Computational Screening of the Natural Product Osthole and Its Derivates for Anti-Inflammatory Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Designing of OS Derivatives
2.2. Structures of Anti-Inflammatory Mediators
2.3. In Silico Docking of Co-Crystallized Proteins
2.4. In Silico Docking of 1SVC (NF-κB)
2.5. Analysis of Docking Scores
3. Results
3.1. NF-κB Binding Site
3.2. Role of Water in Docking
3.3. Interactions within Binding Sites
3.4. Identification of Hits
3.5. Qikprop
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Limitations of the Study
References
- Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; International Natural Product Sciences Taskforce; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021, 20, 200–216. [Google Scholar] [CrossRef] [PubMed]
- Treml, J.; Gazdová, M.; Šmejkal, K.; Šudomová, M.; Kubatka, P.; Hassan, S.T.S. Natural Products-Derived Chemicals: Breaking Barriers to Novel Anti-HSV Drug Development. Viruses 2020, 12, 154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beutler, J.A. Natural Products as a Foundation for Drug Discovery. Curr. Protoc. Pharmacol. 2009, 46, 9.11.1–9.11.21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.Y. Computational screening and design of traditional Chinese medicine (TCM) to block phosphodiesterase-5. J. Mol. Graph. Model. 2009, 28, 261–269. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Shang, X.; Li, H.; Li, A.; Tang, C.; Zhang, B.; Zhang, Z.; Wang, R.; Ma, Y.; Du, S.; et al. Antifungal Activity and Action Mechanism Study of Coumarins from Cnidium monnieri Fruit and Structurally Related Compounds. Chem. Biodivers. 2021, 18, e2100633. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-M.; Jia, M.; Li, H.-Q.; Zhang, N.-D.; Wen, X.; Rahman, K.; Zhang, Q.-Y.; Qin, L.-P. Cnidium monnieri: A Review of Traditional Uses, Phytochemical and Ethnopharmacological Properties. Am. J. Chin. Med. 2015, 43, 835–877. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Qiao, X.; Zhu, J.; Jin, X.; Wei, Y. Clinical Efficacy of Tacrolimus Ointment +3% Boric Acid Lotion Joint Chinese Angelica Decoction in Chronic Perianal Eczema. Comput. Math. Methods Med. 2021, 2021, 1016108. [Google Scholar] [CrossRef]
- Wedge, D.E.; Klun, J.A.; Tabanca, N.; Demirci, B.; Ozek, T.; Baser, K.H.C.; Liu, Z.; Zhang, S.; Cantrell, C.L.; Zhang, J. Bioactivity-guided fractionation and GC/MS fingerprinting of Angelica sinensis and Angelica archangelica root components for antifungal and mosquito deterrent activity. J. Agric. Food Chem. 2009, 57, 464–470. [Google Scholar] [CrossRef]
- Sarker, S.D.; Nahar, L. Natural medicine: The genus Angelica. Curr. Med. Chem. 2004, 11, 1479–1500. [Google Scholar] [CrossRef]
- Basnet, P.; Yasuda, I.; Kumagai, N.; Tohda, C.; Nojima, H.; Kuraishi, Y.; Komatsu, K. Inhibition of itch-scratch response by fruits of Cnidium monnieri in mice. Biol. Pharm. Bull. 2001, 24, 1012–1015. [Google Scholar] [CrossRef] [Green Version]
- Jurisic, A.; Jurisic, Z.; Lefkou, E.; Girardi, G. Pravastatin plus L-arginine prevents adverse pregnancy outcomes in women with uteroplacental vascular dysfunction. Vascul. Pharmacol. 2021, 137, 106824. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.G.; Kim, G.T.; Lee, S.H.; Kim, S.Y.; Kim, Y.M. Apoptotic effects of extract from Cnidium monnieri (L.) Cusson by adenosine monosphosphate-activated protein kinase-independent pathway in HCT116 colon cancer cells. Mol. Med. Rep. 2016, 13, 4681–4688. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.Y.; Wu, W.L.; Chen, Y.X.; Liu, H. The efficacy and potential mechanism of cnidium lactone to inhibit osteoclast differentiation. Artif. Cells Nanomed. Biotechnol. 2019, 47, 3087–3093. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.W.; Kim, Y.T. Anti-osteoporotic effects of Angelica sinensis (Oliv.) Diels extract on ovariectomized rats and its oral toxicity in rats. Nutrients 2014, 6, 4362–4372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Q.; Qin, L.; He, W.; Van Puyvelde, L.; Maes, D.; Adams, A.; Zheng, H.; De Kimpe, N. Coumarins from Cnidium monnieri and their antiosteoporotic activity. Planta Med. 2007, 73, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Liao, J.M.; Zhu, Q.A.; Lu, H.J.; Li, Q.N.; Wu, T.; Huang, L.F. Effects of total coumarins of Cnidium monnieri on bone density and biomechanics of glucocorticoids-induced osteoporosis in rats. Zhongguo Yao Li Xue Bao 1997, 18, 519–521. [Google Scholar]
- Aćimović, M.G.; Pavlović, S.; Varga, A.O.; Filipović, V.M.; Cvetković, M.T.; Stanković, J.M.; Čabarkapa, I.S. Chemical Composition and Antibacterial Activity of Angelica archangelica Root Essential Oil. Nat. Prod. Commun. 2017, 12, 205–206. [Google Scholar] [CrossRef] [Green Version]
- Fraternale, D.; Flamini, G.; Ricci, D. Essential oil composition and antimicrobial activity of Angelica archangelica L. (Apiaceae) roots. J. Med. Food 2014, 17, 1043–1047. [Google Scholar] [CrossRef]
- Bae, H.; Lee, J.Y.; Song, J.; Song, G.; Lim, W. Osthole interacts with an ER-mitochondria axis and facilitates tumor suppression in ovarian cancer. J. Cell. Physiol. 2021, 236, 1025–1042. [Google Scholar] [CrossRef]
- Zafar, S.; Sarfraz, I.; Rasul, A.; Shah, M.A.; Hussain, G.; Zahoor, M.K.; Shafiq, N.; Riaz, A.; Selamoglu, Z.; Sarker, S.D. Osthole: A Multifunctional Natural Compound with Potential Anticancer, Antioxidant and Anti-inflammatory Activities. Mini Rev. Med. Chem. 2021, 21, 2747–2763. [Google Scholar] [CrossRef]
- Yang, Q.; Kong, L.; Huang, W.; Mohammadtursun, N.; Li, X.; Wang, G.; Wang, L. Osthole attenuates ovalbumin-induced lung inflammation via the inhibition of IL-33/ST2 signaling in asthmatic mice. Int. J. Mol. Med. 2020, 46, 1389–1398. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Yao, Y.; Xia, Y.; Liang, X.; Ni, Y.; Yang, J. Osthole alleviates inflammation by down-regulating NF-κB signaling pathway in traumatic brain injury. Immunopharmacol. Immunotoxicol. 2019, 41, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Dong, Z. Osthole protects against inflammation in a rat model of chronic kidney failure via suppression of nuclear factor-κB, transforming growth factor-β1 and activation of phosphoinositide 3-kinase/protein kinase B/nuclear factor (erythroid-derived 2)-like 2 signaling. Mol. Med. Rep. 2017, 16, 4915–4921. [Google Scholar] [PubMed] [Green Version]
- Singh, L.; Kaur, A.; Garg, S.; Bhatti, R. Skimmetin/osthole mitigates pain-depression dyad via inhibiting inflammatory and oxidative stress-mediated neurotransmitter dysregulation. Metab. Brain Dis. 2021, 36, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.-Y.; Tao, S.-Y.; Lu, C.; Li, J.-J.; Li, X.-M.; Jiang, Q.; Yan, B. Osthole: A Traditional Chinese Medicine for Ocular Anti-Angiogenic Therapy. Ophthalmic Res. 2020, 63, 483–490. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Y.; Wei, Z.; He, X.; Shi, M.; Kou, J.; Zhou, E.; Liu, W.; Yang, Z.; Guo, C. Anti-asthmatic activity of osthole in an ovalbumin-induced asthma murine model. Respir. Physiol. Neurobiol. 2017, 239, 64–69. [Google Scholar] [CrossRef] [Green Version]
- Chiang, C.Y.; Lee, C.C.; Fan, C.K.; Huang, H.M.; Chiang, B.L.; Lee, Y.L. Osthole treatment ameliorates Th2-mediated allergic asthma and exerts immunomodulatory effects on dendritic cell maturation and function. Cell Mol. Immunol. 2017, 14, 935–947. [Google Scholar] [CrossRef] [Green Version]
- Callahan, B.N.; Kammala, A.K.; Syed, M.; Yang, C.; Occhiuto, C.J.; Nellutla, R.; Chumanevich, A.P.; Oskeritzian, C.A.; Das, R.; Subramanian, H. Osthole, a Natural Plant Derivative Inhibits MRGPRX2 Induced Mast Cell Responses. Front. Immunol. 2020, 11, 703. [Google Scholar] [CrossRef]
- Ji, K.-Y.; Jung, D.H.; Pyun, B.-J.; Kim, Y.J.; Lee, J.Y.; Choi, S.; Jung, M.-A.; Song, K.H.; Kim, T. Angelica gigas extract ameliorates allergic rhinitis in an ovalbumin-induced mouse model by inhibiting Th2 cell activation. Phytomedicine 2021, 93, 153789. [Google Scholar] [CrossRef]
- Singh, G.; Bhatti, R.; Mannan, R.; Singh, D.; Kesavan, A.; Singh, P. Osthole ameliorates neurogenic and inflammatory hyperalgesia by modulation of iNOS, COX-2, and inflammatory cytokines in mice. Inflammopharmacology 2019, 27, 949–960. [Google Scholar] [CrossRef]
- Jarząb, A.; Grabarska, A.; Skalicka-Woźniak, K.; Stepulak, A. Pharmacological features of osthole. Postepy Hig. Med. Dosw. Online 2017, 71, 411–421. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Kobayashi, T.; Yoshida, S. Synthetic derivatives of osthole for the prevention of hepatitis. Med. Chem. 2007, 3, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.B.; Zhang, X.X.; Cai, Y.; Sun, W.; Li, H. Osthole prevents tamoxifen-induced liver injury in mice. Acta Pharmacol. Sin. 2019, 40, 608–619. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Sun, W.; Zhang, X.X.; Lin, Y.D.; Chen, H.; Li, H. Osthole prevents acetaminophen-induced liver injury in mice. Acta Pharmacol. Sin. 2018, 39, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, G.; Yao, F.; Liang, G.; Wang, F.; Xu, H.; Wu, Y.; Yu, X.; Liu, H. Osthole promotes anti-tumor immune responses in tumor-bearing mice with hepatocellular carcinoma. Immunopharmacol. Immunotoxicol. 2015, 37, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Uddin, M.S.; Kabir, M.T.; Mamun, A.A.; Sarwar, M.S.; Nasrin, F.; Emran, T.B.; Alanazi, I.S.; Rauf, A.; Albadrani, G.M.; Sayed, A.A.; et al. Natural Small Molecules Targeting NF-κB Signaling in Glioblastoma. Front. Pharmacol. 2021, 12, 2174. [Google Scholar] [CrossRef]
- Bennett, J.; Capece, D.; Begalli, F.; Verzella, D.; D’Andrea, D.; Tornatore, L.; Franzoso, G. NF-κB in the crosshairs: Rethinking an old riddle. Int. J. Biochem. Cell Biol. 2018, 95, 108–112. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, X.; Zhu, G.; Liu, H.; Chen, J.; Wang, Y.; He, X. Quercetin inhibits TNF-α induced HUVECs apoptosis and inflammation via downregulating NF-kB and AP-1 signaling pathway in vitro. Medicine 2020, 99, e22241. [Google Scholar] [CrossRef]
- Kalliolias, G.D.; Ivashkiv, L.B. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat. Rev. Rheumatol. 2016, 12, 49–62. [Google Scholar] [CrossRef]
- Guo, Y.J.; Pan, W.W.; Liu, S.B.; Shen, Z.F.; Xu, Y.; Hu, L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020, 19, 1997–2007. [Google Scholar] [CrossRef] [Green Version]
- Yeung, Y.T.; Aziz, F.; Guerrero-Castilla, A.; Arguelles, S. Signaling Pathways in Inflammation and Anti-inflammatory Therapies. Curr. Pharm. Des. 2018, 24, 1449–1484. [Google Scholar] [CrossRef] [PubMed]
- Menon, R.; Papaconstantinou, J. p38 Mitogen activated protein kinase (MAPK): A new therapeutic target for reducing the risk of adverse pregnancy outcomes. Expert Opin. Ther. Targets 2016, 20, 1397–1412. [Google Scholar] [CrossRef] [PubMed]
- Chern, C.-M.; Zhou, H.; Wang, Y.-H.; Chang, C.-L.; Chiou, W.-F.; Chang, W.-T.; Yao, C.-H.; Liou, K.-T.; Shen, Y.-C. Osthole ameliorates cartilage degradation by downregulation of NF-κB and HIF-2α pathways in an osteoarthritis murine model. Eur. J. Pharmacol. 2020, 867, 172799. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Qian, J.; Ju, X.; Bao, X.; Li, L.; Zheng, S.; Chen, X.; Xiao, Z.; Chen, X.; Zhu, W.; et al. Osthole Protects against Acute Lung Injury by Suppressing NF-κB-dependent inflammation. Mediat. Inflamm. 2018, 2018, 4934592. [Google Scholar] [CrossRef]
- Yu, C.; Li, P.; Qi, D.; Wang, L.; Qu, H.-L.; Zhang, Y.-J.; Wang, X.-K.; Fan, H.-Y. Osthole protects sepsis-induced acute kidney injury via down-regulating NF-κB signal pathway. Oncotarget 2017, 8, 4796–4813. [Google Scholar] [CrossRef] [Green Version]
- Sheller-Miller, S.; Radnaa, E.; Yoo, J.K.; Kim, E.; Choi, K.; Kim, Y.; Kim, E.; Richardson, L.; Choi, C.; Menon, R. Exosomal delivery of NF-κB inhibitor delays LPS-induced preterm birth and modulates fetal immune cell profile in mouse models. Sci. Adv. 2021, 7, eabd3865. [Google Scholar] [CrossRef]
- Mendelson, C.R.; Montalbano, A.P.; Gao, L. Fetal-to-maternal signaling in the timing of birth. J. Steroid Biochem. Mol. Biol. 2017, 170, 19–27. [Google Scholar] [CrossRef]
- Sakai, J.; Cammarota, E.; Wright, J.A.; Cicuta, P.; Gottschalk, R.A.; Li, N.; Fraser, I.; Bryant, C.E. Lipopolysaccharide-induced NF-κB nuclear translocation is primarily dependent on MyD88, but TNFα expression requires TRIF and MyD88. Sci. Rep. 2017, 7, 1428. [Google Scholar] [CrossRef]
- Ireland, D.J.; Nathan, E.A.; Li, S.; Charles, A.K.; Stinson, L.; Kemp, M.W.; Newnham, J.; Keelan, J. Preclinical evaluation of drugs to block inflammation-driven preterm birth. Innate Immun. 2017, 23, 20–33. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, S.; Vargas, J.; Hoffmann, A. Signaling via the NFκB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 2016, 8, 227–241. [Google Scholar] [CrossRef] [Green Version]
- Menon, R.; Fortunato, S.J. Infection and the role of inflammation in preterm premature rupture of the membranes. Best Pract. Res. Clin. Obstet. Gynaecol. 2007, 21, 467–478. [Google Scholar] [CrossRef] [PubMed]
- Parry, S.; Strauss, J.F. Premature rupture of the fetal membranes. N. Engl. J. Med. 1998, 338, 663–670. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Meng, F.; Xiong, Z.; Liu, H.; Li, F. HPLC determination and pharmacokinetics of osthole in rat plasma after oral administration of Fructus Cnidii extract. J. Chromatogr. Sci. 2005, 43, 426–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsai, T.H.; Tsai, T.R.; Chen, C.C.; Chen, C.F. Pharmacokinetics of osthole in rat plasma using high-performance liquid chromatography. J. Pharm. Biomed. Anal. 1996, 14, 749–753. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, A.W.H.; Lenon, G.B. Phytochemistry, Ethnopharmacology, Pharmacokinetics and Toxicology of Cnidium monnieri (L.) Cusson. Int. J. Mol. Sci. 2020, 21, 1006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, C.W.; Rey, F.A.; Sodeoka, M.; Verdine, G.L.; Harrison, S.C. Structure of the NF-kappa B p50 homodimer bound to DNA. Nature 1995, 373, 311–317. [Google Scholar] [CrossRef]
- Umezawa, K.; Chaicharoenpong, C. Molecular design and biological activities of NF-kappaB inhibitors. Mol. Cells 2002, 14, 163–167. [Google Scholar]
- He, M.M.; Smith, A.S.; Oslob, J.D.; Flanagan, W.M.; Braisted, A.C.; Whitty, A.; Cancilla, M.T.; Wang, J.; Lugovskoy, A.A.; Yoburn, J.C.; et al. Small-molecule inhibition of TNF-alpha. Science 2005, 310, 1022–1025. [Google Scholar] [CrossRef]
- Chaikuad, A.; Tacconi, E.M.; Zimmer, J.; Liang, Y.; Gray, N.S.; Tarsounas, M.; Knapp, S. A unique inhibitor binding site in ERK1/2 is associated with slow binding kinetics. Nat. Chem. Biol. 2014, 10, 853–860. [Google Scholar] [CrossRef] [Green Version]
- Kinoshita, T.; Yoshida, I.; Nakae, S.; Okita, K.; Gouda, M.; Matsubara, M.; Yokota, K.; Ishiguro, H.; Tada, T. Crystal structure of human mono-phosphorylated ERK1 at Tyr204. Biochem. Biophys. Res. Commun. 2008, 377, 1123–1127. [Google Scholar] [CrossRef]
- Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; et al. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem. 2004, 47, 1739–1749. [Google Scholar] [CrossRef] [PubMed]
- Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem. 2006, 49, 6177–6196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LigPrep; Schrödinger, LLC: New York, NY, USA, 2021.
- Gilmore, T.D.; Herscovitch, M. Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 2006, 25, 6887–6899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamamoto, M.; Horie, R.; Takeiri, M.; Kozawa, I.; Umezawa, K. Inactivation of NF-kappaB components by covalent binding of (-)-dehydroxymethylepoxyquinomicin to specific cysteine residues. J. Med. Chem. 2008, 51, 5780–5788. [Google Scholar] [CrossRef] [PubMed]
1SVC Site 1 | Modified 1SVC | 4QTB | 2ZOQ | 2AZ5 | Mean | |
---|---|---|---|---|---|---|
control | −4.561 | −6.46 | −3.151 | −10.975 | −6.166 | −6.286 |
OS | −2.837 | −4.294 | −4.627 | −6.49 | −5.057 | −4.52625 |
1 | −3.381 | −5.102 | −5.3 | −7.375 | −5.136 | −5.2435 |
2 | −1.84 | 0.224 | −1.349 | −1.542 | −2.426 | −1.33475 |
3 | −2.022 | −3.229 | −3.733 | −6.686 | −4.905 | −4.4435 |
4 | −2.248 | −2.809 | −5.465 | −6.542 | −5.7 | −4.85575 |
5 | −0.713 | −2.454 | −4.982 | −6.283 | −4.791 | −4.37025 |
6 | −1.224 | −3.204 | −4.899 | −3.614 | −4.753 | −3.87825 |
7 | −2.34 | −4.861 | −5.131 | −6.065 | −4.906 | −4.6835 |
8 | −2.186 | −4.219 | −4.642 | −5.492 | −5.491 | −4.46425 |
9 | −2.161 | −2.982 | −6.423 | −4.796 | −4.752 | −4.60575 |
10 | −2.539 | −3.026 | −4.264 | −2.592 | −5.942 | −3.844 |
11 | −3.154 | −4.451 | −3.228 | −6.624 | −5.506 | −4.59925 |
12 | −2.629 | −3.893 | −3.736 | −7.32 | −5.98 | −4.7125 |
13 | −3.102 | −4.737 | −4.357 | −7.435 | −5.599 | −5.08225 |
14 | −2.954 | −4.292 | −4.326 | −6.493 | 4.61 | −4.622 |
1SVC (NF-κB C62A) | Modified 1SVC (NF-κB) | 4QTB (ERK1) | 2ZOQ (ERK1) | 2AZ5 (TNF-α) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ligand 1 | Ligand 1 | Ligand 9 | Ligand 13 | Ligand 12 | ||||||||||
asn | 139 | H bond | His | 144 | H bond | met | 125 | H bond | met | 125 | aromatic H bond | tyr | 151 | aromatic H bond |
gly | 68 | aromatic H bond | val | 61 | H bond | asp | 123 | aromatic H bond | tyr | 59 | aromatic H bond | |||
lys | 149 | H bond | tyr | 53 | H bond | |||||||||
lys | 71 | H bond | ||||||||||||
Ligand 11 | Ligand 7 | Ligand 4 | Ligand 1 | Ligand 10 | ||||||||||
lys | 80 | pi-cation | val | 61 | H bond | gln | 122 | aromatic H bond | met | 125 | aromatic H bond | tyr | 59 | pi pi stacking |
lys | 149 | H bond | asp | 123 | aromatic H bond | gly | 121 | aromatic H bond | ||||||
met | 125 | H bond | ser | 60 | aromatic H bond | |||||||||
Ligand 13 | Ligand 13 | Ligand 1 | Ligand 12 | Ligand 4 | ||||||||||
lys | 80 | pi-cation | val | 61 | H bond | gln | 122 | H bond | met | 125 | aromatic H bond | leu | 120 | aromatic H bond |
tyr | 82 | aromatic H bond | lys | 149 | H bond | asp | 123 | aromatic H bond | asp | 184 | H bond | |||
glu | 152 | H bond | met | 125 | aromatic H bond | |||||||||
lys | 131 | H bond |
Compound | Molecular Weight | H-Bond Donors | H-Bond Acceptors | logPo/w | Aqueous Solubility | CIQPlogS | logHERG | logBBB | Oral Absorption | Rule of 5 Deviations | Rule of 3 Deviations | logKhsa | PSA | Polrz | loPw | logKp | Ionization Potential | Electron Affinity |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 230.263 | 1 | 3.25 | 2.437 | −3.129 | −3.195 | −4.187 | −0.425 | 96.438 | 0 | 0 | 0.037 | 60.006 | 25.356 | 6.754 | −2.349 | 9.251 | 0.89 |
2 | 230.263 | 1 | 3.25 | 2.457 | −3.601 | −3.195 | −4.696 | −0.632 | 93.825 | 0 | 0 | 0.088 | 59.703 | 26.256 | 6.907 | −2.656 | 9.086 | 0.815 |
3 | 306.36 | 0 | 3 | 4.646 | −5.154 | −5.146 | −5.793 | −0.18 | 100 | 0 | 0 | 0.656 | 43.988 | 36.172 | 5.99 | −0.867 | 9.261 | 1.045 |
4 | 325.366 | 0 | 5.75 | 3.089 | −4.222 | −4.215 | −5.377 | −0.871 | 96.99 | 0 | 0 | 0.049 | 79.072 | 36.465 | 7.974 | −2.434 | 9.174 | 0.846 |
5 | 387.437 | 0 | 5.25 | 4.789 | −6.306 | −6.124 | −6.85 | −0.888 | 100 | 0 | 1 | 0.706 | 77.31 | 45.538 | 8.986 | −1.606 | 9.154 | 1.1 |
6 | 388.425 | 0 | 6.75 | 3.574 | −5.046 | −5.45 | −6.323 | −1.184 | 95.484 | 0 | 1 | 0.221 | 89.717 | 43.848 | 10.248 | −2.418 | 9.281 | 1.367 |
7 | 269.299 | 0 | 4.75 | 2.239 | −3.952 | −4.188 | −4.218 | −0.73 | 91.218 | 0 | 0 | −0.18 | 70.8 | 28.925 | 6.456 | −2.895 | 9.458 | 1.49 |
8 | 312.288 | 0 | 3.25 | 4.052 | −4.836 | −4.797 | −4.377 | 0.159 | 100 | 0 | 0 | 0.369 | 45.14 | 30.794 | 4.683 | −1.855 | 9.439 | 1.417 |
9 | 321.375 | 0 | 4.75 | 3.636 | −4.334 | −4.654 | −5.148 | −0.425 | 100 | 0 | 0 | 0.261 | 57.81 | 36.084 | 7.133 | −1.77 | 9.286 | 1.201 |
10 | 320.387 | 0 | 3.25 | 4.694 | −5.315 | −5.328 | −5.44 | −0.171 | 100 | 0 | 0 | 0.702 | 44.835 | 36.982 | 5.736 | −1.12 | 9.138 | 0.959 |
11 | 274.316 | 0 | 4 | 3.006 | −3.391 | −3.642 | −4.207 | −0.282 | 100 | 0 | 0 | 0.042 | 53.076 | 29.219 | 5.375 | −1.955 | 9.104 | 1.046 |
12 | 314.38 | 1 | 4 | 3.656 | −4.864 | −4.65 | −4.595 | −0.629 | 100 | 0 | 0 | 0.541 | 65.288 | 34.705 | 7.326 | −2.547 | 9.04 | 0.804 |
13 | 314.38 | 1 | 4 | 3.657 | −4.895 | −4.65 | −4.638 | −0.636 | 100 | 0 | 0 | 0.541 | 65.338 | 34.725 | 7.339 | −2.546 | 9.038 | 0.803 |
14 | 274.316 | 0 | 4 | 3.325 | −4.464 | −3.642 | −5.104 | −0.381 | 100 | 0 | 0 | 0.19 | 53.034 | 31.23 | 5.502 | −1.991 | 9.076 | 0.744 |
OS | 244.29 | 0 | 3.25 | 3.121 | −3.517 | −3.353 | −4.417 | −0.085 | 100 | 0 | 0 | 0.111 | 45.124 | 27.869 | 4.983 | −1.616 | 9.198 | 0.863 |
ideal range | 0–500 | 0–5 | 0–10 | −2–6.5 | −6.5–0.5 | −6.5–0.5 | >−5 | −3–1.2 | 70–100 | −1.5–1.5 | <120 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosebarger, A.; Reddi, R.N.; Menon, R.; Kammala, A.K. Computational Screening of the Natural Product Osthole and Its Derivates for Anti-Inflammatory Activity. Life 2022, 12, 505. https://doi.org/10.3390/life12040505
Mosebarger A, Reddi RN, Menon R, Kammala AK. Computational Screening of the Natural Product Osthole and Its Derivates for Anti-Inflammatory Activity. Life. 2022; 12(4):505. https://doi.org/10.3390/life12040505
Chicago/Turabian StyleMosebarger, Angela, Rambabu N. Reddi, Ramkumar Menon, and Ananth Kumar Kammala. 2022. "Computational Screening of the Natural Product Osthole and Its Derivates for Anti-Inflammatory Activity" Life 12, no. 4: 505. https://doi.org/10.3390/life12040505
APA StyleMosebarger, A., Reddi, R. N., Menon, R., & Kammala, A. K. (2022). Computational Screening of the Natural Product Osthole and Its Derivates for Anti-Inflammatory Activity. Life, 12(4), 505. https://doi.org/10.3390/life12040505