Biomarkers in Oral Fluids as Diagnostic Tool for Psoriasis
Abstract
:1. Introduction
2. Search Strategy
3. Gingival Crevicular Fluid Biomarkers as a Diagnostic Tool for Psoriasis
4. Salivary Biomarkers as a Diagnostic Tool for Psoriasis
Autor, Year | Study Design | Population | Comparison (Control) | Technique | Biomarker Level | p |
---|---|---|---|---|---|---|
Skutnik-Radziszewska et al., 2020 [64] | Cross-sectional | Blood and saliva samples from 60 patients with psoriasis were divided into two groups: patients with psoriasis and hyposalivation (n = 30) and patients with psoriasis and normal secretion (n = 30). | Healthy controls (n = 60) | Biochemical assays, DNS method, BCA method, spectrophotometry, ELISA | Elevated levels of TNF-α, IL-2, and INF-γ, and reduced levels of IL-10 in psoriasis compared to the control group. | <0.05 |
Belstrøm, D. et al., 2020 [71] | Cross-sectional | Stimulated saliva samples from patients with psoriasis (n = 27), patients with periodontitis (n = 58). | Healthy controls (n = 52). | Immunoassays, rRNA sequence analysis. | Linear discriminant effect size analysis showed that 52 bacterial taxa (22 psoriasis and 30 periodontitis) and 21 bacteria taxa associated with the healthy control differentiated the salivary microbiota of patients with psoriasis from that of orally healthy patients with periodontitis. Significantly lower mean salivary levels of NGAL (psoriasis: 996, periodontitis: 2072, controls: 2551 ng/mL) and transferrin (psoriasis: 4.37, periodontitis: 7.25, controls: 10.02 ng/mL). | <0.0001 |
Ganzetti, G. et al., 2016 [27] | Prospective with follow-up | Saliva samples from patients with psoriasis (n = 25) and control subjects (n = 20). | Βiochemical assays for detection of interleukin IL-1 β levels. | IL-1β levels in saliva of patients with psoriasis were significantly higher than in healthy controls. In patients with psoriasis, TNF-α inhibitor treatment significantly reduced IL-1β levels, compared with baseline. There is a positive correlation between IL-1β levels and psoriasis activity. | <0.05 | |
Bottoni, U., et al., 2016 [67] | Cross-sectional | Saliva samples from 35 patients with psoriasis, 20 patients with diabetes. | Healthy subjects (n = 20). | Infrared spectrometry. | Presence of a structural alteration of proteins in the saliva of patients with psoriasis similar to that observed in patients with diabetes. This suggests that psoriasis is a multisystemic disorder strictly related to diabetes. | <0.05 |
Mastrolonardo, M., et al., 2007 [66] | Cross-sectional | Saliva samples from patients with psoriasis (n = 25) of mild to moderate severity. | Healthy subjects (n = 50). | HS salivary cortisol enzyme immunoassay, ELISA. | IL-1β levels were significantly higher in psoriasis individuals than controls, while cortisol levels did not differ significantly between groups. There was no significant correlation between changes in IL-1β and cortisol levels in psoriasis patients or controls. | <0.05 |
del Castillo, L.F. , et al., 1981 [68] | Prospective with follow-up | Blood (right cubital vein) and saliva (right parotid gland) samples from psoriasis patients (n = 10). | Healthy volunteers (n = 10). | Radioimmunological analysis PRIST, laser nephelometry. | IgA levels were significantly higher in psoriatic patients than controls. The mean IgG and IgM levels determined in both groups did not differ significantly from each other. | <0.01 |
Syrjainen, S.M. 1983 [70] | Cross-sectional | Lacrimal and salivary fluid samples from psoriatic patients (n = 28). | Healthy controls (n = 10). | Photometric and colorimetric analysis, Phadebas method, radial immunodiffusion analysis and radioimmunoassay. | Increased levels of amylase, Na+ and IgA in patients with psoriasis, as well as reduced lysozyme levels. | <0.001 |
Skutnik-Radziszewska et al., 2020 [64] | Cross-sectional | Blood and saliva samples from patients with psoriasis (n = 40). | Healthy controls (n = 40). | Biochemical assays, dental examination, redox analysis, BCA method, colorimetric analysis, chemiluminescence test. | The antioxidant enzyme activity, protein oxidation markers concentration, and reactive oxygen species production rate in psoriasis patients were significantly higher than in controls. | <0.001 |
Soudan, R.A. et al., 2011 [72] | Cross-sectional | Saliva samples from patients with psoriasis (n = 20). | Healthy controls (n = 20). | Biochemical assays. | Significantly higher concentrations of K+ and sAA (mean K+ = 21.38 mmol/L, mean sAA = 64.26 IU/mL) in patients than in controls. | <0.05 |
Koh, D. et al., 2004 [69] | Cross-sectional | Saliva samples from patients with psoriasis (n = 51) and control subjects (n = 24). | Healthy controls (n = 24). | Enzyme-linked immunosorbent assay. | Psoriasis patients had a lower concentration and secretion rate of IgA and lysozyme than controls. | 0.000 |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, R.; Zeng, J.; Yuan, J.; Deng, X.; Huang, Y.; Chen, L.; Zhang, P.; Feng, H.; Liu, Z.; Wang, Z.; et al. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J. Clin. Investig. 2018, 128, 2551–2568. [Google Scholar] [CrossRef] [PubMed]
- Meneguin, S.; de Godoy, N.A.; Pollo, C.F.; Miot, H.A.; de Oliveira, C. Quality of life of patients living with psoriasis: A qualitative study. BMC Dermatol. 2020, 20, 22. [Google Scholar] [CrossRef] [PubMed]
- Parisi, R.; Iskandar, I.Y.K.; Kontopantelis, E.; Augustin, M.; Griffiths, C.E.M.; Ashcroft, D.M.; Global Psoriasis, A. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ 2020, 369, m1590. [Google Scholar] [CrossRef]
- Odorici, G.; Paganelli, A.; Peccerillo, F.; Serra, J.; Chester, J.; Kaleci, S.; Pellacani, G.; Conti, A. Moderate to severe psoriasis: A single-center analysis of gender prevalence. Ital. J. Dermatol. Venerol. 2021, 156, 226–230. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.G.; Hong, J.Y.; Hong, J.R.; Hur, M.S.; Kim, S.M.; Lee, Y.W.; Choe, Y.B.; Ahn, K.J. The IL17F His161Arg polymorphism, a potential risk locus for psoriasis, increases serum levels of interleukin-17F in an Asian population. Sci. Rep. 2019, 9, 18921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romani, J.; Julia, M.; Lozano, F.; Munoz-Santos, C.; Guilabert, A.; Carrascosa, J.M.; Rigla, M.; Luelmo, J. Toll-like receptor 9 promoter polymorphism as a predictive factor of narrow-band UVB phototherapy response in patients with psoriasis. Photodermatol. Photoimmunol. Photomed. 2015, 31, 98–103. [Google Scholar] [CrossRef]
- Shi, H.J.; Zhou, H.; Ma, A.L.; Wang, L.; Gao, Q.; Zhang, N.; Song, H.B.; Bo, K.P.; Ma, W. Oxymatrine therapy inhibited epidermal cell proliferation and apoptosis in severe plaque psoriasis. Br. J. Dermatol. 2019, 181, 1028–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aragona, E.; Rania, L.; Postorino, E.I.; Interdonato, A.; Giuffrida, R.; Cannavo, S.P.; Puzzolo, D.; Aragona, P. Tear film and ocular surface assessment in psoriasis. Br. J. Ophthalmol. 2018, 102, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Zargari, O.; Leyli, E.K.; Azimi, S.Z. Nail Involvement in Patients with Psoriatic Arthritis in Northern Iran. Autoimmune Dis. 2018, 2018, 4608490. [Google Scholar] [CrossRef] [Green Version]
- Ganzetti, G.; Campanati, A.; Santarelli, A.; Pozzi, V.; Molinelli, E.; Minnetti, I.; Brisigotti, V.; Procaccini, M.; Emanuelli, M.; Offidani, A. Periodontal disease: An oral manifestation of psoriasis or an occasional finding? Drug Dev. Res. 2014, 75 (Suppl. S1), S46–S49. [Google Scholar] [CrossRef]
- Catapano, M.; Vergnano, M.; Romano, M.; Mahil, S.K.; Choon, S.E.; Burden, A.D.; Young, H.S.; Carr, I.M.; Lachmann, H.J.; Lombardi, G.; et al. IL-36 Promotes Systemic IFN-I Responses in Severe Forms of Psoriasis. J. Investig. Dermatol. 2020, 140, 816–826.e3. [Google Scholar] [CrossRef] [Green Version]
- Sobhan, M.R.; Farshchian, M.; Hoseinzadeh, A.; Ghasemibasir, H.R.; Solgi, G. Serum Levels of IL-10 and IL-22 Cytokines in Patients with Psoriasis. Iran. J. Immunol. 2016, 13, 317–323. [Google Scholar] [PubMed]
- Oliveira, A.N.; Simoes, M.M.; Simoes, R.; Malachias, M.V.B.; Rezende, B.A. Cardiovascular Risk in Psoriasis Patients: Clinical, Functional and Morphological Parameters. Arq. Bras. Cardiol. 2019, 113, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Schlaak, J.F.; Buslau, M.; Jochum, W.; Hermann, E.; Girndt, M.; Gallati, H.; Meyer zum Buschenfelde, K.H.; Fleischer, B. T cells involved in psoriasis vulgaris belong to the Th1 subset. J. Investig. Dermatol. 1994, 102, 145–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyman, O.; Hefti, H.P.; Conrad, C.; Nickoloff, B.J.; Suter, M.; Nestle, F.O. Spontaneous development of psoriasis in a new animal model shows an essential role for resident T cells and tumor necrosis factor-alpha. J. Exp. Med. 2004, 199, 731–736. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Austin, L.M.; Ozawa, M.; Kikuchi, T.; Walters, I.B.; Krueger, J.G. The majority of epidermal T cells in Psoriasis vulgaris lesions can produce type 1 cytokines, interferon-gamma, interleukin-2, and tumor necrosis factor-alpha, defining TC1 (cytotoxic T lymphocyte) and TH1 effector populations: A type 1 differentiation bias is also measured in circulating blood T cells in psoriatic patients. J. Investig. Dermatol. 1999, 113, 752–759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Infante-Duarte, C.; Horton, H.F.; Byrne, M.C.; Kamradt, T. Microbial lipopeptides induce the production of IL-17 in Th cells. J. Immunol. 2000, 165, 6107–6115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, A.; Naka, T.; Kishimoto, T. IL-6-dependent and -independent pathways in the development of interleukin 17-producing T helper cells. Proc. Natl. Acad. Sci. USA 2007, 104, 12099–12104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, I.C.; Mathisen, S.; Schulthess, J.; Danne, C.; Hegazy, A.N.; Powrie, F. CD11c(+) monocyte/macrophages promote chronic Helicobacter hepaticus-induced intestinal inflammation through the production of IL-23. Mucosal Immunol. 2016, 9, 352–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wohn, C.; Ober-Blobaum, J.L.; Haak, S.; Pantelyushin, S.; Cheong, C.; Zahner, S.P.; Onderwater, S.; Kant, M.; Weighardt, H.; Holzmann, B.; et al. Langerin(neg) conventional dendritic cells produce IL-23 to drive psoriatic plaque formation in mice. Proc. Natl. Acad. Sci. USA 2013, 110, 10723–10728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krueger, J.G.; Wharton, K.A., Jr.; Schlitt, T.; Suprun, M.; Torene, R.I.; Jiang, X.; Wang, C.Q.; Fuentes-Duculan, J.; Hartmann, N.; Peters, T.; et al. IL-17A inhibition by secukinumab induces early clinical, histopathologic, and molecular resolution of psoriasis. J. Allergy Clin. Immunol. 2019, 144, 750–763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, W.B.; Jerome, D.; Yeung, J. Diagnosis and management of psoriasis. Can. Fam. Physician 2017, 63, 278–285. [Google Scholar] [PubMed]
- Gisondi, P.; Bellinato, F.; Girolomoni, G. Topographic Differential Diagnosis of Chronic Plaque Psoriasis: Challenges and Tricks. J. Clin. Med. 2020, 9, 3594. [Google Scholar] [CrossRef]
- De Rosa, G.; Mignogna, C. The histopathology of psoriasis. Reumatismo 2007, 59 (Suppl. S1), 46–48. [Google Scholar] [CrossRef] [Green Version]
- Valenzuela, F.; Fernandez, J.; Jimenez, C.; Cavagnola, D.; Mancilla, J.F.; Astorga, J.; Hernandez, M.; Fernandez, A. Identification of IL-18 and Soluble Cell Adhesion Molecules in the Gingival Crevicular Fluid as Novel Biomarkers of Psoriasis. Life 2021, 11, 1000. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, P.R.; Lima, E.V.; Lima, M.M.; Rego, M.J.; Marques, C.D.; Pitta Ida, R.; Duarte, A.L.; Pitta, M.G. Clinical and cytokine profile evaluation in Northeast Brazilian psoriasis plaque-type patients. Eur. Cytokine Netw. 2016, 27, 1–5. [Google Scholar] [CrossRef]
- Ganzetti, G.; Campanati, A.; Santarelli, A.; Sartini, D.; Molinelli, E.; Brisigotti, V.; Di Ruscio, G.; Bobyr, I.; Emanuelli, M.; Offidani, A. Salivary interleukin-1beta: Oral inflammatory biomarker in patients with psoriasis. J. Int. Med. Res. 2016, 44, 10–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Califf, R.M. Biomarker definitions and their applications. Exp. Biol. Med. 2018, 243, 213–221. [Google Scholar] [CrossRef]
- Jimenez, C.; Carvajal, D.; Hernandez, M.; Valenzuela, F.; Astorga, J.; Fernandez, A. Levels of the interleukins 17A, 22, and 23 and the S100 protein family in the gingival crevicular fluid of psoriatic patients with or without periodontitis. An. Bras. Dermatol. 2021, 96, 163–170. [Google Scholar] [CrossRef]
- Chandrasekaran, A.R.; MacIsaac, M.; Vilcapoma, J.; Hansen, C.H.; Yang, D.; Wong, W.P.; Halvorsen, K. DNA Nanoswitch Barcodes for Multiplexed Biomarker Profiling. Nano Lett. 2021, 21, 469–475. [Google Scholar] [CrossRef] [PubMed]
- Papagerakis, P.; Zheng, L.; Kim, D.; Said, R.; Ehlert, A.A.; Chung, K.K.M.; Papagerakis, S. Saliva and Gingival Crevicular Fluid (GCF) Collection for Biomarker Screening. Methods Mol. Biol. 2019, 1922, 549–562. [Google Scholar] [CrossRef] [PubMed]
- Fatima, T.; Khurshid, Z.; Rehman, A.; Imran, E.; Srivastava, K.C.; Shrivastava, D. Gingival Crevicular Fluid (GCF): A Diagnostic Tool for the Detection of Periodontal Health and Diseases. Molecules 2021, 26, 1208. [Google Scholar] [CrossRef] [PubMed]
- Guentsch, A.; Kramesberger, M.; Sroka, A.; Pfister, W.; Potempa, J.; Eick, S. Comparison of gingival crevicular fluid sampling methods in patients with severe chronic periodontitis. J. Periodontol. 2011, 82, 1051–1060. [Google Scholar] [CrossRef] [Green Version]
- Goodson, J.M. Gingival crevice fluid flow. Periodontology 2000 2003, 31, 43–54. [Google Scholar] [CrossRef]
- Shiloah, J.; Hovious, L.A. The role of subgingival irrigations in the treatment of periodontitis. J. Periodontol. 1993, 64, 835–843. [Google Scholar] [CrossRef]
- Greenstein, G.; Berman, C.; Jaffin, R. Chlorhexidine. An adjunct to periodontal therapy. J. Periodontol. 1986, 57, 370–377. [Google Scholar] [CrossRef]
- Kirtiloglu, T.; Keskiner, I.; Sahin, M.; Kirtiloglu, B.; Aygul, S.; Sakallioglu, U.; Acikgoz, G. Assessment of the half-life of cationic periodontal pocket irrigation. BMC Oral Health 2020, 20, 10. [Google Scholar] [CrossRef]
- Sahrmann, P.; Sener, B.; Ronay, V.; Attin, T.; Schmidlin, P.R. Clearance of topically-applied PVP-iodine as a solution or gel in periodontal pockets in men. Acta Odontol. Scand. 2012, 70, 497–503. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, G.S.; Wilton, J.M.; Curtis, M.A. Contamination of human gingival crevicular fluid by plaque and saliva. Arch. Oral Biol. 1992, 37, 559–564. [Google Scholar] [CrossRef]
- Challacombe, S.J.; Russell, M.W.; Hawkes, J.E.; Bergmeier, L.A.; Lehner, T. Passage of immunoglobulins from plasma to the oral cavity in rhesus monkeys. Immunology 1978, 35, 923–931. [Google Scholar]
- Khurshid, Z.; Mali, M.; Naseem, M.; Najeeb, S.; Zafar, M.S. Human Gingival Crevicular Fluids (GCF) Proteomics: An Overview. Dent. J. 2017, 5, 12. [Google Scholar] [CrossRef] [PubMed]
- Wassall, R.R.; Preshaw, P.M. Clinical and technical considerations in the analysis of gingival crevicular fluid. Periodontology 2000 2016, 70, 65–79. [Google Scholar] [CrossRef]
- Bostanci, N.; Belibasakis, G.N. Gingival crevicular fluid and its immune mediators in the proteomic era. Periodontology 2000 2018, 76, 68–84. [Google Scholar] [CrossRef] [PubMed]
- Loe, H.; Holm-Pedersen, P. Absence and Presence of Fluid from Normal and Inflamed Gingivae. Periodontics 1965, 3, 171–177. [Google Scholar] [PubMed]
- Ghallab, N.A. Diagnostic potential and future directions of biomarkers in gingival crevicular fluid and saliva of periodontal diseases: Review of the current evidence. Arch. Oral Biol. 2018, 87, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Oswal, S.; Dwarakanath, C.D. Relevance of gingival crevice fluid components in assessment of periodontal disease—A critical analysis. J. Indian Soc. Periodontol. 2010, 14, 282–286. [Google Scholar] [CrossRef]
- Gupta, S.; Chhina, S.; Arora, S.A. A systematic review of biomarkers of gingival crevicular fluid: Their predictive role in diagnosis of periodontal disease status. J. Oral Biol. Craniofac. Res. 2018, 8, 98–104. [Google Scholar] [CrossRef]
- Arvikar, S.L.; Hasturk, H.; Strle, K.; Stephens, D.; Bolster, M.B.; Collier, D.S.; Kantarci, A.; Steere, A.C. Periodontal inflammation and distinct inflammatory profiles in saliva and gingival crevicular fluid compared with serum and joints in rheumatoid arthritis patients. J. Periodontol. 2021, 92, 1379–1391. [Google Scholar] [CrossRef]
- Prieto, D.; Gonzalez, C.; Weber, L.; Realini, O.; Pino-Lagos, K.; Bendek, M.J.; Retamal, I.; Beltran, V.; Riedemann, J.P.; Espinoza, F.; et al. Soluble neuropilin-1 in gingival crevicular fluid is associated with rheumatoid arthritis: An exploratory case-control study. J. Oral Biol. Craniofac. Res. 2021, 11, 303–307. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Y.; Wu, H.; Li, F.; Feng, X.; Xie, Y.; Xie, D.; Wang, W.; Lo, E.C.M.; Lu, H. Periodontal health related-inflammatory and metabolic profiles of patients with end-stage renal disease: Potential strategy for predictive, preventive, and personalized medicine. EPMA J. 2021, 12, 117–128. [Google Scholar] [CrossRef]
- Salvi, G.E.; Yalda, B.; Collins, J.G.; Jones, B.H.; Smith, F.W.; Arnold, R.R.; Offenbacher, S. Inflammatory mediator response as a potential risk marker for periodontal diseases in insulin-dependent diabetes mellitus patients. J. Periodontol. 1997, 68, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Sakai, A.; Ohshima, M.; Sugano, N.; Otsuka, K.; Ito, K. Profiling the cytokines in gingival crevicular fluid using a cytokine antibody array. J. Periodontol. 2006, 77, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, F.; Fernandez, J.; Aroca, M.; Jimenez, C.; Albers, D.; Hernandez, M.; Fernandez, A. Gingival Crevicular Fluid Zinc- and Aspartyl-Binding Protease Profile of Individuals with Moderate/Severe Atopic Dermatitis. Biomolecules 2020, 10, 1600. [Google Scholar] [CrossRef] [PubMed]
- Mayer, Y.; Elimelech, R.; Balbir-Gurman, A.; Braun-Moscovici, Y.; Machtei, E.E. Periodontal condition of patients with autoimmune diseases and the effect of anti-tumor necrosis factor-alpha therapy. J. Periodontol. 2013, 84, 136–142. [Google Scholar] [CrossRef]
- Forouzandeh, M.; Besen, J.; Keane, R.W.; de Rivero Vaccari, J.P. The Inflammasome Signaling Proteins ASC and IL-18 as Biomarkers of Psoriasis. Front. Pharmacol. 2020, 11, 1238. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, E.; Radaic, A.; Yu, X.; Yang, S.; Yu, C.; Xiao, S.; Ye, C. Diagnostic potential and future directions of matrix metalloproteinases as biomarkers in gingival crevicular fluid of oral and systemic diseases. Int. J. Biol. Macromol. 2021, 188, 180–196. [Google Scholar] [CrossRef]
- Kelly, M.; Vardhanabhuti, B.; Luck, P.; Drake, M.A.; Osborne, J.; Foegeding, E.A. Role of protein concentration and protein-saliva interactions in the astringency of whey proteins at low pH. J. Dairy Sci. 2010, 93, 1900–1909. [Google Scholar] [CrossRef] [Green Version]
- Golatowski, C.; Salazar, M.G.; Dhople, V.M.; Hammer, E.; Kocher, T.; Jehmlich, N.; Volker, U. Comparative evaluation of saliva collection methods for proteome analysis. Clin. Chim. Acta 2013, 419, 42–46. [Google Scholar] [CrossRef]
- Kluknavska, J.; Krajcikova, K.; Bolerazska, B.; Maslankova, J.; Ohlasova, J.; Timkova, S.; Drotarova, Z.; Vaskova, J. Possible prognostic biomarkers of periodontitis in saliva. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 3154–3161. [Google Scholar] [CrossRef]
- Klimiuk, A.; Maciejczyk, M.; Choromanska, M.; Fejfer, K.; Waszkiewicz, N.; Zalewska, A. Salivary Redox Biomarkers in Different Stages of Dementia Severity. J. Clin. Med. 2019, 8, 840. [Google Scholar] [CrossRef] [Green Version]
- Brandtzaeg, P. Do salivary antibodies reliably reflect both mucosal and systemic immunity? Ann. N. Y. Acad. Sci. 2007, 1098, 288–311. [Google Scholar] [CrossRef]
- Choromanska, M.; Klimiuk, A.; Kostecka-Sochon, P.; Wilczynska, K.; Kwiatkowski, M.; Okuniewska, N.; Waszkiewicz, N.; Zalewska, A.; Maciejczyk, M. Antioxidant Defence, Oxidative Stress and Oxidative Damage in Saliva, Plasma and Erythrocytes of Dementia Patients. Can Salivary AGE be a Marker of Dementia? Int. J. Mol. Sci. 2017, 18, 2205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshizawa, J.M.; Schafer, C.A.; Schafer, J.J.; Farrell, J.J.; Paster, B.J.; Wong, D.T. Salivary biomarkers: Toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013, 26, 781–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skutnik-Radziszewska, A.; Maciejczyk, M.; Flisiak, I.; Kolodziej, J.K.U.; Kotowska-Rodziewicz, A.; Klimiuk, A.; Zalewska, A. Enhanced Inflammation and Nitrosative Stress in the Saliva and Plasma of Patients with Plaque Psoriasis. J. Clin. Med. 2020, 9, 745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Yang, Y.; Yan, X.; Zhang, K. Abnormalities in cytokine secretion from mesenchymal stem cells in psoriatic skin lesions. Eur. J. Dermatol. 2013, 23, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Mastrolonardo, M.; Alicino, D.; Zefferino, R.; Pasquini, P.; Picardi, A. Effect of psychological stress on salivary interleukin-1beta in psoriasis. Arch. Med. Res. 2007, 38, 206–211. [Google Scholar] [CrossRef] [PubMed]
- Bottoni, U.; Tiriolo, R.; Pullano, S.A.; Dastoli, S.; Amoruso, G.F.; Nistico, S.P.; Fiorillo, A.S. Infrared Saliva Analysis of Psoriatic and Diabetic Patients: Similarities in Protein Components. IEEE Trans. Biomed. Eng. 2016, 63, 379–384. [Google Scholar] [CrossRef] [PubMed]
- del Castillo Carrillo, L.F.; Schwarz, W.; Hornstein, O.P. Immunoglobulins in serum, whole saliva, and parotid saliva of male healthy and psoriatic individuals. Arch. Dermatol. Res. 1981, 271, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Koh, D.; Yang, Y.; Khoo, L.; Nyunt, S.Z.; Ng, V.; Goh, C.L. Salivary immunoglobulin A and lysozyme in patients with psoriasis. Ann. Acad. Med. Singap. 2004, 33, 307–310. [Google Scholar]
- Syrjanen, S.M. Chemical analysis of parotid saliva and lacrimal fluid in psoriatics. Arch. Dermatol. Res. 1983, 275, 152–155. [Google Scholar] [CrossRef] [PubMed]
- Belstrom, D.; Eiberg, J.M.; Enevold, C.; Grande, M.A.; Jensen, C.A.J.; Skov, L.; Hansen, P.R. Salivary microbiota and inflammation-related proteins in patients with psoriasis. Oral Dis. 2020, 26, 677–687. [Google Scholar] [CrossRef] [PubMed]
- Soudan, R.A.; Daoud, S.A.; Mashlah, A.M. Study of some salivary changes in cutaneous psoriatic patients. Saudi Med. J. 2011, 32, 386–389. [Google Scholar] [PubMed]
Author, Year | Study Design | Population | Comparison (Control) | Technique | Outcomes | p |
---|---|---|---|---|---|---|
Mayer et al., 2013 [54] | Cross-sectional | Systemically healthy subjects (H), (n = 12). | ELISA | Most patients presented moderate/advance chronic periodontitis (79%). | ||
Rheumatoid arthritis patients (RA), (n = 12) | Periodontal probing depths in the RA, PA and SSc groups were significantly worse than those of the H and RA+ groups. | =0.0002 | ||||
Rheumatoid arthritis patients undergoing anti-TNF-α therapy (RA+), (n = 10). | RA+ and H patients presented similar GCF levels of TNF-α (0.97 ± 0.52 and 1.07 ± 0.33 ng/site, respectively). | =0.0001 | ||||
Psoriatic arthritis patients (PA), (n = 12). | RA+ patients presented significantly lower GCF levels of TNF-α compared to RA, PA and SSc groups (0.97 ± 0.52, 1.07 ± 0.33, 1.42 ± 0.46, 1.97 ± 0.61, and 1.65 ± 0.57 ng/site, respectively) | =0.0001 | ||||
Systemic sclerosis patients (SSc), (n = 12). | No significant intergroup differences were reported between the GCF levels of TNF-α in RA, PA and SSc patients. | =0.0001 | ||||
Weak positive correlations were found between the GCF levels of TNF-α and the probing depth and gingival index in studied patients. | ||||||
Valenzuela et al., 2021 [25] | Cross-sectional | Moderate to severe Psoriasis subjects, (n = 42). | Systemically healthy subjects, (n = 39). | Multiplex bead-based immunoassay. | IL-18 GCF levels were significantly higher in psoriatic patients versus controls (mean, SD: 26.51 ± 10.46 pg/mL and 18.65 ± 5.17 pg/mL, respectively). | <0.05 |
sE-selectin GCF levels were significantly lower in psoriasis patients versus healthy subjects (mean, SD: 31,490.35 ± 97,355.66 pg/mL and 201,873.5 ± 161,580.8 pg/mL, respectively). | <0.05 | |||||
No significant intergroup differences in the GCF levels of sICAM-1 were noticed. | >0.05 | |||||
Psoriasis influenced the levels of IL-18 and sE-selectin, whereas periodontitis influenced the levels of sICAM-1. | ||||||
Diagnostic precision of IL-18 and sE-selectin for psoriasis based on ROC area were 0.77 and 0.68, respectively. | ||||||
Jimenez et al., 2021 [29] | Cross-sectional | Psoriatic subjects without periodontitis or mild periodontitis, (n = 11). | Systemically healthy subjects without periodontitis or mild periodontitis, (n = 21). | Multiplex bead-based immunoassay for IL-17A, IL-22, IL-23, S100A8 and S100A9 | S100A8 GCF levels were overexpressed in psoriatic patients versus systemically healthy controls, regardless of periodontal status. | <0.05 |
GCF levels of S100A8 correlated positively with psoriasis severity. | ||||||
Psoriatic subjects with moderate or severe periodontitis, (n = 32). | Systemically healthy subjects with moderate or severe periodontitis, (n = 18). | ELISA for S100A7 | IL-17A, IL-22. IL-23 and S100A7 showed no significant intergroup differences. | >0.05 | ||
S100A9 exceeded the detection limits in all groups |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, C.; Bordagaray, M.J.; Villarroel, J.L.; Flores, T.; Benadof, D.; Fernández, A.; Valenzuela, F. Biomarkers in Oral Fluids as Diagnostic Tool for Psoriasis. Life 2022, 12, 501. https://doi.org/10.3390/life12040501
Jiménez C, Bordagaray MJ, Villarroel JL, Flores T, Benadof D, Fernández A, Valenzuela F. Biomarkers in Oral Fluids as Diagnostic Tool for Psoriasis. Life. 2022; 12(4):501. https://doi.org/10.3390/life12040501
Chicago/Turabian StyleJiménez, Constanza, María José Bordagaray, José Luis Villarroel, Tania Flores, Dafna Benadof, Alejandra Fernández, and Fernando Valenzuela. 2022. "Biomarkers in Oral Fluids as Diagnostic Tool for Psoriasis" Life 12, no. 4: 501. https://doi.org/10.3390/life12040501
APA StyleJiménez, C., Bordagaray, M. J., Villarroel, J. L., Flores, T., Benadof, D., Fernández, A., & Valenzuela, F. (2022). Biomarkers in Oral Fluids as Diagnostic Tool for Psoriasis. Life, 12(4), 501. https://doi.org/10.3390/life12040501