Screening of Leafy Vegetable Varieties with Low Lead and Cadmium Accumulation Based on Foliar Uptake
Abstract
:1. Introduction
2. Material and Methods
2.1. Site Description and Soil Characterization
2.2. Sample Collection and Analysis
2.2.1. Particulate Matter Samples
2.2.2. Vegetable and Soil Samples
2.3. Scanning Electron Microscopy (SEM) Analysis
2.4. Foliar Parameters Analysis
2.4.1. Stomata Size
2.4.2. Leaf Surface Area
2.5. Health Risk Assessment
2.6. Enrichment Factor
2.7. Statistical Analysis
3. Results
3.1. The Concentration of Pb and Cd in Atmospheric Particulate Matter
3.2. The Concentration of Pb in Roots and Leaves
3.3. The Concentration of Cd in Roots and Leaves
3.4. Health Risk Assessment
3.5. The Enrichment and Translocation Factor of Pb and Cd
4. Discussion
4.1. Accumulation and Translocation Characteristics of Pb and Cd among Various Varieties
4.2. Effect of Foliar Uptake on Heavy-Metal Accumulation in Leafy Vegetables
4.3. Influencing Factors of Pb and Cd Accumulation in Leafy Vegetables
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, H.; Yang, X.; Wang, P.; Wang, Z.; Li, M.; Zhao, F.-J. Dietary cadmium intake from rice and vegetables and potential health risk: A case study in Xiangtan, southern China. Sci. Total Environ. 2018, 639, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.F.; Xie, J.; Sánchez, O.F.; Bryan, C.; Freeman, J.L.; Yuan, C. Low dose lead exposure induces alterations on heterochromatin hallmarks persisting through SH-SY5Y cell differentiation. Chemosphere 2021, 264, 128486. [Google Scholar] [CrossRef]
- Satarug, S.; Gobe, G.C.; Vesey, D.A.; Phelps, K.R. Cadmium and lead exposure, nephrotoxicity, and mortality. Toxics 2020, 8, 86. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, X.; Zhai, F.; Cheng, Y. Dietary guidelines for Chinese. J. Acad. Nutr. Diet. 2016, 116, A37. [Google Scholar] [CrossRef]
- Sharma, G.K.; Jena, R.K.; Hota, S.; Kumar, A.; Ray, P.; Fagodiya, R.K.; Malav, L.C.; Yadav, K.K.; Gupta, D.K.; Khan, S.A. Recent development in bioremediation of soil pollutants through biochar for environmental sustainability. In Biochar Applications in Agriculture and Environment Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 123–140. [Google Scholar] [CrossRef]
- Sun, L.; Carey, M.; Yang, L.; Chen, L.D.; Li, S.J.; Zhao, F.K.; Zhu, Y.G.; Meharg, C.; Meharg, A.A. Source Identification of Trace Elements in Peri-urban Soils in Eastern China. Exposure Health 2019, 11, 195–207. [Google Scholar] [CrossRef]
- Hawrami, K.A.; Crout, N.M.; Shaw, G.; Bailey, E.H. Assessment of potentially toxic elements in vegetables cultivated in urban and peri-urban sites in the Kurdistan region of Iraq and implications for human health. Environ. Geochem. Health 2020, 42, 1359–1385. [Google Scholar] [CrossRef] [PubMed]
- Ambikapathi, R.; Shively, G.; Leyna, G.; Mosha, D.; Mangara, A.; Patil, C.L.; Boncyk, M.; Froese, S.L.; Verissimo, C.K.; Kazonda, P. Informal food environment is associated with household vegetable purchase patterns and dietary intake in the DECIDE study: Empirical evidence from food vendor mapping in peri-urban Dar es Salaam, Tanzania. Glob. Food Secur. 2021, 28, 100474. [Google Scholar] [CrossRef]
- Huang, Y.; Li, T.; Wu, C.; He, Z.; Japenga, J.; Deng, M.; Yang, X. An integrated approach to assess heavy metal source apportionment in pen-urban agricultural soils. J. Hazard. Mater. 2015, 299, 540–549. [Google Scholar] [CrossRef]
- Kováts, N.; Hubai, K.; Sainnokhoi, T.-A.; Teke, G. Biomonitoring of polyaromatic hydrocarbon accumulation in rural gardens using lettuce plants. J. Soils Sediments 2021, 21, 106–117. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, Q.; Deng, M.; Japenga, J.; Li, T.; Yang, X.; He, Z. Heavy metal pollution and health risk assessment of agricultural soils in a typical peri-urban area in southeast China. J. Environ. Manag. 2018, 207, 159–168. [Google Scholar] [CrossRef]
- Daimari, R.; Bhuyan, P.; Hussain, S.; Nayaka, S.; Mazumder, M.J.; Hoque, R.R. Biomonitoring by epiphytic lichen species—Pyxine cocoes (Sw.) Nyl.: Understanding characteristics of trace metal in ambient air of different landuses in mid-Brahmaputra Valley. Environ. Monit. Assess. 2020, 192, 37. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhou, S.; Shi, Y.; Wang, C.; Li, B.; Li, Y.; Wu, S. Heavymetals in food crops, soil, andwater in the Lihe River Watershed of the Taihu Region and their potential health risks when ingested. Sci. Total Environ. 2018, 615, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lin, C.; Cheng, H.; Duan, X.; Lei, K. Contamination and health risks of soil heavy metals around a lead/zinc smelter in southwestern China. Ecotoxicol. Environ. Saf. 2015, 113, 391–399. [Google Scholar] [CrossRef] [PubMed]
- Gul, I.; Manzoor, M.; Hashim, N.; Shah, G.M.; Waani, S.P.T.; Shahid, M.; Antoniadis, V.; Rinklebe, J.; Arshad, M. Challenges in microbially and chelate-assisted phytoextraction of cadmium and lead-A review. Environ. Pollut. 2021, 287, 117667. [Google Scholar] [CrossRef]
- Wei, Y.; Zheng, X.; Shohag, M.J.I.; Bioaccessibility, M.G. and Human Exposure Assessment of Cadmium and Arsenic in Pakchoi Genotypes Grown in Co-Contaminated Soils. Int. J. Environ. Res. Public Health 2017, 14, 977. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Zhou, Q.; Sun, Y.; Liu, R. Identification of Chinese cabbage genotypes with low cadmium accumulation for food safety. Environ. Pollut. 2009, 157, 1961–1967. [Google Scholar] [CrossRef]
- Hu, W.Y.; Wang, H.F.; Dong, L.R.; Huang, B.A.; Borggaard, O.K.; Hansen, H.C.B.; He, Y.; Holm, P.E. Source identification of heavy metals in peri-urban agricultural soils of southeast China: An integrated approach. Environ. Pollut. 2018, 237, 650–661. [Google Scholar] [CrossRef]
- Liu, X.; Song, Q.; Tang, Y.; Li, W.; Xu, J.; Wu, J.; Wang, F.; Brookes, P.C. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci. Total Environ. 2013, 463, 530–540. [Google Scholar] [CrossRef]
- Bi, C.J.; Zhou, Y.; Chen, Z.L.; Jia, J.P.; Bao, X.Y. Heavy metals and lead isotopes in soils, road dust and leafy vegetables and health risks via vegetable consumption in the industrial areas of Shanghai, China. Sci. Total Environ. 2018, 619, 1349–1357. [Google Scholar] [CrossRef]
- Gao, P.P.; Xue, P.Y.; Dong, J.W.; Zhang, X.M.; Sun, H.X.; Geng, L.P.; Luo, S.X.; Zhao, J.J.; Liu, W.J. Contribution of PM2.5-Pb in atmospheric fallout to Pb accumulation in Chinese cabbage leaves via stomata. J. Hazard. Mater. 2021, 407, 124356. [Google Scholar] [CrossRef]
- He, B.H.; Wang, W.; Geng, R.Y.; Ding, Z.; Luo, D.X.; Qiu, J.L.; Zheng, G.D.; Fan, Q.H. Exploring the fate of heavy metals from mining and smelting activities in soil-crop system in Baiyin, NW China. Ecotoxicol. Environ. Saf. 2021, 207, 111234. [Google Scholar] [CrossRef]
- Liu, H.-L.; Zhou, J.; Li, M.; Obrist, D.; Wang, X.-Z.; Zhou, J. Chemical speciation of trace metals in atmospheric deposition and impacts on soil geochemistry and vegetable bioaccumulation near a large copper smelter in China. J. Hazard. Mater. 2021, 413, 125346. [Google Scholar] [CrossRef] [PubMed]
- Adeel, M.; Farooq, T.; White, J.C.; Hao, Y.; He, Z.F.; Rui, Y.K. Carbon-based nanomaterials suppress tobacco mosaic virus (TMV) infection and induce resistance in Nicotiana benthamiana. J. Hazard. Mater. 2021, 404, 124167. [Google Scholar] [CrossRef] [PubMed]
- Bu, Q.Y.; Lv, T.X.; Shen, H.; Luong, P.; Wang, J.; Wang, Z.Y.; Huang, Z.G.; Xiao, L.T.; Engineer, C.; Kim, T.H.; et al. Regulation of Drought Tolerance by the F-Box Protein MAX2 in Arabidopsis(1[C][W][OPEN]). Plant Physiol. 2014, 164, 424–439. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Huang, C.; Zhu, H. Studies on measuring methods of leaf area in letture. China Veg. 2020, 4, 78–81. (In Chinese) [Google Scholar]
- US EPA. Mercury Study Report to Congress. Health Effects of Mercury and Mercury Compounds; EPA-452/ R-97-007; Washington (DC)7 United States Environmental Protection Agency: Washington, DC, USA, 1997; Volume 5. [Google Scholar]
- US EPA. Risk-Based Concentration Table; United States Environmental Protection Agency: Philadelphia, PA, USA; Washington, DC, USA, 2000. [Google Scholar]
- US EPA. Risk assessment guidance for superfund. In Human Health Evaluation Manual, (Part F, Supplemental Guidance for Inhalation Risk Assessment); EPA-540-R-070-002; United States Environmental Protection Agency: Washington DC, USA, 2009; Volume 1. [Google Scholar]
- Rehman, Z.U.; Khan, S.; Qin, K.; Brusseau, M.L.; Shah, M.T.; Din, I. Quantification of inorganic arsenic exposure and cancer risk via consumption of vegetables in southern selected districts of Pakistan. Sci. Total Environ. 2016, 550, 321–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haghnazar, H.; Hudson-Edwards, K.A.; Kumar, V.; Pourakbar, M.; Mahdavianpour, M.; Aghayani, E. Potentially toxic elements contamination in surface sediment and indigenous aquatic macrophytes of the Bahmanshir River, Iran: Appraisal of phytoremediation capability. Chemosphere 2021, 285, 131446. [Google Scholar] [CrossRef] [PubMed]
- Faměra, M.; Grygar, T.M.; Ciszewski, D.; Czajka, A.; Álvarez-Vázquez, M.Á.; Hron, K.; Fačevicová, K.; Hýlová, V.; Tůmová, Š.; Světlík, I. Anthropogenic records in a fluvial depositional system: The Odra River along The Czech-Polish border. Anthropocene 2021, 34, 100286. [Google Scholar] [CrossRef]
- Mutale-Joan, C.; Redouane, B.; Najib, E.; Yassine, K.; Lyamlouli, K.; Laila, S.; Zeroual, Y.; Hicham, E.A. Screening of microalgae liquid extracts for their bio stimulant properties on plant growth, nutrient uptake and metabolite profile of Solanum lycopersicum L. Sci. Rep. 2020, 10, 2820. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Zhao, J.; Jie, F.U.; Liu, W.; Wang, X.; Gao, Z.; Yang, Z. Effects of atmospheric particulate matters on accumulation of Pb, Cd, As in edible parts of cress and cabbage. Acta Sci. Circumstantiate 2017, 37, 3568–3575. (In Chinese) [Google Scholar]
- Shaheen, S.M.; Abdelrazek, M.A.; Elthoth, M.; Moghanm, F.S.; Mohamed, R.; Hamza, A.; El-Habashi, N.; Wang, J.; Rinklebe, J. Potentially toxic elements in saltmarsh sediments and common reed (Phragmites australis) of Burullus coastal lagoon at North Nile Delta, Egypt: A survey and risk assessment. Sci. Total Environ. 2019, 649, 1237–1249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Vermaat, J.E.; Ke, X. Variability of agroecosystems and landscape service provision on the urban-rural fringe of Wuhan, Central China. Urban Ecosyst. 2019, 22, 1207–1214. [Google Scholar] [CrossRef]
- Luo, C.; Liu, C.; Wang, Y.; Liu, X.; Li, F.; Zhang, G.; Li, X. Heavy metal contamination in soils and vegetables near an e-waste processing site, South China. J. Hazard. Mater. 2011, 186, 481–490. [Google Scholar] [CrossRef]
- Gupta, N.; Yadav, K.K.; Kumar, V.; Kumar, S.; Chadd, R.P.; Kumar, A. Trace elements in soil-vegetables interface: Translocation, bioaccumulation, toxicity and amelioration—A review. Sci. Total Environ. 2019, 651, 2927–2942. [Google Scholar] [CrossRef]
- Eid, E.M.; Galal, T.M.; Sewelam, N.A.; Talha, N.I.; Abdallah, S.M. Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment. Environ. Sci. Pollut. Res. 2020, 27, 12138–12151. [Google Scholar] [CrossRef] [PubMed]
- Shahid, M.; Dumat, C.; Khalid, S.; Schreck, E.; Xiong, T.; Niazi, N.K. Foliar heavy metal uptake, toxicity and detoxification in plants: A comparison of foliar and root metal uptake. J. Hazard. Mater. 2017, 325, 36–58. [Google Scholar] [CrossRef] [Green Version]
- Chibuike, G.U.; Obiora, S.C. Heavy Metal Polluted Soils: Effect on Plants and Bioremediation Methods. Appl. Environ. Soil Sci. 2014, 2014, 752708. [Google Scholar] [CrossRef] [Green Version]
- Krishna, K.Y.; Neha, G.; Amit, K.; Reece, L.M.; Neeraja, S.; Shahabaldin, R.; Shakeel, A.K. Mechanistic understanding and holistic approach of phytoremediation: A review on application and future prospects. Ecol. Eng. 2018, 120, 274–298. [Google Scholar]
- Shahid, M.; Farooq, A.B.U.; Rabbani, F.; Khalid, S.; Dumat, C. Risk assessment and biophysiochemical responses of spinach to foliar application of lead oxide nanoparticles: A multivariate analysis. Chemosphere 2020, 245, 125605. [Google Scholar]
- Pavoni, E.; Petranich, E.; Adami, G.; Baracchini, E.; Crosera, M.; Emili, A.; Lenaz, D.; Higueras, P.; Covelli, S. Bioaccumulation of thallium and other trace metals in Biscutella laevigata nearby a decommissioned zinc-lead mine (Northeastern Italian Alps). J. Environ. Manag. 2017, 186, 214–224. [Google Scholar] [CrossRef]
- Shao, F.; Wang, L.; Sun, F.; Li, G.; Yu, L.; Wang, Y.; Zeng, X.; Yan, H.; Dong, L.; Bao, Z. Study on different particulate matter retention capacities of the leaf surfaces of eight common garden plants in Hangzhou, China. Sci. Total Environ. 2019, 652, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yang, W.T.; Zhou, X.; Liu, L.; Gu, J.F.; Wang, W.L.; Zou, J.L.; Tian, T.; Peng, P.Q.; Liao, B.H. Accumulation of Heavy Metals in Vegetable Species Planted in Contaminated Soils and the Health Risk Assessment. Int. J. Environ. Res. Public Health 2016, 13, 289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jolly, Y.; Islam, A.; Akbar, S. Transfer of metals from soil to vegetables and possible health risk assessment. Springerplus 2013, 2, 385. [Google Scholar] [CrossRef] [Green Version]
- Gao, P.-P.; Zhang, X.-M.; Xue, P.-Y.; Dong, J.-W.; Dong, Y.; Zhao, Q.-L.; Geng, L.-P.; Lu, Y.; Zhao, J.-J.; Liu, W.-J. Mechanism of Pb accumulation in Chinese cabbage leaves: Stomata and trichomes regulate foliar uptake of Pb in atmospheric PM2.5. Environ. Pollut. 2022, 293, 118585. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Li, M.; Hu, Y.M.; Liu, X.; Jing, Z. Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system. J. Hazard. Mater. 2019, 362, 9–16. [Google Scholar]
- Pan, X.D.; Wu, P.G.; Jiang, X.G. Levels and potential health risk of heavy metals in marketed vegetables in Zhejiang, China. Sci. Rep. 2016, 6, 20317. [Google Scholar] [CrossRef] [Green Version]
- Gao, Q.L.; Zheng, R.L.; Li, H.F. Effects of transpiration rate and root character on cadmium absorption by pakchoi cultivars. Chin. J. Ecol. 2010, 29, 1794–1798. [Google Scholar]
Specie | Abbreviation | Genotypes |
---|---|---|
Water spinach (Ipomoea aquatica Forssk) | A1 | Baigengliuyekongxincai |
A2 | Taiguokongxincai | |
A3 | Dayekongxincai | |
Amaranth (Amaranthus tricolor) | B1 | Yidianhongxiancai |
B2 | Qingxiancai | |
B3 | Hongliuyexiancai | |
B4 | Qingliuyexiancai | |
B5 | Baiyuanyexiancai | |
Cabbage (Brassica pekinensis) | C1 | Shenyangkuaicai38 |
C2 | Xinzajiaokuaicai50 | |
C3 | Meiweitiankuaicai | |
C4 | Nanjingjiangengbai | |
C5 | Xiangruikuaicai536 | |
C6 | Jimaocai | |
C7 | Suzhouqing | |
C8 | Jindiansijiqing | |
C9 | Baixuegongzhu | |
C10 | Zaoshutiancaixin | |
C11 | Choutaiqinggengcai | |
C12 | Sijixiaobaicai |
Specie | Vegetable Types | EDD (Pb) | EDD (Cd) | ||
---|---|---|---|---|---|
Adults | Children | Adults | Children | ||
Water spinach (Ipomoea aquatica Forssk) | A1 | 1.50 × 10−5 | 2.86 × 10−5 | 3.30 × 10−6 | 6.28 × 10−6 |
A2 | 1.28 × 10−5 | 2.44 × 10−5 | 2.51 × 10−6 | 4.79 × 10−6 | |
A3 | 1.60 × 10−5 | 3.05 × 10−5 | 3.70 × 10−6 | 7.04 × 10−6 | |
Amaranth (Amaranthus tricolor) | B1 | 1.35 × 10−5 | 2.58 × 10−5 | 2.58 × 10−6 | 4.90 × 10−6 |
B2 | 1.35 × 10−5 | 2.58 × 10−5 | 2.91 × 10−6 | 5.54 × 10−6 | |
B3 | 2.00 × 10−5 | 3.80 × 10−5 | 7.92 × 10−6 | 1.51 × 10−5 | |
B4 | 4.71 × 10−5 | 8.97 × 10−5 | 8.28 × 10−6 | 1.58 × 10−5 | |
B5 | 1.37 × 10−5 | 2.61 × 10−5 | 3.81 × 10−6 | 7.25 × 10−6 | |
Cabbage (Brassica pekinensis) | C1 | 1.36 × 10−5 | 2.60 × 10−5 | 1.02 × 10−5 | 1.94 × 10−5 |
C2 | 3.12 × 10−5 | 5.94 × 10−5 | 1.21 × 10−5 | 2.31 × 10−5 | |
C3 | 2.80 × 10−5 | 5.34 × 10−5 | 1.12 × 10−5 | 2.13 × 10−5 | |
C4 | 1.19 × 10−5 | 2.27 × 10−5 | 5.28 × 10−6 | 1.01 × 10−5 | |
C5 | 3.22 × 10−5 | 6.12 × 10−5 | 7.93 × 10−6 | 1.51 × 10−5 | |
C6 | 1.59 × 10−5 | 3.03 × 10−5 | 8.45 × 10−6 | 1.61 × 10−5 | |
C7 | 8.59 × 10−6 | 1.63 × 10−5 | 5.64 × 10−6 | 1.07 × 10−5 | |
C8 | 8.66 × 10−6 | 1.65 × 10−5 | 8.94 × 10−6 | 1.70 × 10−5 | |
C9 | 1.86 × 10−5 | 3.54 × 10−5 | 8.40 × 10−6 | 1.60 × 10−5 | |
C10 | 1.28 × 10−5 | 2.44 × 10−5 | 7.30 × 10−6 | 1.39 × 10−5 | |
C11 | 1.04 × 10−5 | 1.99 × 10−5 | 6.35 × 10−6 | 1.21 × 10−5 | |
C12 | 9.84 × 10−6 | 1.87 × 10−5 | 5.92 × 10−6 | 1.13 × 10−5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Peng, J.; Zhu, Z.; Yu, P.; Wang, M.; Huang, Z.; Huang, Y.; Li, Z. Screening of Leafy Vegetable Varieties with Low Lead and Cadmium Accumulation Based on Foliar Uptake. Life 2022, 12, 339. https://doi.org/10.3390/life12030339
Xu Z, Peng J, Zhu Z, Yu P, Wang M, Huang Z, Huang Y, Li Z. Screening of Leafy Vegetable Varieties with Low Lead and Cadmium Accumulation Based on Foliar Uptake. Life. 2022; 12(3):339. https://doi.org/10.3390/life12030339
Chicago/Turabian StyleXu, Zhangqian, Jianwei Peng, Zhen Zhu, Pengyue Yu, Maodi Wang, Zhi Huang, Ying Huang, and Zhaojun Li. 2022. "Screening of Leafy Vegetable Varieties with Low Lead and Cadmium Accumulation Based on Foliar Uptake" Life 12, no. 3: 339. https://doi.org/10.3390/life12030339
APA StyleXu, Z., Peng, J., Zhu, Z., Yu, P., Wang, M., Huang, Z., Huang, Y., & Li, Z. (2022). Screening of Leafy Vegetable Varieties with Low Lead and Cadmium Accumulation Based on Foliar Uptake. Life, 12(3), 339. https://doi.org/10.3390/life12030339