Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Arthrospira platensis Using Response Surface Methodology (RSM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microorganism
2.2. Light Panels
2.3. Adaptation and Inoculation of Cultivation Units
2.4. Experimental Conditions at Screening Scale for the Design of Experiments Approach
2.5. Sampling and Analytical Methods
2.6. Determination of Dry Weight Concentration
2.7. In-Vivo Phycocyanin Quantification of Suspended Cells
2.8. Quantification of Cellular Protein Content and pH Measurement
2.9. Design of Experiment—Modulation of Responses
3. Results
3.1. DOE—Output Responses and Model Fitting
3.2. Model Development and RSM
3.3. Optimization and RSM Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Mejia, E.G.; Zhang, Q.; Penta, K.; Eroglu, A.; Lila, M.A. The Colors of Health: Chemistry, Bioactivity, and Market Demand for Colorful Foods and Natural Food Sources of Colorants. Annu. Rev. Food Sci. Technol. 2020, 11, 145–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doppler, P.; Kornpointner, C.; Halbwirth, H.; Remias, D.; Spadiut, O. Tetraedron Minimum, First Reported Member of Hydrodictyaceae to Accumulate Secondary Carotenoids. Life 2021, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Moncada, J.; Cardona, C.A.; Rincón, L.E. Design and Analysis of a Second and Third Generation Biorefinery: The Case of Castorbean and Microalgae. Bioresour. Technol. 2015, 198, 836–843. [Google Scholar] [CrossRef] [PubMed]
- Ciferri, O.; Tiboni, O. The Biochemistry and Industrial Potential of Spirulina. Annu. Rev. Microbiol. 1985, 39, 503–526. [Google Scholar] [CrossRef]
- Shimamatsu, H. Mass Production of Spirulina, an Edible Microalga. Hydrobiologia 2004, 512, 39–44. [Google Scholar] [CrossRef]
- Carcea, M.; Sorto, M.; Batello, C.; Narducci, V.; Aguzzi, A.; Azzini, E.; Fantauzzi, P.; Finotti, E.; Gabrielli, P.; Galli, V.; et al. Nutritional Characterization of Traditional and Improved Dihé, Alimentary Blue-Green Algae from the Lake Chad Region in Africa. LWT Food Sci. Technol. 2015, 62, 753–763. [Google Scholar] [CrossRef]
- Mahajan, G.; Kamat, M. γ-Linolenic Acid Production from Spirulina platensis. Appl. Microbiol. Biotechnol. 1995, 43, 466–469. [Google Scholar] [CrossRef]
- Braune, S.; Krüger-Genge, A.; Kammerer, S.; Jung, F.; Küpper, J.-H. Phycocyanin from Arthrospira platensis as Potential Anti-Cancer Drug: Review of In Vitro and In Vivo Studies. Life 2021, 11, 91. [Google Scholar] [CrossRef]
- Colla, L.M.; Reinehr, C.O.; Reichert, C.; Costa, J.A.V. Production of Biomass and Nutraceutical Compounds by Spirulina Platensis under Different Temperature and Nitrogen Regimes. Bioresour. Technol. 2007, 98, 1489–1493. [Google Scholar] [CrossRef]
- Da Fontoura Prates, D.; Duarte, J.H.; Vendruscolo, R.G.; Wagner, R.; Ballus, C.A.; da Silva Oliveira, W.; Godoy, H.T.; Barcia, M.T.; de Morais, M.G.; Radmann, E.M.; et al. Role of Light Emitting Diode (LED) Wavelengths on Increase of Protein Productivity and Free Amino Acid Profile of Spirulina sp. Cultures. Bioresour. Technol. 2020, 306, 123184. [Google Scholar] [CrossRef]
- Markou, G. Effect of Various Colors of Light-Emitting Diodes (LEDs) on the Biomass Composition of Arthrospira platensis Cultivated in Semi-Continuous Mode. Appl. Biochem. Biotechnol. 2014, 172, 2758–2768. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Zielińska, A. Evaluation of Growth Yield of Spirulina (Arthrospira) sp. in Photoautotrophic, Heterotrophic and Mixotrophic Cultures. World J. Microbiol. Biotechnol. 2012, 28, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Buso, D.; Zissis, G.; Prudhomme, T. Influence of Light Intensity and Photoperiod on Energy Efficiency of Biomass and Pigment Production of Spirulina (Arthrospira platensis). OCL 2021, 28, 37. [Google Scholar] [CrossRef]
- Chaiklahan, R.; Chirasuwan, N.; Srinorasing, T.; Attasat, S.; Nopharatana, A.; Bunnag, B. Enhanced Biomass and Phycocyanin Production of Arthrospira (Spirulina) Platensis by a Cultivation Management Strategy: Light Intensity and Cell Concentration. Bioresour. Technol. 2022, 343, 126077. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, W.; Zhai, J.; Wei, H. Effect of Nitrogen Limitation on Biochemical Composition and Photosynthetic Performance for Fed-Batch Mixotrophic Cultivation of Microalga Spirulina platensis. Bioresour. Technol. 2018, 263, 555–561. [Google Scholar] [CrossRef]
- Jung, C.H.; Braune, S.; Waldeck, P.; Küpper, J.-H.; Petrick, I.; Jung, F. Morphology and Growth of Arthrospira platensis during Cultivation in a Flat-Type Bioreactor. Life 2021, 11, 536. [Google Scholar] [CrossRef] [PubMed]
- Marquez, F.J.; Sasaki, K.; Kakizono, T.; Nishio, N.; Nagai, S. Growth Characteristics of Spirulina platensis in Mixotrophic and Heterotrophic Conditions. J. Ferment. Bioeng. 1993, 76, 408–410. [Google Scholar] [CrossRef]
- Marquez, F.J.; Nishio, N.; Nagai, S.; Sasaki, K. Enhancement of Biomass and Pigment Production during Growth of Spirulina platensis in Mixotrophic Culture. J. Chem. Technol. Biotechnol. 1995, 62, 159–164. [Google Scholar] [CrossRef]
- Mutawie, H. Growth and Metabolic Response of the Filamentous Cyanobacterium Spirulina platensis to Salinity Stress of Sodium Chloride. Life Sci. J. 2015, 12, 71–78. [Google Scholar]
- Intarasirisawat, R.; Benjakul, S.; Wu, J.; Visessanguan, W. Isolation of Antioxidative and ACE Inhibitory Peptides from Protein Hydrolysate of Skipjack (Katsuwana pelamis) Roe. J. Funct. Foods 2013, 5, 1854–1862. [Google Scholar] [CrossRef]
- Rocha, J.M.S.; Garcia, J.E.C.; Henriques, M.H.F. Growth Aspects of the Marine Microalga Nannochloropsis gaditana. Biomol. Eng. 2003, 20, 237–242. [Google Scholar] [CrossRef] [Green Version]
- Bartley, M.L.; Boeing, W.J.; Dungan, B.N.; Holguin, F.O.; Schaub, T. PH Effects on Growth and Lipid Accumulation of the Biofuel Microalgae Nannochloropsis salina and Invading Organisms. J. Appl. Phycol. 2014, 26, 1431–1437. [Google Scholar] [CrossRef]
- Kebede, E. Response of Spirulina Platensis (=Arthrospira fusiformis) from Lake Chitu, Ethiopia, to Salinity Stress from Sodium Salts. J. Appl. Phycol. 1997, 9, 551–558. [Google Scholar] [CrossRef]
- Zeng, M.T.; Vonshak, A. Adaptation of Spirulina platensis to Salinity-Stress. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1998, 120, 113–118. [Google Scholar] [CrossRef]
- Lu, C.; Torzillo, G.; Vonshak, A. Kinetic Response of Photosystem II Photochemistry in the Cyanobacterium Spirulina platensis to High Salinity Is Characterized by Two Distinct Phases. Aust. J. Plant Physiol. 1999, 26, 283–292. [Google Scholar] [CrossRef]
- Lu, C.; Zhang, J. Role of Light in the Response of PSII Photochemistry to Salt Stress in the Cyanobacterium Spirulina platensis. J. Exp. Bot. 2000, 51, 911–917. [Google Scholar] [CrossRef]
- Mata, T.M.; Martins, A.A.; Oliveira, O.; Oliveira, S.; Mendes, A.M.; Caetano, N.S. Lipid Content and Productivity of Arthrospira platensis and Chlorella vulgaris under Mixotrophic Conditions and Salinity Stress. Chem. Eng. Trans. 2016, 49, 187–192. [Google Scholar] [CrossRef]
- Schulze, P.S.C.; Barreira, L.A.; Pereira, H.G.C.; Perales, J.A.; Varela, J.C.S. Light Emitting Diodes (LEDs) Applied to Microalgal Production. Trends Biotechnol. 2014, 32, 422–430. [Google Scholar] [CrossRef]
- Wang, S.K.; Stiles, A.R.; Guo, C.; Liu, C.Z. Microalgae Cultivation in Photobioreactors: An Overview of Light Characteristics. Eng. Life Sci. 2014, 14, 550–559. [Google Scholar] [CrossRef] [Green Version]
- Tian, F.; Buso, D.; Wang, T.; Lopes, M.; Niangoran, U.; Zissis, G. Effect of Red and Blue LEDs on the Production of Phycocyanin by Spirulina platensis Based on Photosynthetically Active Radiation. J. Sci. Technol. Lighting 2018, 41, 148–152. [Google Scholar] [CrossRef] [Green Version]
- Olle, M.; Viršile, A. The Effects of Light-Emitting Diode Lighting on Greenhouse Plant Growth and Quality. Agric. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef]
- Wang, C.Y.; Fu, C.C.; Liu, Y.C. Effects of Using Light-Emitting Diodes on the Cultivation of Spirulina platensis. Biochem. Eng. J. 2007, 37, 21–25. [Google Scholar] [CrossRef]
- Chen, H.B.; Wu, J.Y.; Wang, C.F.; Fu, C.C.; Shieh, C.J.; Chen, C.I.; Wang, C.Y.; Liu, Y.C. Modeling on Chlorophyll a and Phycocyanin Production by Spirulina platensis under Various Light-Emitting Diodes. Biochem. Eng. J. 2010, 53, 52–56. [Google Scholar] [CrossRef]
- Bachchhav, M.B.; Kulkarni, M.V.; Ingale, A.G. Enhanced Phycocyanin Production from Spirulina platensis Using Light Emitting Diode. J. Inst. Eng. India Ser. E 2017, 98, 41–45. [Google Scholar] [CrossRef]
- Jao, C.L.; Ko, W.C. 1,1-Diphenyl-2-Picrylhydrazyl (DPPH) Radical Scavenging by Protein Hydrolyzates from Tuna Cooking Juice. Fish. Sci. 2002, 68, 430–435. [Google Scholar] [CrossRef]
- Chainapong, T.; Traichaiyaporn, S.; Deming, R.L. Effect of Light Quality on Biomass and Pigment Production in Photoautotrophic and Mixotrophic Cultures of Spirulina platensis. J. Agric. Technol. 2012, 8, 1593–1604. [Google Scholar]
- Mao, R.; Guo, S. Performance of the Mixed LED Light Quality on the Growth and Energy Efficiency of Arthrospira platensis. Appl. Microbiol. Biotechnol. 2018, 102, 5245–5254. [Google Scholar] [CrossRef]
- Walter, A.; de Carvalho, J.C.; Soccol, V.T.; de Faria, A.B.B.; Ghiggi, V.; Soccol, C.R. Study of Phycocyanin Production from Spirulina platensis under Different Light Spectra. Braz. Arch. Biol. Technol. 2011, 54, 675–682. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Guo, S. Growth and Phycocyanin Formation of Spirulina platensis in Photoheterotrophic Culture. Biotechnol. Lett. 1996, 18, 603–608. [Google Scholar] [CrossRef]
- Shi, W.Q.; Li, S.D.; Li, G.R.; Wang, W.H.; Chen, Q.X.; Li, Y.Q.; Ling, X.W. Investigation of Main Factors Affecting the Growth Rate of Spirulina. Optik 2016, 127, 6688–6694. [Google Scholar] [CrossRef]
- Zahri, K.N.M.; Zulkharnain, A.; Gomez-Fuentes, C.; Sabri, S.; Abdul Khalil, K.; Convey, P.; Ahmad, S.A. The Use of Response Surface Methodology as a Statistical Tool for the Optimisation of Waste and Pure Canola Oil Biodegradation by Antarctic Soil Bacteria. Life 2021, 11, 456. [Google Scholar] [CrossRef] [PubMed]
- Galan, J.; Trilleras, J.; Zapata, P.A.; Arana, V.A.; Grande-Tovar, C.D. Optimization of Chitosan Glutaraldehyde-Crosslinked Beads for Reactive Blue 4 Anionic Dye Removal Using a Surface Response Methodology. Life 2021, 11, 85. [Google Scholar] [CrossRef] [PubMed]
- Breig, S.J.M.; Luti, K.J.K. Response Surface Methodology: A Review on Its Applications and Challenges in Microbial Cultures. Mater. Today Proc. 2021, 42, 2277–2284. [Google Scholar] [CrossRef]
- Karimifard, S.; Moghaddam, M.R.A. Application of Response Surface Methodology in Physicochemical Removal of Dyes from Wastewater: A Critical Review. Sci. Total Environ. 2018, 640, 772–797. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Zhong, X.; Zheng, Y.; Guo, S.; Shi, X.; Huang, J. Enhancement of Biomass Production and Productivity of Arthrospira platensis GMPA7 Using Response Surface Monitoring Methodology and Turbidostatic Cultivation Strategy. J. Appl. Phycol. 2021, 33, 755–763. [Google Scholar] [CrossRef]
- Soreanu, G.; Cretescu, I.; Diaconu, M.; Cojocaru, C.; Ignat, M.; Samoila, P.; Harabagiu, V. Investigation of a Biosystem Based on Arthrospira platensis for Air Revitalisation in Spacecrafts: Performance Evaluation through Response Surface Methodology. Chemosphere 2021, 264, 128465. [Google Scholar] [CrossRef]
- Busnel, A.; Samhat, K.; Gérard, E.; Kazbar, A.; Marec, H.; Dechandol, E.; Le Gouic, B.; Hauser, J.-L.; Pruvost, J. Development and Validation of a Screening System for Characterizing and Modeling Biomass Production from Cyanobacteria and Microalgae: Application to Arthrospira platensis and Haematococcus Pluvialis. Algal Res. 2021, 58, 102386. [Google Scholar] [CrossRef]
- Benchikh, Y.; Filali, A.; Rebai, S. Modeling and Optimizing the Phycocyanins Extraction from Arthrospira platensis (Spirulina) Algae and Preliminary Supplementation Assays in Soft Beverage as Natural Colorants and Antioxidants. J. Food Process. Preserv. 2021, 45, e15170. [Google Scholar] [CrossRef]
- Hutner, S.H.; Provasoli, L.; Schatz, A.; Haskins, C.P. Some Approaches to the Study of the Role of Metals in the Metabolism of Microorganisms. Source Proc. Am. Philos. Soc. 1950, 94, 152–170. [Google Scholar]
- Vonshak, A.; Guy, R.; Guy, M. The Response of the Filamentous Cyanobacterium Spirulina platensis to Salt Stress. Arch. Microbiol. 1988, 150, 417–420. [Google Scholar] [CrossRef]
- Franke, S.; Steingröwer, J.; Walther, T.; Krujatz, F. The Oxygen Paradigm—Quantitative Impact of High Concentrations of Dissolved Oxygen on Kinetics and Large-Scale Production of Arthrospira platensis. ChemEngineering 2022, 6, 14. [Google Scholar] [CrossRef]
- Fan, X.; Hu, S.; Wang, K.; Yang, R.; Zhang, X. Coupling of Ultrasound and Subcritical Water for Peptides Production from Spirulina platensis. Food Bioprod. Process. 2020, 121, 105–112. [Google Scholar] [CrossRef]
- Slocombe, S.P.; Ross, M.; Thomas, N.; McNeill, S.; Stanley, M.S. A Rapid and General Method for Measurement of Protein in Micro-Algal Biomass. Bioresour. Technol. 2013, 129, 51–57. [Google Scholar] [CrossRef] [Green Version]
- Vonshak, A. Spirulina Platensis Arthrospira: Physiology, Cell-Biology and Biotechnology; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Fu, W.; Guomundsson, Ó.; Paglia, G.; Herjólfsson, G.; Andrésson, Ó.S.; Palsson, B.O.; Brynjólfsson, S. Enhancement of Carotenoid Biosynthesis in the Green Microalga Dunaliella salina with Light-Emitting Diodes and Adaptive Laboratory Evolution. Appl. Microbiol. Biotechnol. 2013, 97, 2395–2403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakhimberdieva, M.G.; Boichenko, V.A.; Karapetyan, N.V.; Stadnichuk, I.N. Interaction of Phycobilisomes with Photosystem II Dimers and Photosystem I Monomers and Trimers in the Cyanobacterium Spirulina platensis. Biochemistry 2001, 40, 15780–15788. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.W.; Yang, T.S.; Chen, M.J.; Chang, Y.C.; Wang, E.I.C.; Ho, C.L.; Lai, Y.J.; Yu, C.C.; Chou, J.C.; Chao, L.K.P.; et al. Purification and Immunomodulating Activity of C-Phycocyanin from Spirulina platensis Cultured Using Power Plant Flue Gas. Process Biochem. 2014, 49, 1337–1344. [Google Scholar] [CrossRef] [Green Version]
- Rivera, C.; Nino, L.; Gelves, G. Modeling of Phycocyanin Production from Spirulina Platensis Using Different Light-Emitting Diodes. S. Afr. J. Chem. Eng. 2021, 37, 167–178. [Google Scholar] [CrossRef]
- Szwarc, D.; Zieliński, M. Effect of Lighting on the Intensification of Phycocyanin Production in a Culture of Arthrospira platensis. Multidiscip. Digit. Publ. Inst. Proc. 2018, 2, 1305. [Google Scholar] [CrossRef] [Green Version]
- Tayebati, H.; Pajoum Shariati, F.; Soltani, N.; Sepasi Tehrani, H. Effect of Various Light Spectra on Amino Acids and Pigment Production of Arthrospira platensis Using Flat-Plate Photobioreactor. Prep. Biochem. Biotechnol. 2021, 1–12. [Google Scholar] [CrossRef]
- Ravelonandro, P.H.; Ratianarivo, D.H.; Joannis-Cassan, C.; Isambert, A.; Raherimandimby, M. Influence of Light Quality and Intensity in the Cultivation of Spirulina platensis from Toliara (Madagascar) in a Closed System. J. Chem. Technol. Biotechnol. 2008, 83, 842–848. [Google Scholar] [CrossRef]
- Park, J.; Dinh, T.B. Contrasting Effects of Monochromatic LED Lighting on Growth, Pigments and Photosynthesis in the Commercially Important Cyanobacterium Arthrospira Maxima. Bioresour. Technol. 2019, 291, 121846. [Google Scholar] [CrossRef] [PubMed]
- Zittelli, G.C.; Mugnai, G.; Milia, M.; Cicchi, B.; Benavides, A.S.; Angioni, A.; Addis, P.; Torzillo, G. Effects of Blue, Orange and White Lights on Growth, Chlorophyll Fluorescence, and Phycocyanin Production of Arthrospira platensis Cultures. Algal Res. 2022, 61, 102583. [Google Scholar] [CrossRef]
- Rafiqul, I.M.; Hassan, A.; Sulebele, G.; Orosco, C.A.; Roustaian, P.; Jalal, K.C.A. Salt Stress Culture of Blue-Green Algae Spirulina fusiformis. Pak. J. Biol. Sci. 2003, 6, 648–650. [Google Scholar] [CrossRef]
- Bezerra, P.Q.M.; Moraes, L.; Cardoso, L.G.; Druzian, J.I.; Morais, M.G.; Nunes, I.L.; Costa, J.A.V. Spirulina sp. LEB 18 Cultivation in Seawater and Reduced Nutrients: Bioprocess Strategy for Increasing Carbohydrates in Biomass. Bioresour. Technol. 2020, 316, 123883. [Google Scholar] [CrossRef] [PubMed]
- Çelekli, A.; Yavuzatmaca, M.; Bozkurt, H. Modeling of Biomass Production by Spirulina platensis as Function of Phosphate Concentrations and PH Regimes. Bioresour. Technol. 2009, 100, 3625–3629. [Google Scholar] [CrossRef]
- Warr, S.R.C.; Reed, R.H.; Chudek, J.A.; Foster, R.; Stewart, W.D.P. Osmotic Adjustment in Spirulina platensis. Planta 1985, 163, 424–429. [Google Scholar] [CrossRef]
- Lu, C.; Vonshak, A. Characterization of PSII Photochemistry in Salt-Adapted Cells of Cyanobacterium Spirulina platensis. New Phytol. 1999, 141, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Sudhir, P.R.; Pogoryelov, D.; Kovács, L.; Garab, G.; Murthy, S.D.S. The Effects of Salt Stress on Photosynthetic Electron Transport and Thylakoid Membrane Proteins in the Cyanobacterium Spirulina platensis. J. Biochem. Mol. Biol. 2005, 38, 481–485. [Google Scholar] [CrossRef] [Green Version]
- Ben Dhiab, R.; Ben Ouada, H.; Boussetta, H.; Franck, F.; Elabed, A.; Brouers, M. Growth, Fluorescence, Photosynthetic O2 Production and Pigment Content of Salt Adapted Cultures of Arthrospira (Spirulina) Platensis. J. Appl. Phycol. 2007, 19, 293–301. [Google Scholar] [CrossRef]
- Vonshak, A.; Kancharaksa, N.; Bunnag, B.; Tanticharoen, M. Role of Light and Photosynthesis on the Acclimation Process of the Cyanobacterium Spirulina platensis to Salinity Stress. J. Appl. Phycol. 1996, 8, 119–124. [Google Scholar] [CrossRef]
- Richmond, A.; Grobbelaar, J.U. Factors Affecting the Output Rate of Spirulina platensis with Reference to Mass Cultivation. Biomass 1986, 10, 253–264. [Google Scholar] [CrossRef]
- Lodi, A.; Binaghi, L.; De Faveri, D.; Carvalho, J.C.M.; Converti, A.; Del Borghi, M. Fed-Batch Mixotrophic Cultivation of Arthrospira (Spirulina) Platensis (Cyanophycea) with Carbon Source Pulse Feeding. Ann. Microbiol. 2005, 55, 181–185. [Google Scholar]
- Chen, T.; Zheng, W.; Yang, F.; Bai, Y.; Wong, Y.S. Mixotrophic Culture of High Selenium-Enriched Spirulina platensis on Acetate and the Enhanced Production of Photosynthetic Pigments. Enzym. Microb. Technol. 2006, 39, 103–107. [Google Scholar] [CrossRef]
- Rasouli, Z.; Parsa, M.; Ahmadzadeh, H. Features of Spirulina platensis Cultivated Under Autotrophic and Mixotrophic Conditions. Food Sci. Technol. 2019, 12, 33–42. [Google Scholar] [CrossRef]
- Spolaore, P.; Joannis-Cassan, C.; Duran, E.; Isambert, A. Commercial Applications of Microalgae. J. Biosci. Bioeng. 2006, 101, 87–96. [Google Scholar] [CrossRef] [Green Version]
- Junique, L.; Watier, L.; Lejeune, H.; Viudes, F.; Deblieck, M.; Watier, D. Determination by Response Surface Methodology of Optimal Protein and Phycocyanin Productivity Conditions in Arthrospira (Spirulina) Platensis under Different Combinations of Photoperiod Variation and Lighting Intensity. Bioresour. Technol. Rep. 2021, 15, 100763. [Google Scholar] [CrossRef]
- Milia, M.; Corrias, F.; Addis, P.; Zitelli, G.C.; Cicchi, B.; Torzillo, G.; Andreotti, V.; Angioni, A. Influence of Different Light Sources on the Biochemical Composition of Arthrospira Spp. Grown in Model Systems. Foods 2022, 11, 399. [Google Scholar] [CrossRef]
- Ravelonandro, P.H.; Ratianarivo, D.H.; Joannis-Cassan, C.; Isambert, A.; Raherimandimby, M. Improvement of the Growth of Arthrospira (Spirulina) Platensis from Toliara (Madagascar): Effect of Agitation, Salinity and CO2 Addition. Food Bioprod. Process. 2011, 89, 209–216. [Google Scholar] [CrossRef] [Green Version]
- Chentir, I.; Doumandji, A.; Ammar, J.; Zili, F.; Jridi, M.; Markou, G.; Ben Ouada, H. Induced Change in Arthrospira sp. (Spirulina) Intracellular and Extracellular Metabolites Using Multifactor Stress Combination Approach. J. Appl. Phycol. 2018, 30, 1563–1574. [Google Scholar] [CrossRef]
- Elisabeth, B.; Rayen, F.; Behnam, T. Microalgae Culture Quality Indicators: A Review. Crit. Rev. Biotechnol. 2021, 41, 457–473. [Google Scholar] [CrossRef]
- Volkmann, H.; Imianovsky, U.; Oliveira, J.L.B.; Sant’Anna, E.S. Cultivation of Arthrospira (Spirulina) Platensis in Desalinator Wastewater and Salinated Synthetic Medium: Protein Content and Amino-Acid Profile. Braz. J. Microbiol. 2008, 39, 98–101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheikh, T.A.; Baba, Z.A.; Sofi, P. Effect of NaCl on Growth and Physiological Traits of Anabena cylindrica L. Pak. J. Biol. Sci. 2006, 9, 2528–2530. [Google Scholar] [CrossRef] [Green Version]
- Hagemann, M.; Wolfel, L.; Kruger, B. Alterations of Protein Synthesis in the Cyanobacterium Synechocystis sp. PCC 6803 after a Salt Shock. J. Gen. Microbiol. 1990, 136, 1393–1399. [Google Scholar] [CrossRef] [Green Version]
- Mary Leema, J.T.; Kirubagaran, R.; Vinithkumar, N.V.; Dheenan, P.S.; Karthikayulu, S. High Value Pigment Production from Arthrospira (Spirulina) Platensis Cultured in Seawater. Bioresour. Technol. 2010, 101, 9221–9227. [Google Scholar] [CrossRef]
- Grossman, A.R.; Schaefer, M.R.; Chiang, G.G.; Collier, J.L. Environmental Effects on the Light-Harvesting Complex of Cyanobacteria. J. Bacteriol. 1993, 175, 575–582. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.P.; Malcata, F.X. Kinetic Modeling of the Autotrophic Growth of Pavlova lutheri: Study of the Combined Influence of Light and Temperature. Biotechnol. Prog. 2003, 19, 1128–1135. [Google Scholar] [CrossRef]
- Munawaroh, H.S.H.; Fathur, R.M.; Gumilar, G.; Aisyah, S.; Yuliani, G.; Mudzakir, A.; Wulandari, A.P. Characterization and physicochemical properties of chlorophyll extract from Spirulina sp. In Proceedings of the Journal of Physics: Conference Series, Medan, Indonesia, 19–20 July 2019; Volume 1280, p. 22013. [Google Scholar]
- Lewitus, A.J.; Kana, T.M. Responses of Estuarine Phytoplankton to Exogenous Glucose: Stimulation versus Inhibition of Photosynthesis and Respiration. Limnol. Oceanogr. 1994, 39, 182–189. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y. High Cell Density Mixotrophic Culture of Spirulina platensis on Glucose for Phycocyanin Production Using a Fed-Batch System. Enzym. Microb. Technol. 1997, 20, 221–224. [Google Scholar] [CrossRef]
- Zhang, X.W.; Zhang, Y.M.; Chen, F. Application of Mathematical Models to the Determination Optimal Glucose Concentration and Light Intensity for Mixotrophic Culture of Spirulina platensis. Process Biochem. 1999, 34, 477–481. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Gao, Y.; Zhao, H. Nutrients Removal and Recovery from Saline Wastewater by Spirulina platensis. Bioresour. Technol. 2017, 245, 10–17. [Google Scholar] [CrossRef]
- Lu, C.; Vonshak, A. Effects of Salinity Stress on Photosystem II Function in Cyanobacterial Spirulina platensis Cells. Physiol. Plant. 2002, 114, 405–413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Factors | Levels | |||
---|---|---|---|---|
Light panel (L) | White (W) | Red (R) | Yellow (Y) | - |
Sodium chloride concentration (S, g/L) | 0 | 5 | 15 | 30 |
Glucose concentration (G, g/L) | 0 | 1.5 | 2 | 2.5 |
Assays | Treatment | Responses | |||||
---|---|---|---|---|---|---|---|
L | S (g/L) | G (g/L) | Biomass (g/L) | Phycocyanin (mg/g) | Protein (%) | pH | |
1–3 | W | 1 | 0 | 1.03 ± 0.01 | 87 ± 7 | 31 ± 7 | 10.85 ± 0.06 |
4–6 | W | 1 | 1.5 | 1.16 ± 0.05 | 82 ± 8 | 33 ± 2 | 10.74 ± 0.12 |
7–9 | W | 1 | 2 | 1.11 ± 0.11 | 85 ± 2 | 33 ± 4 | 10.69 ± 0.19 |
10–12 | W | 1 | 2.5 | 1.10 ± 0.10 | 88 ± 4 | 44 ± 5 | 10.54 ± 0.11 |
13–15 | W | 5 | 0 | 0.93 ± 0.02 | 89 ± 19 | 33 ± 1 | 10.68 ± 0.16 |
16–18 | W | 5 | 1.5 | 1.02 ± 0.04 | 81 ± 3 | 48 ± 8 | 10.58 ± 0.05 |
19–21 | W | 5 | 2 | 1.07 ± 0.05 | 83 ± 11 | 49 ± 9 | 10.53 ± 0.14 |
22–24 | W | 5 | 2.5 | 1.07 ± 0.13 | 82 ± 12 | 42 ± 1 | 10.48 ± 0.21 |
25–27 | W | 15 | 0 | 0.77 ± 0.01 | 72 ± 5 | 42 ± 3 | 10.38 ± 0.02 |
28–30 | W | 15 | 1.5 | 1.03 ± 0.29 | 76 ± 4 | 37 ± 5 | 10.16 ± 0.06 |
31–33 | W | 15 | 2 | 1.15 ± 0.33 | 80 ± 4 | 37 ± 2 | 10.18 ± 0.03 |
34–36 | W | 15 | 2.5 | 1.12 ± 0.16 | 77 ± 3 | 39 ± 3 | 10.18 ± 0.02 |
37–39 | W | 30 | 0 | 0.79 ± 0.15 | 73 ± 2 | 32 ± 4 | 9.99 ± 0.04 |
40–42 | W | 30 | 1.5 | 0.73 ± 0.11 | 64 ± 2 | 30 ± 5 | 9.80 ± 0.02 |
43–45 | W | 30 | 2 | 0.80 ± 0.07 | 67 ± 3 | 34 ± 3 | 9.61 ± 0.37 |
46–48 | W | 30 | 2.5 | 0.69 ± 0.03 | 71 ± 4 | 23 ± 2 | 9.8 ± 0.03 |
49–51 | R | 1 | 0 | 0.85 ± 0.03 | 63 ± 10 | 44 ± 5 | 11.15 ± 0.08 |
52–54 | R | 1 | 1.5 | 0.94 ± 0.05 | 57 ± 4 | 42 ± 5 | 10.96 ± 0.05 |
55–57 | R | 1 | 2 | 0.86 ± 0.03 | 57 ± 6 | 41 ± 2 | 10.82 ± 0.08 |
58–60 | R | 1 | 2.5 | 0.87 ± 0.03 | 56 ± 2 | 42 ± 4 | 10.76 ± 0.07 |
61–63 | R | 5 | 0 | 0.80 ± 0.02 | 58 ± 2 | 40 ± 8 | 11.13 ± 0.14 |
64–66 | R | 5 | 1.5 | 0.93 ± 0.03 | 50 ± 4 | 44 ± 8 | 10.94 ± 0.04 |
67–69 | R | 5 | 2 | 0.98 ± 0.01 | 49 ± 3 | 48 ± 14 | 10.8 ± 0.02 |
70–72 | R | 5 | 2.5 | 0.98 ± 0.05 | 48 ± 5 | 48 ± 2 | 10.9 ± 0.05 |
73–75 | R | 15 | 0 | 0.97 ± 0.09 | 69 ± 6 | 38 ± 1 | 10.33 ± 0.17 |
76–78 | R | 15 | 1.5 | 1.22 ± 0.02 | 62 ± 4 | 32 ± 3 | 10.48 ± 0.04 |
79–81 | R | 15 | 2 | 1.16 ± 0.10 | 66 ± 4 | 34 ± 1 | 10.35 ± 0.16 |
82–84 | R | 15 | 2.5 | 1.25 ± 0.08 | 57 ± 5 | 28 ± 4 | 10.38 ± 0.07 |
85–87 | R | 30 | 0 | 0.73 ± 0.07 | 64 ± 4 | 27 ± 4 | 9.94 ± 0.01 |
88–90 | R | 30 | 1.5 | 0.71 ± 0.06 | 66 ± 3 | 27 ± 6 | 9.80 ± 0.02 |
91–93 | R | 30 | 2 | 0.75 ± 0.04 | 63 ± 4 | 25 ± 1 | 9.81 ± 0.01 |
94–96 | R | 30 | 2.5 | 0.74 ± 0.03 | 69 ± 5 | 23 ± 2 | 9.83 ± 0.04 |
97–99 | Y | 1 | 0 | 0.66 ± 0.13 | 114 ± 5 | 64 ± 10 | 10.18 ± 0.14 |
100–102 | Y | 1 | 1.5 | 0.85 ± 0.16 | 106 ± 5 | 49 ± 10 | 10.27 ± 0.21 |
103–105 | Y | 1 | 2 | 1.03 ± 0.14 | 96 ± 10 | 52 ± 6 | 10.43 ± 0.20 |
106–108 | Y | 1 | 2.5 | 0.85 ± 0.11 | 101 ± 7 | 58 ± 5 | 10.22 ± 0.12 |
109–111 | Y | 5 | 0 | 0.82 ± 0.13 | 94 ± 16 | 55 ± 14 | 10.32 ± 0.24 |
112–114 | Y | 5 | 1.5 | 0.82 ± 0.06 | 96 ± 7 | 52 ± 3 | 10.14 ± 0.03 |
115–117 | Y | 5 | 2 | 1.00 ± 0.21 | 90 ± 14 | 54 ± 7 | 10.43 ± 4.95 |
118–120 | Y | 5 | 2.5 | 0.82 ± 0.03 | 94 ± 3 | 55 ± 3 | 10.14 ± 0.03 |
121–123 | Y | 15 | 0 | 0.78 ± 0.10 | 108 ± 9 | 42 ± 4 | 10.34 ± 0.03 |
124–126 | Y | 15 | 1.5 | 0.74 ± 0.04 | 90 ± 1 | 34 ± 5 | 10.16 ± 0.05 |
127–129 | Y | 15 | 2 | 0.75 ± 0.09 | 92 ± 2 | 32 ± 9 | 10.17 ± 0.07 |
130–132 | Y | 15 | 2.5 | 0.87 ± 0.02 | 84 ± 5 | 36 ± 5 | 10.24 ± 0.06 |
133–135 | Y | 30 | 0 | 0.65 ± 0.07 | 79 ± 2 | 30 ± 1 | 10.11 ± 0.04 |
136–138 | Y | 30 | 1.5 | 0.66 ± 0.05 | 70 ± 2 | 29 ± 2 | 9.97 ± 0.02 |
139–141 | Y | 30 | 2 | 0.66 ± 0.06 | 71 ± 1 | 34 ± 1 | 9.96 ± 0.04 |
142–144 | Y | 30 | 2.5 | 0.71 ± 0.03 | 68 ± 7 | 28 ± 4 | 9.92 ± 0.04 |
Source | SS | DF | MS | F-Value | p-Value | Adjusted R2 |
---|---|---|---|---|---|---|
Biomass | ||||||
Linear | 1.78 | 43 | 0.0413 | 3.82 | <0.0001 | 0.42 |
2FI | 1.59 | 38 | 0.0418 | 3.86 | <0.0001 | 0.44 |
Quadratic | 1.06 | 36 | 0.0294 | 2.72 | <0.0001 | 0.55 |
Cubic * | 0.4104 | 26 | 0.0158 | 1.46 | 0.0961 | 0.66 |
Pure error | 1.04 | 96 | 0.0108 | |||
Phycocyanin | ||||||
Linear | 9166.21 | 43 | 213.17 | 4.94 | <0.0001 | 0.68 |
2FI * | 2033.28 | 38 | 53.51 | 1.24 | 0.1999 | 0.85 |
Quadratic | 1862.87 | 36 | 51.75 | 1.2 | 0.2401 | 0.85 |
Cubic | 1248.73 | 26 | 48.03 | 1.11 | 0.342 | 0.85 |
Pure error | 4141.74 | 96 | 43.14 | |||
Protein | ||||||
Linear | 5052.45 | 43 | 117.5 | 3.74 | <0.0001 | 0.52 |
2FI | 3249.51 | 38 | 85.51 | 2.73 | <0.0001 | 0.61 |
Quadratic | 3204.69 | 36 | 89.02 | 2.84 | <0.0001 | 0.61 |
Cubic * | 1008 | 26 | 38.77 | 1.24 | 0.2277 | 0.73 |
Pure error | 3012.54 | 96 | 31.38 |
Source | Biomass Cubic Model | Phycocyanin 2FI Model | Protein Cubic Model | |||
---|---|---|---|---|---|---|
F-Value | p-Value | F-Value | p-Value | F-Value | p-Value | |
Model | 14.23 | <0.0001 * | 87.72 | <0.0001 * | 19.02 | <0.0001 * |
S-Sodium chloride | 79.71 | <0.0001 * | 70.42 | <0.0001 * | 219.56 | <0.0001 * |
G-Glucose | 28.80 | <0.0001 * | 26.38 | <0.0001 * | 0.6894 | 0.408 |
L-Light panel | 37.65 | <0.0001 * | 268.96 | <0.0001 * | 28.25 | <0.0001 * |
SG | 4.06 | 0.0462 * | 1.94 | 0.1662 | 2.71 | 0.1025 |
SL | 5.79 | 0.0040 * | 67.9 | <0.0001 * | 22.38 | <0.0001 * |
GL | 0.0310 | 0.9695 | 8.53 | 0.0003 * | 3.62 | 0.0296 * |
S2 | 42.14 | <0.0001 * | 0.272 | 0.603 | ||
G2 | 2.41 | 0.1231 | 1.09 | 0.299 | ||
SGL | 0.5577 | 0.5740 | 4.37 | 0.0147 * | ||
S2G | 8.53 | 0.0042 * | 1.12 | 0.2914 | ||
S2L | 16.89 | <0.0001 * | 10.16 | <0.0001 * | ||
SG2 | 2.35 | 0.1277 | 4.58 | 0.0344 * | ||
G2L | 0.1207 | 0.8864 | 2.89 | 0.0592 | ||
S3 | 7.18 | 0.0084 * | 25.56 | <0.0001 * | ||
G3 | 1.49 | 0.2243 | 0.5553 | 0.4576 |
Optimum Conditions | Desirability | Responses | |||||
---|---|---|---|---|---|---|---|
Biomass (g/L) | Phycocyanin (mg/g) | Protein (%) | |||||
Predicted | Actual | Predicted | Actual | Predicted | Actual | ||
WL5.30S2.46G | 0.50 | 1.07 | 1.09 | 82.18 | 108.74 | 46.13 | 45.64 |
RL9.10S1.30G | 0.34 | 1.05 | 1.03 | 58.98 | 79.50 | 42.15 | 39.99 |
YL1.00S0.88G | 0.55 | 0.86 | 0.91 | 106.96 | 115.68 | 55.06 | 51.09 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nosratimovafagh, A.; Fereidouni, A.E.; Krujatz, F. Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Arthrospira platensis Using Response Surface Methodology (RSM). Life 2022, 12, 371. https://doi.org/10.3390/life12030371
Nosratimovafagh A, Fereidouni AE, Krujatz F. Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Arthrospira platensis Using Response Surface Methodology (RSM). Life. 2022; 12(3):371. https://doi.org/10.3390/life12030371
Chicago/Turabian StyleNosratimovafagh, Ahmad, Abolghasem Esmaeili Fereidouni, and Felix Krujatz. 2022. "Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Arthrospira platensis Using Response Surface Methodology (RSM)" Life 12, no. 3: 371. https://doi.org/10.3390/life12030371
APA StyleNosratimovafagh, A., Fereidouni, A. E., & Krujatz, F. (2022). Modeling and Optimizing the Effect of Light Color, Sodium Chloride and Glucose Concentration on Biomass Production and the Quality of Arthrospira platensis Using Response Surface Methodology (RSM). Life, 12(3), 371. https://doi.org/10.3390/life12030371