Spinal Cord Stimulation to Treat Unresponsive Cancer Pain: A Possible Solution in Palliative Oncological Therapy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Selection
- “Spinal cord stimulation AND oncology”, 404 articles.
- “Spinal cord stimulation AND cancer pain”, 252 articles.
- “Spinal cord stimulation AND tumor”, 673 articles.
2.2. Data Extraction
3. Results
3.1. Systematic Review
3.2. Outcome Database
4. Discussion
4.1. Treatment of Cancer Pain
4.2. Pathophysiology of Oncologic Pain
4.3. Spinal Cord Stimulation in Oncologic Pain
4.4. Current Clinical Applications
4.5. Complications and Limitations
5. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Tapia Pérez, J.H. Spinal cord stimulation: Beyond pain management. Neurologia 2019, in press. [Google Scholar] [CrossRef]
- Van den Beuken-van Everdingen, M.H.; Hochstenbach, L.M.J.; Joosten, E.A.J.; Tjan-Heijnen, V.C.G.; Janssen, D.J.A. Update on prevalence of pain in patients with cancer: Systematic review and meta-analysis. J. Pain Symptom Manag. 2016, 51, 1070–1090.e9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aman, M.M.; Mahmoud, A.; Deer, T.; Sayed, D.; Hagedorn, J.M.; Brogan, S.E.; Singh, V.; Gulati, A.; Strand, N.; Weisbein, J.; et al. The American Society of Pain and Neuroscience (ASPN) best practices and guidelines for the interventional management of cancer-associated pain. J. Pain Res. 2021, 14, 2139–2164. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, E.; Brecker, C. Lumbar spinal cord stimulation for cervical-originated central pain: A case report. Pain 2002, 100, 299–301. [Google Scholar] [CrossRef]
- Cata, J.P.; Cordella, J.V.; Burton, A.W.; Hassenbusch, S.J.; Weng, H.-R.; Dougherty, P.M. Spinal cord stimulation relieves chemotherapy-induced pain: A clinical case report. J. Pain Symptom Manag. 2004, 27, 72–78. [Google Scholar] [CrossRef]
- Ting, J.C.; Fukshansky, M.; Burton, A.W. Treatment of refractory ischemic pain from chemotherapy-induced Raynaud’s syndrome with spinal cord stimulation. Pain Pract. 2007, 7, 143–146. [Google Scholar] [CrossRef]
- Hamid, B.; Haider, N. Spinal cord stimulator relieves neuropathic pain in a patient with radiation-induced transverse myelitis. Pain Pract. 2007, 7, 345–347. [Google Scholar] [CrossRef]
- Yakovlev, A.E.; Ellias, Y. Spinal cord stimulation as a treatment option for intractable neuropathic cancer pain. Clin. Med. Res. 2008, 6, 103–106. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.G.; Choi, S.S.; Kong, M.H.; Lee, I.O.; Oh, H.R. Thoracic spinal cord stimulation for neuropathic pain after spinal meningioma removal: A case report. Clin. J. Pain 2009, 25, 167–169. [Google Scholar] [CrossRef]
- Yakovlev, A.E.; Resch, B.E.; Karasev, S.A. Treatment of cancer-related chest wall pain using spinal cord stimulation. Am. J. Hosp. Palliat. Care 2010, 27, 552–556. [Google Scholar] [CrossRef]
- Viswanathan, A.; Phan, P.C.; Burton, A.W. Use of spinal cord stimulation in the treatment of phantom limb pain: Case series and review of the literature. Pain Pract. 2010, 10, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Nouri, K.H.; Brish, E.L. Spinal cord stimulation for testicular pain. Pain Med. 2011, 12, 1435–1438. [Google Scholar] [CrossRef] [Green Version]
- Yakovlev, A.E.; Resch, B.E. Spinal cord stimulation for cancer-related low back pain. Am. J. Hosp. Palliat. Care 2012, 29, 93–97. [Google Scholar] [CrossRef]
- Wininger, K.L.; Bester, M.L.; Deshpande, K.K. Spinal cord stimulation to treat postthoracotomy neuralgia: Non–small-cell lung cancer: A case report. Pain Manag. Nurs. 2012, 13, 52–59. [Google Scholar] [CrossRef]
- Elahi, F.; Callahan, D.; Greenlee, J.; Dann, T.L. Pudendal entrapment neuropathy: A rare complication of pelvic radiation therapy. Pain Physician 2013, 16, E793–E797. [Google Scholar] [CrossRef] [PubMed]
- Mirpuri, R.G.; Brammeier, J. Spinal cord stimulation for treatment of the pain associated with hereditary multiple osteochondromas. J. Pain Res. 2015, 8, 557–560. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd-Elsayed, A.; Schiavoni, N.; Sachdeva, H. Efficacy of spinal cord stimulators in treating peripheral neuropathy: A case series. J. Clin. Anesth. 2016, 28, 74–77. [Google Scholar] [CrossRef] [PubMed]
- Hutson, N.; Hung, J.C.; Puttanniah, V.; Lis, E.; Laufer, I.; Gulati, A. Interventional pain management for sacroiliac tumors in the oncologic population: A case series and paradigm approach. Pain Med. 2017, 18, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Maeda, A.; Watanabe, M.; Saigano, C.; Nakayama, S.; Yamaura, K. Spinal cord stimulation alleviates intractable pain due to malignant pleural mesothelioma: A case report. JA Clin. Rep. 2020, 6, 78. [Google Scholar] [CrossRef]
- Quintero-Carreño, V.; Molina, B.M. Spinal cord stimulation in the management of neuropathic pain in cancer patients: Case report. Colomb. J. Anesthesiol. 2021, 49, e934. [Google Scholar] [CrossRef]
- Chung, M.; Ray, H. Treatment of postmastectomy pain syndrome with spinal cord stimulation: A case series. Pain Med. Case Rep. 2021, 5, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Vittori, A.; Petrucci, E.; Cascella, M.; Innamorato, M.; Cuomo, A.; Giarratano, A.; Petrini, F.; Marinangeli, F. Pursuing the recovery of severe chronic musculoskeletal pain in Italy: Clinical and organizational perspectives from a SIAARTI survey. J. Pain Res. 2021, 14, 3401–3410. [Google Scholar] [CrossRef] [PubMed]
- Starck, P.L.; Sherwood, G.D.; Adams-McNeill, J.; Thomas, E.J. Identifying and addressing medical errors in pain mismanagement. Jt. Comm. J. Qual. Improv. 2001, 27, 191–199. [Google Scholar] [CrossRef]
- Ashaye, T.; Hounsome, N.; Carnes, D.; Taylor, S.J.C.; Homer, K.; Eldridge, S.; Spencer, A.; Rahman, A.; Foell, J.; Underwood, M.; et al. Opioid prescribing for chronic musculoskeletal pain in UK primary care: Results from a cohort analysis of the COPERS trial. BMJ Open 2018, 8, e019491. [Google Scholar] [CrossRef]
- Von Korff, M.R. Long-term use of opioids for complex chronic pain. Best Pract. Res. Clin. Rheumatol. 2013, 27, 663–672. [Google Scholar] [CrossRef] [Green Version]
- Maugeri, R.; Giugno, A.; Giammalva, R.G.; Gulì, C.; Basile, L.; Graziano, F.; Iacopino, D.G. A thoracic vertebral localization of a metastasized cutaneous Merkel cell carcinoma: Case report and review of literature. Surg. Neurol. Int. 2017, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Neufeld, N.J.; Elnahal, S.M.; Alvarez, R.H. Cancer pain: A review of epidemiology, clinical quality and value impact. Future Oncol. 2017, 13, 833–841. [Google Scholar] [CrossRef] [PubMed]
- Montazeri, A. Quality of life data as prognostic indicators of survival in cancer patients: An overview of the literature from 1982 to 2008. Health Qual. Life Outcomes 2009, 7, 102. [Google Scholar] [CrossRef] [Green Version]
- Smith, T.J.; Staats, P.S.; Deer, T.; Stearns, L.J.; Rauck, R.L.; Boortz-Marx, R.L.; Buchser, E.; Català, E.; Bryce, D.A.; Coyne, P.J.; et al. Randomized clinical trial of an implantable drug delivery system compared with comprehensive medical management for refractory cancer pain: Impact on pain, drug-related toxicity, and survival. J. Clin. Oncol. 2002, 20, 4040–4049. [Google Scholar] [CrossRef]
- Rau, K.-M.; Chen, J.-S.; Wu, H.-B.; Lin, S.-F.; Huang, M.-L.; Tai, C.-J.; Hwang, W.-L.; Lu, Y.-C.; Wang, C.-C.; Hsieh, R.K. Cancer-related pain: A nationwide survey of patients’ treatment modification and satisfaction in Taiwan. Jpn. J. Clin. Oncol. 2017, 47, 1060–1065. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller-Schwefe, G.H. Patients’ and physicians’ perspectives on opioid therapy for chronic cancer and musculoskeletal pain in Germany, Italy, and Turkey: PAin RESearch (PARES) survey. Curr. Med. Res. Opin. 2014, 30, 339–347. [Google Scholar] [CrossRef] [PubMed]
- Forget, P.; Patullo, C.; Hill, D.; Ambekar, A.; Baldacchino, A.; Cata, J.; Chetty, S.; Cox, F.J.; de Boer, H.D.; Dinwoodie, K.; et al. System-level policies on appropriate opioid use, a multi-stakeholder consensus. BMC Health Serv. Res. 2022, 22, 329. [Google Scholar] [CrossRef]
- WHO. WHO Guidelines for the Pharmacological and Radiotherapeutic Management of Cancer Pain in Adults and Adolescents; World Health Organization: Geneva, Switzerland, 2018. [Google Scholar]
- Paice, J.A.; Portenoy, R.; Lacchetti, C.; Campbell, T.; Cheville, A.; Citron, M.; Constine, L.S.; Cooper, A.; Glare, P.; Keefe, F.; et al. Management of chronic pain in survivors of adult cancers: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 2016, 34, 3325–3345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caraceni, A.; Hanks, G. European Palliative Care Research Collaborative (EPCRC); European Association for Palliative Care (EAPC). Use of opioid analgesics in the treatment of cancer pain: Evidence-based recommendations from the EAPC. Lancet Oncol. 2012, 13, e58–e68. [Google Scholar] [CrossRef]
- Rodziewicz, T.L.; Houseman, B. Medical Error Reduction and Prevention. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Huang, H.; Yao, D.; Saba, R.; Brovman, E.Y.; Kang, D.; Greenberg, P.; Urman, R.D. A contemporary medicolegal claims analysis of injuries related to neuraxial anesthesia between 2007 and 2016. J. Clin. Anesth. 2019, 57, 66–71. [Google Scholar] [CrossRef]
- Stearns, L.J.; Narang, S.; Albright, R.E.; Hammond, K.; Xia, Y.; Richter, H.B.; Paramanandam, G.K.; Haagenson, K.K.; Doth, A.H. Assessment of health care utilization and cost of targeted drug delivery and conventional medical management vs conventional medical management alone for patients with cancer-related pain. JAMA Netw. Open 2019, 2, e191549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maugeri, R.; Graziano, F.; Basile, L.; Gulì, C.; Giugno, A.; Giammalva, G.R.; Visocchi, M.; Iacopino, D.G. Reconstruction of vertebral body after radiofrequency ablation and augmentation in dorsolumbar metastatic vertebral fracture: Analysis of clinical and radiological outcome in a clinical series of 18 patients. Trends Reconstr. Neurosurg. 2017, 124, 81–86. [Google Scholar] [CrossRef]
- Maugeri, R.; Giammalva, G.R. Unusual case of dorsal vertebral metastases from a male breast cancer. Acta Med. Mediterr. 2017, 33, 1157–1161. [Google Scholar]
- Schmidt, B.L.; Hamamoto, D.T.; Simone, D.A.; Wilcox, G.L. Mechanism of cancer pain. Mol. Interv. 2010, 10, 164–178. [Google Scholar] [CrossRef]
- Peters, C.; Lindsay, T.; Pomonis, J.; Luger, N.; Ghilardi, J.; Sevcik, M.; Mantyh, P. Endothelin and the tumorigenic component of bone cancer pain. Neuroscience 2004, 126, 1043–1052. [Google Scholar] [CrossRef] [PubMed]
- Gould, H.J., 3rd; Gould, T.N. A possible role for nerve growth factor in the augmentation of sodium channels in models of chronic pain. Brain Res. 2000, 854, 19–29. [Google Scholar] [CrossRef]
- Mamet, J.; Baron, A. Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of ac-id-sensing ion channels. J. Neurosci. 2002, 22, 10662–10670. [Google Scholar] [CrossRef] [Green Version]
- Tsuda, M. Microglia-mediated regulation of neuropathic pain: Molecular and cellular mechanisms. Biol. Pharm. Bull. 2019, 42, 1959–1968. [Google Scholar] [CrossRef] [Green Version]
- Kuner, R.; Flor, H. Structural plasticity and reorganisation in chronic pain. Nat. Rev. Neurosci. 2016, 18, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Peirs, C.; Seal, R.P. Neural circuits for pain: Recent advances and current views. Science 2016, 354, 578–584. [Google Scholar] [CrossRef] [PubMed]
- Inoue, K.; Tsuda, M. Microglia in neuropathic pain: Cellular and molecular mechanisms and therapeutic potential. Nat. Rev. Neurosci. 2018, 19, 138–152. [Google Scholar] [CrossRef]
- Jin, S.-X.; Zhuang, Z.-Y.; Woolf, C.J.; Ji, R.-R. p38 mitogen-activated protein kinase is activated after a spinal nerve ligation in spinal cord microglia and dorsal root ganglion neurons and contributes to the generation of neuropathic pain. J. Neurosci. 2003, 23, 4017–4022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coull, J.A.M.; Beggs, S.; Boudreau, D.; Boivin, D.; Tsuda, M.; Inoue, K.; Gravel, C.; Salter, M.W.; de Koninck, Y. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature 2005, 438, 1017–1021. [Google Scholar] [CrossRef] [PubMed]
- Fumagalli, G.; Monza, L.; Cavaletti, G.; Rigolio, R.; Meregalli, C. Neuroinflammatory process involved in different preclinical models of chemotherapy-induced peripheral neuropathy. Front. Immunol. 2021, 11, 626687. [Google Scholar] [CrossRef]
- Vallejo, R.; Bradley, K. Spinal cord stimulation in chronic pain: Mode of action. Spine 2017, 42, S53–S60. [Google Scholar] [CrossRef]
- Lee, D.; Hershey, B.; Bradley, K.; Yearwood, T. Predicted effects of pulse width programming in spinal cord stimulation: A mathematical modeling study. Med. Biol. Eng. Comput. 2011, 49, 765–774. [Google Scholar] [CrossRef] [Green Version]
- Giugno, A.; Gulì, C. Spinal cord stimulation: An alternative concept of rehabilitation? Acta Neurochir. Suppl. 2017, 124, 15–18. [Google Scholar]
- Barchini, J.; Tchachaghian, S.; Shamaa, F.; Jabbur, S.; Meyerson, B.; Song, Z.; Linderoth, B.; Saadé, N. Spinal segmental and supraspinal mechanisms underlying the pain-relieving effects of spinal cord stimulation: An experimental study in a rat model of neuropathy. Neuroscience 2012, 215, 196–208. [Google Scholar] [CrossRef]
- Kishima, H.; Saitoh, Y.; Oshino, S.; Hosomi, K.; Ali, M.; Maruo, T.; Hirata, M.; Goto, T.; Yanagisawa, T.; Sumitani, M.; et al. Modulation of neuronal activity after spinal cord stimulation for neuropathic pain; H215O PET study. NeuroImage 2010, 49, 2564–2569. [Google Scholar] [CrossRef]
- Brill, J.E. Control of pain. Crit. Care Clin. 1992, 8, 203–218. [Google Scholar] [CrossRef]
- Sivanesan, E.; Maher, D.P. Supraspinal mechanisms of spinal cord stimulation for modulation of pain: Five decades of research and prospects for the future. Anesthesiology 2019, 130, 651–665. [Google Scholar] [CrossRef]
- Tazawa, T.; Kamiya, Y.; Kobayashi, A.; Saeki, K.; Takiguchi, M.; Nakahashi, Y.; Shinbori, H.; Funakoshi, K.; Goto, T. Spinal cord stimulation modulates supraspinal centers of the descending antinociceptive system in rats with unilateral spinal nerve injury. Mol. Pain 2015, 11, 36. [Google Scholar] [CrossRef] [Green Version]
- Vallejo, R.; Gupta, A.; Cedeno, D.L.; Vallejo, A.; Smith, W.J.; Thomas, S.M.; Benyamin, R.; Kaye, A.D.; Manchikanti, L. Clinical effectiveness and mechanism of action of spinal cord stimulation for treating chronic low back and lower extremity pain: A systematic review. Curr. Pain Headache Rep. 2020, 24, 70. [Google Scholar] [CrossRef]
- Rosenberg, J.; Fabi, A.; Candido, K.; Knezevic, N.; Creamer, M.; Carayannopoulos, A.; Ghodsi, A.; Nelson, C.; Bennett, M. Spinal cord stimulation provides pain relief with improved psychosocial function: Results from EMP3OWER. Pain Med. 2016, 17, 2311–2325. [Google Scholar] [CrossRef] [Green Version]
- Hagedorn, J.M.; Pittelkow, T.P.; Hunt, C.L.; D’Souza, R.S.; Lamer, T.J. Current perspectives on spinal cord stimulation for the treatment of cancer pain. J. Pain Res. 2020, 13, 3295–3305. [Google Scholar] [CrossRef]
- Graziano, F.; Gerardi, R.M.; Bue, E.L.; Basile, L.; Brunasso, L.; Somma, T.; Maugeri, R.; Nicoletti, G.; Iacopino, D.G. Surgical back risk syndrome and spinal cord stimulation: Better safe than sorry. World Neurosurg. 2020, 133, e658–e665. [Google Scholar] [CrossRef]
- Yakovlev, A.E.; Resch, B.E. Treatment of multifocal pain with spinal cord stimulation. Neuromodul. Technol. Neural Interface 2012, 15, 210–213. [Google Scholar] [CrossRef]
- Skolasky, R.L.; Wegener, S.T. The impact of reduction of pain after lumbar spine surgery: The relationship between changes in pain and physical function and disability. Spine 2014, 39, 1426–1432. [Google Scholar] [CrossRef]
- Zejun, Z.; Lihua, P.; Ke, W.; Su, M.; Bennett, M.I. Spinal cord stimulation for cancer-related pain in adults. Cochrane Database Syst. Rev. 2015, 2015, CD009389. [Google Scholar] [CrossRef]
- Shimoji, K.; Hokari, T. Management of intractable pain with percutaneous epidural spinal cord stimulation: Differences in pain-relieving effects among diseases and sites of pain. Anesth. Analg. 1993, 77, 110–116. [Google Scholar] [CrossRef]
- Sheldon, B.L.; DiMarzio, M.; Chung, S.H.; Tram, J.; Khazen, O.; Staudt, M.D.; Bondoc, M.; Pilitsis, J.G. Association of outcomes of spinal cord stimulation for chronic low back pain and psoas measurements based on size of iliopsoas muscles. Neuromodul. Technol. Neural Interface 2022, 25, 121–127. [Google Scholar] [CrossRef]
- Sindou, M.P.; Mertens, P.; Bendavid, U.; García-Larrea, L.; Mauguière, F. Predictive value of somatosensory evoked potentials for long-lasting pain relief after spinal cord stimulation: Practical use for patient selection. Neurosurgery 2003, 52, 1374–1383. [Google Scholar] [CrossRef]
- Graziano, F.; Scalia, G.; Cammarata, G.; Bue, E.L.; Brunasso, L.; Maugeri, R.; Umana, G.E.; Gerardi, R.M.; Iacopino, D.G.; Nicoletti, G.F. Letter to the editor regarding “First report of extraspinal lead migration along a thoracic spinal nerve after spinal cord stimulation”. World Neurosurg. 2020, 145, 536–537. [Google Scholar] [CrossRef]
- Sica, A.; Casale, B.; Sagnelli, C.; di Dato, M.T.; Buonavolontà, P.; Salzano, A.M.; Sagnelli, E.; Famiglietti, V.; Saracco, E.; Tammaro, D.; et al. All-in-one spinal cord stimulation in lymphoproliferative diseases. Front. Neurol. 2021, 11, 550554. [Google Scholar] [CrossRef]
- Sheldon, B.L.; Bao, J.; Khazen, O.; Pilitsis, J.G. Spinal cord stimulation as treatment for cancer and chemotherapy-induced pain. Front. Pain Res. 2021, 2, 699993. [Google Scholar] [CrossRef]
- Davis, M.P. Cancer-related neuropathic pain: Review and selective topics. Hematol. Oncol. Clin. N. Am. 2018, 32, 417–431. [Google Scholar] [CrossRef]
- Cameron, T. Safety and efficacy of spinal cord stimulation for the treatment of chronic pain: A 20-year literature review. J. Neurosurg. Spine 2004, 100, 254–267. [Google Scholar] [CrossRef] [Green Version]
Author, Year | Type of Study | Patients | Mean Age | Cancer Type | Pain etiology | Pain Location | Stimulation Modality | Drugs Intake | Pre-Op VAS (1 to 10) | Post-Op VAS (1 to 10) | Improvement in QoL | Follow Up (Months) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Eisenberg, 2002 [4] | Case Report | 1 F | 50 | Foramen magnum meningioma | Cancer-related | Right upper and lower limbs | Traditional SCS single lead | Reduction | 10 | 1.5 | Yes | N.R. |
Cata, 2004 [5] | Case series | 2 M | 55.5 | Pt.1: Melanoma (elbow); Pt.2: Ewing sarcoma | Treatment-related | Bilateral lower limb | Traditional SCS dual led | Reduction | Pt1: 4.5; Pt2: 4.6 | Pt1:2; Pt2: 3.6 | Yes | N.R. |
Ting, 2007 [6] | Case report | 1 M | 48 | Metastatic pancreatic cancer | Treatment-related | Bilateral upper limb | Traditional SCS dual lead | N.R. | N.R. | 4 | No | N.R. |
Hamid, 2007 [7] | Case Report | 1 M | 54 | Lung cancer | Treatment-related | Left lower limb | Traditional SCS single lead | Reduction | 10 | 0,5 | Yes | 18 |
Yakovlev, 2008 [8] | Case Series | 1 F, 1 M | 47 | Pt 1: Spinal metastasis from colon carcinoma; Pt 2: Anal squamous cell carcinoma | Pt 1: Treatment-related; Pt 2: Cancer-related | Pt 1: Right lower limb; Pt 2: N.R. | Traditional SCS dual lead | Dismission | Pt1: 7; Pt 2: 8 | Pt1: 1; Pt2: 1.5 | Yes | 12 |
Lee, 2009 [9] | Case Report | 1 F | 40 | Spinal meningioma | Treatment-related | Right lower limb | Traditional SCS dual lead | Reduction | 9 | 1 | Yes | N.R. |
Yakovlev, 2010 [10] | Case Series | 10 M, 4 F | 54 | Lung cancer | Treatment-related | Chest | Traditional SCS dual lead | 10 Dismission, 4 Reduction | 7.42 | 3.07 | Yes | 12 |
Viswanathan, 2010 [11] | Case Series | 3 M, 1 F | 38.75 | Hemangiomatosis, rhabdosarcoma, spindle cell carcinoma, chondrosarcoma | Treatment-related | Pt1: right lower limb; Pt2: left lower limb; Pt3: left lip; Pt4: left low back | Traditional SCS dual lead | N.R. | NR | NR | Yes | 29 |
Nouri, 2011 [12] | Case Report | 1 M | 57 | Prostate cancer | Cancer-related | Testicular Pain | Traditional SCS dual lead | Dismission | 5 | 1 | Yes | 1.5 |
Yakovlev, 2012 [13] | Case Series | 6 F, 9 M | 56 | Metastatic colon cancer, anal cancer, and sacrum angiosarcoma | Treatment-related | Low back pain | Traditional SCS dual lead | 8 Dismission, 5 Reduction, 2 same therapy | 7.06 | 2.66 | Yes | 12 |
Wininger, 2012 [14] | Case Report | 1 F | 58 | Lung cancer | Treatment-related | Right chest | Traditional SCS dual lead | Dismission | 8,5 | 1.5 | Yes | 24 |
Elahi, 2013 [15] | Case Report | 1 M | 59 | Prostate cancer | Treatment-related | Perineal pelvic pain | Traditional SCS dual lead | Dismission | 8 | 1.5 | Yes | 10 |
Mirpuri, 2015 [16] | Case Report | 1 F | 65 | Hereditary Multiple Osteochondromas (HMO) | Cancer-related | Lower extremities | Traditional SCS; Two paddle leads | Reduction | 7 | 70–80% pain relief | Yes | 6 |
Abd-Elsayed, 2016 [17] | Case Series | 1 F | 39 | Breast Cancer | Treatment-related | Lower extremities | Traditional SCS dual lead | Reduction | 8 | 95% pain relief | Yes | 24 |
Hutson, 2017 [18] | Case Report | 1 F | 69 | Metastatic sacrum lesion from thyroid cancer | Cancer-related | Low back pain | Traditional SCS dual lead | Dismission | N.R. | Reduced | Yes | N.R. |
Maeda et al., 2020 [19] | Case Report | 1 M | 66 | Pleural Mesothelioma | Treatment-related | Left thorax | Traditional SCS dual lead | Reduction | 8 | 4 | Yes | 8 |
Quintero-Carreño et al., 2021 [20] | Case Report | 1 F | 60 | Squamous cell Carcinoma (right popliteal fossa) | Treatment related | Right anterior lower limb | Traditional SCS dual lead | Reduction | 9 | 2 | Yes | 3 |
Chung et al., 2021 * [21] | Case Series | 7 F | 59.57 | Breast Cancer | Treatment related | Pt1: right chest and hand; Pt2: right chest and axilla; Pt3: upper extremity; Pt4: left chest and hand; Pt5: right chest; Pt6: right chest and arm; Pt7: left chest and arm | Traditional SCS dual lead | 2 Reduction, 2 dismission, 2 same therapy, 1 dead | 8.6 | 4.2 | 5 Yes, 1 No, 1 dead | 22.2 |
Characteristics | N° |
---|---|
Total number of articles | 18 |
Total number of patients | 56 (30 Males, 26 Females) |
Mean age | 54.21 ± 8.9 years old |
Pain etiology | 5/56 cancer related; 51/56 treatment related |
Mean pre-operative VAS | 7.63/10 |
Mean post-operative VAS VAS reduction (≥50%) | 2.18/10 48/56 Yes, 3/56 No, 5/56 N.R. |
Drugs intake | 26 Stop, 20 Reduction, 4 Same therapy, 7 N.R., 1 dead |
Improvement in QoL | 53/56 patients |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paolini, F.; Ferini, G.; Bonosi, L.; Costanzo, R.; Brunasso, L.; Benigno, U.E.; Porzio, M.; Gerardi, R.M.; Giammalva, G.R.; Umana, G.E.; et al. Spinal Cord Stimulation to Treat Unresponsive Cancer Pain: A Possible Solution in Palliative Oncological Therapy. Life 2022, 12, 554. https://doi.org/10.3390/life12040554
Paolini F, Ferini G, Bonosi L, Costanzo R, Brunasso L, Benigno UE, Porzio M, Gerardi RM, Giammalva GR, Umana GE, et al. Spinal Cord Stimulation to Treat Unresponsive Cancer Pain: A Possible Solution in Palliative Oncological Therapy. Life. 2022; 12(4):554. https://doi.org/10.3390/life12040554
Chicago/Turabian StylePaolini, Federica, Gianluca Ferini, Lapo Bonosi, Roberta Costanzo, Lara Brunasso, Umberto Emanuele Benigno, Massimiliano Porzio, Rosa Maria Gerardi, Giuseppe Roberto Giammalva, Giuseppe Emmanuele Umana, and et al. 2022. "Spinal Cord Stimulation to Treat Unresponsive Cancer Pain: A Possible Solution in Palliative Oncological Therapy" Life 12, no. 4: 554. https://doi.org/10.3390/life12040554
APA StylePaolini, F., Ferini, G., Bonosi, L., Costanzo, R., Brunasso, L., Benigno, U. E., Porzio, M., Gerardi, R. M., Giammalva, G. R., Umana, G. E., Graziano, F., Scalia, G., Sturiale, C. L., Di Bonaventura, R., Iacopino, D. G., & Maugeri, R. (2022). Spinal Cord Stimulation to Treat Unresponsive Cancer Pain: A Possible Solution in Palliative Oncological Therapy. Life, 12(4), 554. https://doi.org/10.3390/life12040554