp. 1323–1327. [Google Scholar]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv 2015, arXiv:1511.06434. [Google Scholar]
- Pan, Y.; Liu, M.; Lian, C.; Zhou, T.; Xia, Y.; Shen, D. Synthesizing Missing PET from MRI with Cycle-consistent Generative Adversarial Networks for Alzheimer’s Disease Diagnosis. Med. Image Comput. Comput. Assist. Interv. 2018, 11072, 455–463. [Google Scholar] [CrossRef]
- Burnham, S.C.; Faux, N.G.; Wilson, W.; Laws, S.M.; Ames, D.; Bedo, J.; Bush, A.I.; Doecke, J.D.; Ellis, K.A.; Head, R.; et al. A blood-based predictor for neocortical Abeta burden in Alzheimer’s disease: Results from the AIBL study. Mol. Psychiatry 2014, 19, 519–526. [Google Scholar] [CrossRef]
- Whiley, L.; Legido-Quigley, C. Current strategies in the discovery of small-molecule biomarkers for Alzheimer’s disease. Bioanalysis 2011, 3, 1121–1142. [Google Scholar] [CrossRef]
- Stamate, D.; Kim, M.; Proitsi, P.; Westwood, S.; Baird, A.; Nevado-Holgado, A.; Hye, A.; Bos, I.; Vos, S.J.B.; Vandenberghe, R.; et al. A metabolite-based machine learning approach to diagnose Alzheimer-type dementia in blood: Results from the European Medical Information Framework for Alzheimer disease biomarker discovery cohort. Alzheimer’s Dement. 2019, 5, 933–938. [Google Scholar] [CrossRef]
- Jack, C.R., Jr.; Knopman, D.S.; Jagust, W.J.; Shaw, L.M.; Aisen, P.S.; Weiner, M.W.; Petersen, R.C.; Trojanowski, J.Q. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010, 9, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Mormino, E.C.; Betensky, R.A.; Hedden, T.; Schultz, A.P.; Amariglio, R.E.; Rentz, D.M.; Johnson, K.A.; Sperling, R.A. Synergistic effect of beta-amyloid and neurodegeneration on cognitive decline in clinically normal individuals. JAMA Neurol. 2014, 71, 1379–1385. [Google Scholar] [CrossRef]
- Tong, T.; Gao, Q.; Guerrero, R.; Ledig, C.; Chen, L.; Rueckert, D.; Initiative, A.D.N. A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer’s Disease. IEEE Trans. Biomed. Eng. 2017, 64, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Cummings, J. The National Institute on Aging-Alzheimer’s Association Framework on Alzheimer’s disease: Application to clinical trials. Alzheimer’s Dement. 2019, 15, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Allison, S.L.; Koscik, R.L.; Cary, R.P.; Jonaitis, E.M.; Rowley, H.A.; Chin, N.A.; Zetterberg, H.; Blennow, K.; Carlsson, C.M.; Asthana, S.; et al. Comparison of different MRI-based morphometric estimates for defining neurodegeneration across the Alzheimer’s disease continuum. Neuroimage Clin. 2019, 23, 101895. [Google Scholar] [CrossRef] [PubMed]
- Young, P.N.E.; Estarellas, M.; Coomans, E.; Srikrishna, M.; Beaumont, H.; Maass, A.; Venkataraman, A.V.; Lissaman, R.; Jimenez, D.; Betts, M.J.; et al. Imaging biomarkers in neurodegeneration: Current and future practices. Alzheimer’s Res. 2020, 12, 49. [Google Scholar] [CrossRef]
- Farhan, S.; Fahiem, M.A.; Tauseef, H. An ensemble-of-classifiers based approach for early diagnosis of Alzheimer’s disease: Classification using structural features of brain images. Comput. Math. Methods Med. 2014, 2014, 862307. [Google Scholar] [CrossRef]
- Ahmed, O.B.; Mizotin, M.; Benois-Pineau, J.; Allard, M.; Catheline, G.; Ben Amar, C.; Alzheimer’s Disease Neuroimaging Initiative. Alzheimer’s disease diagnosis on structural MR images using circular harmonic functions descriptors on hippocampus and posterior cingulate cortex. Comput. Med. Imaging Graph. 2015, 44, 13–25. [Google Scholar] [CrossRef]
- Korolev, S.; Safiullin, A.; Belyaev, M.; Dodonova, Y. Residual and plain convolutional neural networks for 3D brain MRI classification. In Proceedings of the 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), Melbourne, Australia, 18–21 April 2017; pp. 835–838. [Google Scholar]
- Costafreda, S.G.; Dinov, I.D.; Tu, Z.; Shi, Y.; Liu, C.Y.; Kloszewska, I.; Mecocci, P.; Soininen, H.; Tsolaki, M.; Vellas, B.; et al. Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment. Neuroimage 2011, 56, 212–219. [Google Scholar] [CrossRef] [Green Version]
- Lebedev, A.V.; Westman, E.; Van Westen, G.J.; Kramberger, M.G.; Lundervold, A.; Aarsland, D.; Soininen, H.; Kloszewska, I.; Mecocci, P.; Tsolaki, M.; et al. Random Forest ensembles for detection and prediction of Alzheimer’s disease with a good between-cohort robustness. Neuroimage Clin. 2014, 6, 115–125. [Google Scholar] [CrossRef] [Green Version]
- Spasov, S.; Passamonti, L.; Duggento, A.; Lio, P.; Toschi, N.; Alzheimer’s Disease Neuroimaging Initiative. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer’s disease. Neuroimage 2019, 189, 276–287. [Google Scholar] [CrossRef] [Green Version]
- Braak, H.; Braak, E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991, 82, 239–259. [Google Scholar] [CrossRef] [PubMed]
- Gosche, K.M.; Mortimer, J.A.; Smith, C.D.; Markesbery, W.R.; Snowdon, D.A. Hippocampal volume as an index of Alzheimer neuropathology: Findings from the Nun Study. Neurology 2002, 58, 1476–1482. [Google Scholar] [CrossRef]
- Gerardin, E.; Chetelat, G.; Chupin, M.; Cuingnet, R.; Desgranges, B.; Kim, H.S.; Niethammer, M.; Dubois, B.; Lehericy, S.; Garnero, L.; et al. Multidimensional classification of hippocampal shape features discriminates Alzheimer’s disease and mild cognitive impairment from normal aging. Neuroimage 2009, 47, 1476–1486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chupin, M.; Gerardin, E.; Cuingnet, R.; Boutet, C.; Lemieux, L.; Lehericy, S.; Benali, H.; Garnero, L.; Colliot, O.; Alzheimer’s Disease Neuroimaging Initiative. Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus 2009, 19, 579–587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vasta, R.; Augimeri, A.; Cerasa, A.; Nigro, S.; Gramigna, V.; Nonnis, M.; Rocca, F.; Zito, G.; Quattrone, A.; For The Alzheimer’s Disease Neuroimaging Initiative. Hippocampal Subfield Atrophies in Converted and Not-Converted Mild Cognitive Impairments Patients by a Markov Random Fields Algorithm. Curr. Alzheimer Res. 2016, 13, 566–574. [Google Scholar] [CrossRef]
- Rish, I. An empirical study of the naive Bayes classifier. In Proceedings of the IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, Seattle, WA, USA, 4–6 August 2001; pp. 41–46. [Google Scholar]
- Dickerson, B.C.; Bakkour, A.; Salat, D.H.; Feczko, E.; Pacheco, J.; Greve, D.N.; Grodstein, F.; Wright, C.I.; Blacker, D.; Rosas, H.D.; et al. The cortical signature of Alzheimer’s disease: Regionally specific cortical thinning relates to symptom severity in very mild to mild AD dementia and is detectable in asymptomatic amyloid-positive individuals. Cereb. Cortex 2009, 19, 497–510. [Google Scholar] [CrossRef] [Green Version]
- Eskildsen, S.F.; Coupe, P.; Garcia-Lorenzo, D.; Fonov, V.; Pruessner, J.C.; Collins, D.L.; Alzheimer’s Disease Neuroimaging Initiative. Prediction of Alzheimer’s disease in subjects with mild cognitive impairment from the ADNI cohort using patterns of cortical thinning. Neuroimage 2013, 65, 511–521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, Y.; Seong, J.K.; Jeong, Y.; Shin, S.Y.; Alzheimer’s Disease Neuroimaging Initiative. Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data. Neuroimage 2012, 59, 2217–2230. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.; Pan, Z.; Lu, H. Automated diagnosis of Alzheimer’s disease with degenerate SVM-based adaboost. In Proceedings of the 2013 5th International Conference on Intelligent Human-Machine Systems and Cybernetics (IHMSC), Hangzhou, China, 26–27 August 2013; pp. 298–301. [Google Scholar]
- Raamana, P.R.; Weiner, M.W.; Wang, L.; Beg, M.F.; Alzheimer’s Disease Neuroimaging Initiative. Thickness network features for prognostic applications in dementia. Neurobiol. Aging 2015, 36 (Suppl. S1), S91–S102. [Google Scholar] [CrossRef] [Green Version]
- Westman, E.; Simmons, A.; Zhang, Y.; Muehlboeck, J.S.; Tunnard, C.; Liu, Y.; Collins, L.; Evans, A.; Mecocci, P.; Vellas, B.; et al. Multivariate analysis of MRI data for Alzheimer’s disease, mild cognitive impairment and healthy controls. Neuroimage 2011, 54, 1178–1187. [Google Scholar] [CrossRef]
- Coupe, P.; Eskildsen, S.F.; Manjon, J.V.; Fonov, V.S.; Collins, D.L.; Alzheimer’s Disease Neuroimaging Initiative. Simultaneous segmentation and grading of anatomical structures for patient’s classification: Application to Alzheimer’s disease. Neuroimage 2012, 59, 3736–3747. [Google Scholar] [CrossRef] [PubMed]
- Lama, R.K.; Gwak, J.; Park, J.S.; Lee, S.W. Diagnosis of Alzheimer’s Disease Based on Structural MRI Images Using a Regularized Extreme Learning Machine and PCA Features. J. Healthc. Eng. 2017, 2017, 5485080. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Ang, C.K.E.; Acharya, U.R.; Cheong, K.H. Application of Artificial Intelligence techniques for the detection of Alzheimer’s disease using structural MRI images. Biocybern. Biomed. Eng. 2021, 41, 456–473. [Google Scholar] [CrossRef]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Payan, A.; Montana, G. Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks. arXiv 2015, arXiv:1502.02506. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al. ImageNet Large Scale Visual Recognition Challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef] [Green Version]
- Farooq, A.; Anwar, S.; Awais, M.; Rehman, S. A deep CNN based multi-class classification of Alzheimer’s disease using MRI. In Proceedings of the 2017 IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 18–20 October 2017; pp. 1–6. [Google Scholar]
- Hosseini-Asl, E.; Ghazal, M.; Mahmoud, A.; Aslantas, A.; Shalaby, A.M.; Casanova, M.F.; Barnes, G.N.; Gimel’farb, G.; Keynton, R.; El-Baz, A. Alzheimer’s disease diagnostics by a 3D deeply supervised adaptable convolutional network. Front. Biosci. 2018, 23, 584–596. [Google Scholar] [CrossRef]
- Rokach, L. Ensemble-based classifiers. Artif. Intell. Rev. 2010, 33, 1–39. [Google Scholar] [CrossRef]
- Islam, J.; Zhang, Y. Brain MRI analysis for Alzheimer’s disease diagnosis using an ensemble system of deep convolutional neural networks. Brain Inf. 2018, 5, 2. [Google Scholar] [CrossRef]
- Wang, H.; Shen, Y.; Wang, S.; Xiao, T.; Deng, L.; Wang, X.; Zhao, X. Ensemble of 3D densely connected convolutional network for diagnosis of mild cognitive impairment and Alzheimer’s disease. Neurocomputing 2019, 333, 145–156. [Google Scholar] [CrossRef]
- Shin, H.C.; Roth, H.R.; Gao, M.; Lu, L.; Xu, Z.; Nogues, I.; Yao, J.; Mollura, D.; Summers, R.M. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans. Med. Imaging 2016, 35, 1285–1298. [Google Scholar] [CrossRef] [Green Version]
- Hinton, G.E.; Osindero, S.; Teh, Y.-W. A fast learning algorithm for deep belief nets. Neural Comput. 2006, 18, 1527–1554. [Google Scholar] [CrossRef]
- Brosch, T.; Tam, R.; Alzheimer’s Disease Neuroimaging Initiative. Manifold learning of brain MRIs by deep learning. Med. Image Comput. Comput. Assist. Interv. 2013, 16, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.; Lei, B.; Ng, M.K.; Cheung, A.C.; Shen, Y.; Wang, S. Tensorizing GAN With High-Order Pooling for Alzheimer’s Disease Assessment. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–15. [Google Scholar] [CrossRef]
- Lazli, L.; Boukadoum, M.; Mohamed, O.A. A Survey on Computer-Aided Diagnosis of Brain Disorders through MRI Based on Machine Learning and Data Mining Methodologies with an Emphasis on Alzheimer Disease Diagnosis and the Contribution of the Multimodal Fusion. Appl. Sci. 2020, 10, 1894. [Google Scholar] [CrossRef] [Green Version]
- Doody, R.S.; Massman, P.; Dunn, J.K. A method for estimating progression rates in Alzheimer disease. Arch. Neurol. 2001, 58, 449–454. [Google Scholar] [CrossRef] [Green Version]
- Nagahama, Y.; Nabatame, H.; Okina, T.; Yamauchi, H.; Narita, M.; Fujimoto, N.; Murakami, M.; Fukuyama, H.; Matsuda, M. Cerebral correlates of the progression rate of the cognitive decline in probable Alzheimer’s disease. Eur. Neurol. 2003, 50, 1–9. [Google Scholar] [CrossRef]
- Barocco, F.; Spallazzi, M.; Concari, L.; Gardini, S.; Pelosi, A.; Caffarra, P. The Progression of Alzheimer’s Disease: Are Fast Decliners Really Fast? A Four-Year Follow-Up. J. Alzheimer’s Dis. 2017, 57, 775–786. [Google Scholar] [CrossRef] [Green Version]
- Edwin, T.H.; Strand, B.H.; Persson, K.; Engedal, K.; Selbaek, G.; Knapskog, A.B. Trajectories and risk factors of dementia progression: A memory clinic cohort followed up to 3 years from diagnosis. Int. Psychogeriatr. 2021, 33, 779–789. [Google Scholar] [CrossRef]
- Deaton, A.; Cartwright, N. Understanding and misunderstanding randomized controlled trials. Soc. Sci. Med. 2018, 210, 2–21. [Google Scholar] [CrossRef]
- Jutten, R.J.; Sikkes, S.A.M.; Van der Flier, W.M.; Scheltens, P.; Visser, P.J.; Tijms, B.M.; Alzheimer’s Disease Neuroimaging Initiative. Finding Treatment Effects in Alzheimer Trials in the Face of Disease Progression Heterogeneity. Neurology 2021, 96, e2673–e2684. [Google Scholar] [CrossRef]
- Cummings, J.L.; Morstorf, T.; Zhong, K. Alzheimer’s disease drug-development pipeline: Few candidates, frequent failures. Alzheimer’s Res. 2014, 6, 37. [Google Scholar] [CrossRef] [Green Version]
- Tolar, M.; Abushakra, S.; Hey, J.A.; Porsteinsson, A.; Sabbagh, M. Aducanumab, gantenerumab, BAN2401, and ALZ-801-the first wave of amyloid-targeting drugs for Alzheimer’s disease with potential for near term approval. Alzheimer’s Res. 2020, 12, 95. [Google Scholar] [CrossRef]
- Jang, H.; Park, J.; Woo, S.; Kim, S.; Kim, H.J.; Na, D.L.; Lockhart, S.N.; Kim, Y.; Kim, K.W.; Cho, S.H.; et al. Prediction of fast decline in amyloid positive mild cognitive impairment patients using multimodal biomarkers. Neuroimage Clin. 2019, 24, 101941. [Google Scholar] [CrossRef]
- Sadiq, M.U.; Kwak, K.; Dayan, E.; Alzheimer’s Disease Neuroimaging Initiative. Model-based stratification of progression along the Alzheimer disease continuum highlights the centrality of biomarker synergies. Alzheimer’s Res. 2022, 14, 16. [Google Scholar] [CrossRef]
- Petitjean, F.; Ketterlin, A.; Gançarski, P. A global averaging method for dynamic time warping, with applications to clustering. Pattern Recognit. 2011, 44, 678–693. [Google Scholar] [CrossRef]
- Ward Jr, J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 1963, 58, 236–244. [Google Scholar] [CrossRef]
- Gamberger, D.; Lavrac, N.; Srivatsa, S.; Tanzi, R.E.; Doraiswamy, P.M. Identification of clusters of rapid and slow decliners among subjects at risk for Alzheimer’s disease. Sci. Rep. 2017, 7, 6763. [Google Scholar] [CrossRef] [Green Version]
- Karkkainen, M.; Prakash, M.; Zare, M.; Tohka, J.; For The Alzheimer’s Disease Neuroimaging Initiative. Structural Brain Imaging Phenotypes of Mild Cognitive Impairment (MCI) and Alzheimer’s Disease (AD) Found by Hierarchical Clustering. Int. J. Alzheimer’s Dis. 2020, 2020, 2142854. [Google Scholar] [CrossRef]
- Lee, J.S.; Kim, C.; Shin, J.H.; Cho, H.; Shin, D.S.; Kim, N.; Kim, H.J.; Kim, Y.; Lockhart, S.N.; Na, D.L.; et al. Machine Learning-based Individual Assessment of Cortical Atrophy Pattern in Alzheimer’s Disease Spectrum: Development of the Classifier and Longitudinal Evaluation. Sci. Rep. 2018, 8, 4161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fisher, C.K.; Smith, A.M.; Walsh, J.R.; Coalition Against Major Diseases, and Abbott; Alliance for Aging Research, Alzheimer’s Association; Alzheimer’s Foundation of America; AstraZeneca Pharmaceuticals LP; Bristol-Myers Squibb Company; Critical Path Institute; CHDI Foundation, Inc. Machine learning for comprehensive forecasting of Alzheimer’s Disease progression. Sci. Rep. 2019, 9, 13622. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mnih, V.; Larochelle, H.; Hinton, G.E. Conditional Restricted Boltzmann Machines for Structured Output Prediction. arXiv 2012, arXiv:1202.3748. [Google Scholar]
- Thalhauser, C.J.; Komarova, N.L. Alzheimer’s disease: Rapid and slow progression. J. R. Soc. Interface 2012, 9, 119–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reith, F.H.; Mormino, E.C.; Zaharchuk, G. Predicting future amyloid biomarkers in dementia patients with machine learning to improve clinical trial patient selection. Alzheimer’s Dement. 2021, 7, e12212. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Zhou, Y.; Wang, F.; Tang, J.; Nussinov, R.; Cheng, F. Artificial intelligence in COVID-19 drug repurposing. Lancet Digit. Health 2020, 2, e667–e676. [Google Scholar] [CrossRef]
- Ying, R.; Bourgeois, D.; You, J.; Zitnik, M.; Leskovec, J. Gnnexplainer: Generating explanations for graph neural networks. Adv. Neural Inf. Process. Syst. 2019, 32, 9240. [Google Scholar]
- Goerdten, J.; Cukic, I.; Danso, S.O.; Carriere, I.; Muniz-Terrera, G. Statistical methods for dementia risk prediction and recommendations for future work: A systematic review. Alzheimer’s Dement. 2019, 5, 563–569. [Google Scholar] [CrossRef]
- Rouquette, A.; Falissard, B. Sample size requirements for the internal validation of psychiatric scales. Int. J. Methods Psychiatr. Res. 2011, 20, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Ma, J.; Yu, M.K.; Fong, S.; Ono, K.; Sage, E.; Demchak, B.; Sharan, R.; Ideker, T. Using deep learning to model the hierarchical structure and function of a cell. Nat. Methods 2018, 15, 290–298. [Google Scholar] [CrossRef]
- Sancesario, G.M.; Bernardini, S. Alzheimer’s disease in the omics era. Clin. Biochem. 2018, 59, 9–16. [Google Scholar] [CrossRef] [PubMed]
Name | Subjects | Modalities |
---|---|---|
ADNI | ADNI-1: 200 NC, 400 MCI, 200 mild AD ADNI-Go: 200 early MCI (eMCI) ADNI-2: 150 NC, 150 eMCI, 150 late MCI (lMCI), 200 mild AD ADNI-3: 135–500 NC, 150–515 MCI, 85–185 AD | MRI, PET, CSF, clinical/cognitive assessments, genetic data, blood biomarkers |
OASIS | OASIS-1: 416 total, including 20 NC and 100 mild/moderate AD OASIS-2: 72 NC, 64 AD OASIS 3: 609 NC, 489 AD at various stages | MRI, PET, clinical and cognitive data |
ANM | ANM: 266 NC, 247 MCI, 260 AD DCR: 423 NC, 89 MCI, 153 AD ART: 104 NC, 61 MCI, 99 AD | Clinical, proteomics, MRI, gene expression, genotype |
Reference | Application | Method | Subjects | Performance |
---|---|---|---|---|
[26] 2012 | Aβ+ vs. Aβ− NC | LR; demographic, family history, cognitive performance, APOE | 483 NC | AUC: 0.62–0.70 |
[33] 2013 | Aβ+ vs. Aβ− MCI | Step-wise hierarchical regression; cognitive measures, hippocampal atrophy, white matter hyperintensities (WMH) | 41 aMCI | AUC: 0.86 (story recall) |
[53] 2014 | Aβ prediction | RF; blood and plasma analytes | 169 NC, 55 MCI, 49 AD | AUC: 0.88; Sens: 80%; Spec: 82% |
[47] 2014 | PET image synthesis | 3D-CNN; using MRI data | 198 AD, 167 pMCI, 236 sMCI, 229 NC | AUC: 0.69 (MCI vs. NC), 0.68 (pMCI vs. sMCI), 0.89 (AD vs. NC) |
[32] 2015 | MCI Aβ+ vs. MCI Aβ−, MCI Aβ+ vs. NC | SVM; DTI and volumetric MRI data | 25 NC, 35 Aβ− MCI, 35 Aβ+ MCI | Acc: 66–68% (MCI Aβ+ vs. MCI Aβ−), 67–74% (MCI Aβ+ vs. NC) |
[23] 2015 | Aβ+ vs. Aβ− MCI | Partial least squares (PLS); use anatomical shape variations from MRI | 46 NC, 62 MCI | AUC: 0.70 (MRI), 0.81 (APOE), 0.88 (APOE + MRI) |
[34] 2016 | Aβ prediction | RF; demographics, APOE, cognitive rates | 206 Aβ+, 125 Aβ− | PPV: 0.65 |
[52] 2018 | PET image synthesis; AD vs. NC, pMCI vs. sMCI | 3D-cGAN (using MRI); LM3IL for diagnosis | ADNI-1, ADNI-2 | PSNR: 24.49; AD vs. NC: 92.50% (Acc), 89.94% (Sens), 94.53% (Spec); pMCI vs. sMCI: 79.06% (Acc), 55.26% (Sens), 82.85% (Spec) |
[29] 2018 | Aβ prediction | SVM; subcortical volumes, cortical thickness, and surface area | 337 NC, 375 MCI, 98 AD | NC: 0.68 (Acc), 0.61 (Sens), 0.7 (Spec); MCI: 0.75 (Acc), 0.71 (Sens), 0.77 (Spec); whole: 0.77 (Acc), 0.75 (Sens), 0.79 (Spec) |
[24] 2018 | Aβ prediction in MCIAD | Multivariate stepwise LR; information commonly obtained in memory clinics | 107 MCI, 69 AD | AUC: 0.873 |
[27] 2019 | Aβ prediction in NC/MCI | RF; cognitive, genetic, and socio-demographic features | ADNI-MCI (596), ADNI-NC (318); INSIGHT (318) | AUC: 82.4% (ADNI-MCI), 69.1% (ADNI-NC), 67.5% (INSIGHT) |
[30] 2019 | Aβ prediction in NC | Longitudinal voxel-based classifier; Jacobian determinant maps | 79 NC, 50 preclinical AD (PreAD), 274 MC/AD | AUC: 0.87 |
[46] 2019 | A/T/N staging prediction | MC-CNN; sMRI | 5000+ ADNI cases with known A/T/N staging | Acc: 88% (“A”), 89% (“T”), 95% (N) |
[16] 2020 | PET image synthesis; NC vs. AD classification | DCGAN; 2D-CNN using MRI and synthetic PET | 98 AD, 105 NC, 208 MCI | PSNR: 32.83; SSIM: 77.48; Acc: 71.45% (NC vs. AD) |
[50] 2020 | PET image synthesis | GAN; gaussian noise distribution (2048-dimensional noise) | A subset of ADNI-1 with labled PET images | MMD: 1.78; SSIM: 0.53 |
[35] 2020 | Aβ+ vs. Aβ− NC | PASC score using MIMIC and MANCOVA; NP scores | 348 Aβ− NC, 75 Aβ+ NC | AUC: 0.764 (with demographic measures) |
[36] 2020 | Aβ prediction | LR; self-report information from BHR | 70,992 subjects from BHR | Cross-validated AUC (cAUC): 0.62–0.66 |
[45] 2021 | Tau prediction in prodromal AD | GBM and RF; combinations of clinical and NP data, cortical thickness | 64 Aβ+ prodromal AD | AUC: 0.86 (GBM), 0.82 (RF) |
[28] 2021 | Aβ+ vs. Aβ− MCI | LASSO regression; using radiomics features extracted from T1 and T2 MRI | 182 Aβ− MCI, 166 Aβ+ MCI | AUC: 0.75 (T1+T2), 0.71 (T1), 0.74 (T2) |
[37] 2021 | Aβ prediction | RF, SVM; combination of objective and subjective data from BHR | 664 subjects from BHR | AUC: 0.519–0.624 (RF), 0.486–0.603 (SVM) |
[55] 2021 | AD vs. NC | DL, XGBoost; blood metabolites | 242 NC, 115 AD | AUC: 0.85 (DL), 0.88 (XGBoost) |
Reference | Application | Method | Subjects | Performance |
---|---|---|---|---|
[71] 2009 | NC vs. MCI vs. AD | KNN; segmented hippocampus using anatomical and probabilistic priors | 166 NC, 294 MCI, 145 AD | Classification rate: 76% (AD), 71% (MCI) with respect to NC |
[70] 2009 | NC vs. MCI vs. AD | RBF-SVM; model the shape of the hippocampus using SPHARM | 25 NC, 23 aMCI, 23 AD | AD vs. NC: 94% (Acc), 96% (Sens), 92% (Spec); MCI vs. NC: 83% (Acc), 83%(Sens), 84% (Spec) |
[79] 2011 | AD vs. NC, AD vs. MCI, MCI vs. NC | OPLS analysis; hippocampal volume, regional and global volume measures | 112 NC, 122 MCI, 117 AD | AD vs. NC: 90% (Sens), 94% (Spec) AD vs. MCI: 75% (Sens), 73% (Spec) MCI vs. NC: 66% (Sens), 73% (Spec) |
[65] 2011 | NC vs. AD; prediction of MCI to AD | SVM; 3D hippocampal morphology | 88 NC, 103 MCI, 71 AD | AD vs. NC: 85% (Acc) MCI to AD: 80% (Acc), 77% (Sens), 80% (Spec) |
[76] 2012 | NC vs. AD; pMCI vs. sMCI | PCA-LDA; used manifold harmonic transform to represent cortical thickness data | 160 NC, 131 sMCI, 72 pMCI, 128 AD | AD vs. NC: 82 (Sens), 93% (Spec) sMCI vs. pMCI: 63% (Sens), 76% (Spec) |
[80] 2012 | NC vs. AD | QDA and LDA; atrophic patterns of hippocampus and entorhinal cortex | 60 NC, 60 AD | 90% (Acc), 88% (Sens), 94% (Spec) |
[75] 2013 | pMCI vs. sMCI, NC vs. AD | LDA; ROI-wise patterns of cortical thinning | 226 NC, 134 sMCI, 340 pMCI, 194 AD | Acc: 84.5% (AD vs. NC), 75.8% (sMCI vs. pMCI6), 72.9% (sMCI vs. pMCI12), 66.7% (sMCI vs. pMCI24), 69.9% (sMCI vs. pMCI36) |
[77] 2013 | NC vs. AD | SVM-based Adaboost; cortical thickness features | 60 NC, 40 AD | Acc: 94.38% |
[66] 2014 | NC vs. AD; MCI to AD prediction | RF; combining cortical thickness and volumetric measures | 225 NC, 165 MCI, 185 AD | AD vs. NC: 86.7% (Acc), 90.7% (Sens), 82.9% (Spec); MCI to AD: 78.0% (Acc) |
[62] 2014 | NC vs. AD | Ensemble of SVM, multi-layer perceptron (MLP), and decision tree (DT); volume of gray matter (GM), white matter (WM), CSF, and hippocampus area | NC: 48, AD: 37 | 93.75% (Acc), 100% (Spec), 87.5% (Sens) |
[78] 2015 | NC vs. AD, NC vs. pMCI, NC vs. MCI, pMCI vs. sMCI | Variational Bayes probabilistic multiple kernel learning (VBpMKL); inter-regional covariation of cortical thickness | 159 NC, 56 pMCI, 130 sMCI, 136 AD | AUC: 0.92 (NC vs. AD), 0.83 (NC vs. pMCI), 0.75 (NC vs. MCI), 0.68 (pMCI vs. sMCI) |
[84] 2015 | NC vs. MCI vs. AD; NC vs. AD, MCI vs. AD, NC vs. MCI | 3D-CNN combined with sparse autoencoders | 755 subjects from ADNI; 2,265 scans | Acc: 89.47% (3-way), 95.39% (AD vs. NC), 86.84% (AD vs. MCI), 92.11% (NC vs. MCI) |
[63] 2015 | NC vs. AD; NC vs. MCI; AD vs. MCI | SVM; used circular harmonic functions on the hippocampus and posterior cingulate cortex | 162 NC, 210 MCI, 137 AD | AD vs. NC: 83.77% (Acc), 88.2% (Spec), 79.09% (Sens); NC vs. MCI: 69.45% (Acc), 74.8% (Spec), 62.52% (Sens); AD vs. MCI: 62.07% (Acc), 75.15% (Spec), 49.02% (Sens) |
[72] 2016 | pMCI vs. sMCI | SVM, ANN, NB; hippocampal subfield atrophies | 47 NC, 89 sMCI, 32 pMCI, 55 AD | SVM: 0.66 (Acc), 0.64 (Sens), 0.72 (Spec); ANN: 0.67 (Acc), 0.65 (Sens), 0.72 (Spec); NB: 0.65 (Acc), 0.63 (Sens), 0.72 (Spec) |
[64] 2017 | AD vs. NC, AD vs. eMCI, AD vs. lMCI, lMCI vs. NC, lMCI vs. eMCI, eMCI vs. NC | voxCNN, ResNet | 61 NC, 77 eMCI, 43 lMCI, 50 AD | AD vs. NC AUC: 0.88 (VoxCNN), 0.87 (ResNet); AD vs. eMCI: 0.66 (VoxcNN), 0.67 (ResNet); AD vs. lMCI: 0.61 (VoxCNN), 0.62 (ResNet); lMCI vs. NC: 0.67 (Vox CNN), 0.65 (ResNet); lMCI vs. eMCI: 0.47 (VoxCNN), 0.52 (ResNet); eMCI vs. NC: 0.57 (VoxCNN), 0.58 (ResNet) |
[87] 2017 | NC vs. MCI vs. lMCI vs. AD | CNN-based architecture for GoogLeNet and ResNet | 45 NC, 49 MCI, 22 lMCI, 33 AD (355 MRI volumes) | Overall Acc: 98.88% (GoogLeNet), 98.01% (ResNet-18), 98.14% (ResNet-152) |
[81] 2017 | NC vs. MCI vs. AD | SVM, IVM, RELM; using a greedy score-based feature selection | 70 NC, 74 MCI, 70 AD | SVM Acc: 52.63–57.40%; IVM Acc: 54.90–55.50%; RELM Acc: 57.56–61.20% |
[88] 2018 | AD vs. MCI vs. NC, AD + MCI vs. NC, AD vs. NC, AD vs. MCI, MCI vs. NC | DSA-3D-CNN with transfer learning; modified for different domain | 70 NC, 70 MCI, 70 AD (2265 scans total) | AD vs. NC Acc: 99.3; AD + MCI vs. NC Acc: 95.73; AD vs. MCI Acc: 100; and MCI vs. NC Acc: 94.22, AD vs. MCI vs. NC Acc: 94.8 |
[90] 2018 | NC vs. very mild AD vs. mild AD vs. moderate AD | Ensemble of three 3D-CNNs | OASIS-1 | Average precision: 0.94 |
[91] 2019 | NC vs. MCI vs. AD | Ensemble of 3D-DenseNets | 833 T1-weights MRIs from 624 ADNI subjects | Acc: 0.9477 |
[95] 2020 | NC vs. AD, MCI vs. NC, AD vs. MCI | THS-GAN | 221 AD, 297 MCI, 315 NC T1-MRI images | Acc: 95.92% (AD vs. NC), 89.29% (MCI vs. NC), 85.71% (AD vs. MCI) |
Reference | Application | Method | Subjects | Performance |
---|---|---|---|---|
[114] 2012 | Rapid vs. slow AD disease courses | Separation algorithm based on genetic algorithm technique; FAST stage duration | Longitudinal course of 648 AD patients | FAST mean stage duration: 4: 1.60 (rapid), 3.17 (slow); 5: 0.71 (rapid), 2.26 (slow); 6: 1.69 (rapid), 3.30 (slow); 7: 5.24 (rapid), 6.73 (slow) |
[109] 2017 | Rapid vs. slow MCI | MLC; baseline and prognostic characteristics | 562 MCI from ADNI-1 and ADNI-2 | Sens: 75.0–98.4%, Spec: 70.0–90.0% |
[111] 2018 | Rapid vs. slow cognitive decline | PCA-LDA; cortical atrophy pattern | 869 NC, 473 AD | p = 0.029 (significant different between rapid and slow progressors) |
[105] 2019 | Rapid vs. slow MCI | LR; CSF, FDG-PET, 18F-AV45 PET, hippocampal volume | 186 MCI (74 rapid progressors, 112 slow progressors) | AUC: CSF p-tau model: 0.091; CSF t-tau model: 0.907 |
[112] 2019 | Patient trajectory prediction | CRBM; using ADAS-Cog and MMSE, laboratory tests, and demographic information | 1,909 subjects with MCI or AD | LR analysis: real and synthetic data were statistically indistinguishable |
[110] 2020 | Rapid vs. slow MCI | Hierarchical clustering; GM density maps | 428 NC, 751 MCI, 282 AD | 95% confidence intervals do not overlap |
[115] 2021 | Rapid vs. slow Aβ accumulation | GBDT; 18F-AV45 PET, clinical, demographic, and genetic markers | 610 subjects with 1136 follow-up scans | RMSE: 0.0339; percentage of fastest Aβ progressors predicted (37.7%) |
[106] 2022 | Rapid vs. slow progression | PENet; using progression phenotype based on DWT | 321 ADNI subjects | Acc: AT(N): 0.710; A(N): 0.683; T(N): 0.702; A: 0.597; T: 0.567; N: 0.675 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seo, Y.; Jang, H.; Lee, H. Potential Applications of Artificial Intelligence in Clinical Trials for Alzheimer’s Disease. Life 2022, 12, 275. https://doi.org/10.3390/life12020275
Seo Y, Jang H, Lee H. Potential Applications of Artificial Intelligence in Clinical Trials for Alzheimer’s Disease. Life. 2022; 12(2):275. https://doi.org/10.3390/life12020275
Chicago/Turabian StyleSeo, Younghoon, Hyemin Jang, and Hyejoo Lee. 2022. "Potential Applications of Artificial Intelligence in Clinical Trials for Alzheimer’s Disease" Life 12, no. 2: 275. https://doi.org/10.3390/life12020275
APA StyleSeo, Y., Jang, H., & Lee, H. (2022). Potential Applications of Artificial Intelligence in Clinical Trials for Alzheimer’s Disease. Life, 12(2), 275. https://doi.org/10.3390/life12020275