In Vivo Radioprotective Potential of Newly Synthesized Azomethine and Styrylquinoline Derivatives and a Natural Polyphenol: A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents
2.2. Experimental Instrumentation
2.3. Synthesis of New Azomethyne Derivatives and Styrylquinolinic Acid Salts
2.3.1. Synthesis of 2-{[(2.3-Dihydroxyphenyl)methylene]amino} Benzoic Acid (AZM1)
2.3.2. Synthesis of 2-{[(3,5-Dichloro-2-hydroxyphenyl)methylene]amino} Benzoic Acid (AZM2)
2.3.3. Synthesis of a New Alkyl-2-Styrylquinolinic Acid Salt
2.4. Natural Flavonoid
2.5. In Vivo Studies
3. Results and Discussion
3.1. In Vivo Radioprotective Potential
3.2. Influence of the Molecular Characteristics and Substituent Type on the Radioprotective Activity of AZM1, AZM2, AZM2*, and SQI
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagpal, I.; Abraham, S.K. Protective effects of tea polyphenols and β-carotene against γ-radiation induced mutation and oxidative stress in Drosophila melanogaster. Genes Environ. 2017, 39, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osowole, A.A.; Akinbayode, S.T.; Fakunle, D.D. Synthesis, physicochemical and antioxidant properties of some metal complexes of isomeric amino benzoic acids. Appl. Sci. Rep. 2016, 15, 126. [Google Scholar] [CrossRef]
- Shahab, S.; Sheikhi, M.; Filippovich, L.; Dikusar, E.; Alnajjar, R.; Atroshko, M.; Drachilovskaya, M. Antitumor and antioxidant activities of the new synthesized azomethine derivatives: Experimental and theoretical investigations. Lett. Org. Chem. 2021, 18, 22. [Google Scholar] [CrossRef]
- Ahamed, F.M.M.; Ali, M.; Velusamy, V.; Manikandan, M. Aminopyridine derived azomethines as potent antimicrobial agents. Mater. Today Proc. 2021, 47, 2053. [Google Scholar] [CrossRef]
- Iftikhar, K.; Murtaza, S.; Kousar, N.; Abbas, A.; Tahir, M.N. Aminobenzoic acid derivatives as antioxidants and cholinesterase inhibitors; synthesis, biological evaluation and molecular docking studies. Acta Pol. Pharm.—Drug Res. 2018, 75, 385. [Google Scholar]
- Krátký, M.; Konečná, K.; Janoušek, J.; Krátký, M.; Konečná, K.; Janoušek, J.; Brablíková, M.; Janďourek, O.; Trejtnar, F.; Stolaříková, J.; et al. 4-Aminobenzoic acid derivatives: Converting folate precursor to antimicrobial and cytotoxic agents. Biomolecules 2019, 10, 9. [Google Scholar] [CrossRef] [Green Version]
- Rahmawati, N.R.; Ngadiwiyana; Prasetya, N.B.A.; Sarjono, P.R.; Andriani, Y.; Syamsumir, D.F.; Ismiyarto. Synthesis of hydroxylated azomethine compounds and the antioxidant activity. AIP Conf. Proc. 2020, 2237, 020023. [Google Scholar] [CrossRef]
- Geronikaki, A.; Vicini, P.; Incerti, M.; Hadjipavlou-Litina, D. Thiazolyl and isothiazolyl azomethine derivatives with anti-inflammatory and antioxidant activities. Arzneim.-Forsch./Drug Res. 2004, 54, 530. [Google Scholar] [CrossRef]
- Chigurupati, S.; Fuloria, N.K.; Fuloria, S.; Karupiah, S.; Veerasamy, R.; Nemala, A.R.; Yi, L.Y.; Ilan, A.X.; Shah, S.A.A. Synthesis and antibacterial profile of novel azomethine derivatives of β-phenylacrolein moiety. Trop. J. Pharm. Res. 2016, 15, 821. [Google Scholar] [CrossRef] [Green Version]
- Kamal, A.; Rahim, A.; Riyaz, S.; Poornachandra, Y.; Balakrishna, M.; Kumar, C.G.; Hussaini, S.M.A.; Sridhar, B.; Machiraju, P.K. Regioselective synthesis, antimicrobial evaluation and theoretical studies of 2-styryl quinolones. Org. Biomol. Chem. 2015, 13, 1347. [Google Scholar] [CrossRef]
- Musiol, R. Styrylquinoline—A Versatile Scaffold in Medicinal Chemistry. Med. Chem. 2020, 16, 141. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, S.; Eisvand, F.; Hadizadeh, F.; Mosaffa, F.; Ghodsi, R. Design, synthesis, and biological evaluation of novel 5,6,7-trimethoxy quinolines as potential anticancer agents and tubulin polymerization inhibitors. Iran. J. Basic Med. Sci. 2020, 23, 1527. [Google Scholar] [CrossRef] [PubMed]
- Adnan, M.; Rasul, A.; Shah, M.A.; Hussain, G.; Asrar, M.; Riaz, A.; Sarfraz, I.; Hussain, A.; Khorsandi, K.; Lai, N.S.; et al. Radioprotective role of natural polyphenols: From sources to mechanisms. Anti-Cancer Agents Med. Chem. 2022, 22, 30. [Google Scholar] [CrossRef]
- Lashin, B.N.; Rasina, L.N.; Novikova, A.P. Synthesis and anti-radiation activity of azomethines in the series of trihydroxybenzaldehydes. Org. Synth. Biol. Act. 1978, 29. (In Russian) [Google Scholar]
- Varbanova, S.I.; Chervenkov, S.K. Synthesis of new N-alkyl-ammonuim salts of alkoxy- and alkoxy-hydroxy-styryl-2-quinolines. Compt. Rend De L’academ. Bulg. Sci. 1986, 39, 63. [Google Scholar]
- Challapalli, S.; Kumar, A.; Rai, R.; Kini, Y.; Kumarchandr, R. Standardization of mean lethal dose (LD50/30) of X-rays using linear accelerator (LINIAC) in albino wistar rat model based on survival analysis studies and hematological parameters. Res. J. Pharm. Biol. Chem. Sci. 2015, 6, 1215. [Google Scholar]
- Hung, C.-F.; Lin, Y.-K.; Zhang, L.-W.; Chang, C.-H.; Fang, J.-Y. Topical delivery of silymarin constituents via the skin route. Acta Pharmacol. Sin. 2010, 31, 118. [Google Scholar] [CrossRef]
- Shin, S.-C.; Kim, H.-J.; Oh, I.-J.; Cho, C.-W.; Yang, K.-H. Development of tretinoin gels for enhanced transdermal delivery. Eur. J. Pharm. Biopharm. 2005, 60, 67. [Google Scholar] [CrossRef]
- Hung, C.-F.; Lin, Y.-K.; Huang, Z.-R.; Fang, J.-Y. Delivery of resveratrol, a red wine polyphenol, from solutions and hydrogels via the skin. Biol. Pharm. Bull. 2008, 31, 955. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, A.Z.; Ibrahim, H.A.; El-Sawi, M.R.; Habza, M.N. Effects of silymarin and mesenchymal stem cells on hematological and some biochemical changes induced by gamma radiation in albino rats. Int. J. Radiat. Biol. 2020, 96, 220. [Google Scholar] [CrossRef]
- El-Shennawy, H.M.; El Shahat, A.N.; Ahmed, A.G.; Abdelaziz, N. Ameliorative effect of silymarin against radiation-induced oxidative stress in the liver of male rats. Pak. J. Zool. 2016, 48, 1905. [Google Scholar]
- El-Gabry, M.S.; Abou-Safi, H.M.; El-Yamany, N.A.; Abdel-Hamid, G.R. Physiological studies on the efficacy of silymarin as antioxidant against the disorders in some blood constituents induced by irradiation in female rats. Egypt. J. Hosp. Med. 2003, 11, 1. [Google Scholar] [CrossRef]
- Kropácová, K.; Misúrová, E.; Haková, H. Protective and therapeutic effect of silymarin on the development of latent liver damage. Radiats Biol. Radioecol. 1998, 38, 411. [Google Scholar] [PubMed]
- Ghadeer, A.R.M.A.; Ali, S.E.; Osman, S.A.A. Antagonistic role of silymarin against cardiotoxicity and impaired antioxidation induced by adriamycin and/or radiation exposure in albino rats. Pak. J. Biol. Sci. 2001, 4, 604. [Google Scholar] [CrossRef]
- Abdel-Aziz, N.; Elkady, A.A.; Elgazzar, E.M. Choline glycerophosphate and silymarin modulate brain and intestinal injuries in rats exposed to gamma-radiation. Environ. Sci. Pollut. Res. 2021, PPR412080, in press. [Google Scholar] [CrossRef]
- Sherif, N.H.; Hawas, A.M.; Abdallah, W.E.; Saleh, I.A.; Shams, K.A.; Hammouda, F.M. Potential role of milk thistle seed and its oil extracts against heart and brain injuries induced by î³-radiation exposure. Int. J. Pharm. Pharm. Sci. 2017, 9, 52. [Google Scholar] [CrossRef] [Green Version]
- Fatehi, D.; Mohammadi, M.; Shekarchi, B.; Shabani, A.; Seify, M.; Rostamzadeh, A. Radioprotective effects of Silymarin on the sperm parameters of NMRI mice irradiated with γ-rays. J. Photochem. Photobiol. B Biol. 2018, 178, 489. [Google Scholar] [CrossRef]
- Marković, Z.; Jeremić, S.; Marković, J.D.; Pirković, M.S.; Amić, D. Influence of structural characteristics of substituents on the antioxidant activity of some anthraquinone derivatives. Comput. Theor. Chem. 2016, 1077, 25. [Google Scholar] [CrossRef]
- Nazarbahjat, N.; Kadir, F.; Ariffin, A.; Abdulla, M.A.; Abdullah, Z.; Yehye, W.A. Antioxidant properties and gastroprotective effects of 2-(ethylthio)benzohydrazones on ethanol-induced acute gastric mucosal lesions in rats. PLoS ONE 2016, 11, e0156022. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Habibi, S.M.; Neyband, R.S. Substituent effect on intramolecular hydrogen bonding in 2- hydroxybenzaldehyde. Int. J. Quantum Chem. 2009, 109, 1274. [Google Scholar] [CrossRef]
- Świsłocka, R.; Regulska, E.; Karpińska, J.; Świderski, G.; Lewandowski, W. Molecular structure and antioxidant properties of alkali metal salts of rosmarinic acid. experimental and DFT studies. Molecules 2019, 24, 2645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Felton, L.C.; Brewer, J.H. Action of substituted salicylaldehydes on bacteria and fungi. Science 1947, 105, 409. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Ge, H.M.; Tan, S.H.; Li, H.Q.; Song, Y.C.; Zhu, H.L.; Tan, R.X. Synthesis and antimicrobial activities of Schiff bases derived from 5-chloro-salicylaldehyde. Eur. J. Med. Chem. 2007, 42, 558. [Google Scholar] [CrossRef] [PubMed]
- Krátký, M.; Vinšová, J.; Volková, M.; Buchta, V.; Trejtnar, F.; Stolaříková, J. Antimicrobial activity of sulfonamides containing 5-chloro-2-hydroxybenzaldehyde and 5-chloro-2-hydroxybenzoic acid scaffold. Eur. J. Med. Chem. 2012, 50, 433. [Google Scholar] [CrossRef]
- El-Sayed, M.A.-A.; El-Husseiny, W.M.; Abdel-Aziz, N.I.; El-Azab, A.S.; Abuelizz, H.A.; Abdel-Aziz, A.A.-M. Synthesis and biological evaluation of 2-styrylquinolines as antitumour agents and EGFR kinase inhibitors: Molecular docking study. J. Enzym. Inhib. Med. Chem. 2018, 33, 199. [Google Scholar] [CrossRef]
Group (Number of Rats) | Compound | Solvent | Injection Dose, mg/kg | Irradiation Dose, Gy | Survival, % | ||
---|---|---|---|---|---|---|---|
10th Day | 15th Day | 30th Day | |||||
G1 (12) | AZM1 | EtOH | 60 | 8 | 0 | 0 | 0 |
G2 (8) | AZM2 | EtOH | 60 | 8 | 50 | 25 | 25 |
G3 (10) | AZM2 | EtOH | 200 | 8 | 10 | 0 | 0 |
G4 (9) | AZM2 | DMSO | 60 | 8 | 100 | 11 | 11 |
G5 (10) | AZM2* | H2O | 60 | 8 | 0 | 0 | 0 |
G6 (10) | AZM2* | H2O | 200 | 8 | 0 | 0 | 0 |
G7 (10) | SQI | H2O | 0.3 | 8 | 60 | 10 | 0 |
G8 (10) | SQI | H2O | 1.8 | 8 | 0 | 0 | 0 |
G9 (10) | silymarin | aqueous-alkaline medium (pH = 10) | 40 | 8 | 0 | 0 | 0 |
G10 (10) | silymarin | aqueous-alkaline medium (pH = 10) | 160 | 8 | 0 | 0 | 0 |
G11 (10) (control 1) | - | DMSO | 8000 | 8 | 0 | 0 | 0 |
G12 (10) (control 2) | - | - | - | 8 | 0 | 0 | 0 |
G13 (10) (control 3) | - | - | - | - | 100 | 100 | 100 |
Animals | Gamma Radiation Dose, Gy | Dose Rate | Silymarin Injection Dose, mg/kg | Solvent | Exposure Period | Results | Ref. |
---|---|---|---|---|---|---|---|
male albino rats, Rattus rattus, (130 ± 5 g) | 4 | 0.713 | 70 mg/kg | H2O | 21 days post radiation | Protection against gamma radiation injury | [20] |
male albino Sprague–Dawley rats, (10 ± 2 weeks old; 120 ± 20 g) | 6 | 0.43 | 50 | H2O | Balanced diet for 8 weeks and exposed to γ-radiation (6 Gy) on the 4th week | Effective in the protection of liver damage induced by γ-radiation exposure | [21] |
adult female albino rats (150 ± 50 g) | 1 and 6 | 0.014 | 100 | H2O | Twice daily for 1 week; last injection 2 h before blood sampling and 2 h pre-irradiation | Amelioration of radiation-induced blood disorders | [22] |
male rats | 6 | 0.2 and 0.6 Gy/day | 100 mg/kg per day 70 mg/kg twice per day | NA | Positive effect of continual irradiation, with increase in mitotic activity and mitigation of chromosomal erration frequency in the regenerating liver | [23] | |
male albino rats | 6 | 0.64 Gy/min | 8 mM/kg | NA | 10 days | Reduced alterations of the blood levels of LDH, CPK, MDA, GSH, GSH-Px, and SOD | [24] |
adult male Wistar rats (180–220 g) | 7 | 0.38 Gy/min | 50 mg/kg | NA | Daily for 2 weeks | Modulating effect of choline glycerophosphate and silymarin against detrimental effects of gamma radiation in rats via the cholinergic anti-inflammatory pathway | [25] |
female albino Wistar rats (150 ± 20 g) | 4 Gy twice in a 4-day interval | 0.43 Gy/min | 100 mg/kg extract daily oil fraction, 0.5 mL/kg b. wt. daily | NA | 12 consecutive days; 12 consecutive days |
| [26] |
adult male mice (36–41 g) | 2 Gy | 0.5 Gy/min | 50 mg/kg | NA | 7 consecutive days | Prevente stress oxidative and inflammatory activity and enhanced the antioxidant defense system and regeneration of sperm cells | [27] |
male Wistar rats (110–120 g) | 8 Gy | 0.02 Gy/s | 40 and 160 mg/kg | aqueous-alkaline medium (pH = 10) | 10, 15, and 30 days | 100% rat mortality | Present study |
Molecular Descriptor | AZM2 | AZM2* |
---|---|---|
HOMO energy, eV | −9.977 | −9.009 |
LUMO energy, eV | −9.440 | −3.598 |
HOMO-LUMO energy gap | 0.537 | 5.411 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikolova, N.; Ivanova, D.; Yaneva, Z. In Vivo Radioprotective Potential of Newly Synthesized Azomethine and Styrylquinoline Derivatives and a Natural Polyphenol: A Preliminary Study. Life 2022, 12, 346. https://doi.org/10.3390/life12030346
Nikolova N, Ivanova D, Yaneva Z. In Vivo Radioprotective Potential of Newly Synthesized Azomethine and Styrylquinoline Derivatives and a Natural Polyphenol: A Preliminary Study. Life. 2022; 12(3):346. https://doi.org/10.3390/life12030346
Chicago/Turabian StyleNikolova, Nevena, Donika Ivanova, and Zvezdelina Yaneva. 2022. "In Vivo Radioprotective Potential of Newly Synthesized Azomethine and Styrylquinoline Derivatives and a Natural Polyphenol: A Preliminary Study" Life 12, no. 3: 346. https://doi.org/10.3390/life12030346
APA StyleNikolova, N., Ivanova, D., & Yaneva, Z. (2022). In Vivo Radioprotective Potential of Newly Synthesized Azomethine and Styrylquinoline Derivatives and a Natural Polyphenol: A Preliminary Study. Life, 12(3), 346. https://doi.org/10.3390/life12030346