Pharmacological Strategies and Recent Advancement in Nano-Drug Delivery for Targeting Asthma
Abstract
:1. Introduction
2. Selection of Literature
3. Nano Drug Delivery for Targeting Asthma
4. Lipid-Based Nanoparticle
4.1. Liposomal NPs
4.2. Lipid Nanoparticles
5. Polymeric Based Nanoparticle
5.1. Nano Polymeric Particles
5.2. Nanosuspension
5.3. Nano Micelles
5.4. Dendrimer
5.5. Miscellaneous
6. Inorganic NPs
6.1. Nano-Gold Particles
6.2. Nano-Silver Particles
6.3. Iron Oxide Nanoparticles
6.4. Nano Vaccine for Asthma
7. Conclusions and Future Perspective
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Allan, R.; Canham, K.; Wallace, R.; Singh, D.; Ward, J.; Cooper, A.; Newcomb, C. Usability and Robustness of the Wixela Inhub Dry Powder Inhaler. J. Aerosol Med. Pulm. Drug Deliv. 2021, 34, 134–145. [Google Scholar] [CrossRef] [PubMed]
- Allen, D.B. Inhaled Corticosteroids and Endocrine Effects in Childhood. Endocrinol. Metab. Clin. N. Am. 2020, 49, 651–665. [Google Scholar] [CrossRef] [PubMed]
- Gautier, C.; Charpin, D. Environmental triggers and avoidance in the management of asthma. J. Asthma Allergy 2017, 10, 47–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimoni, S.; Gendelman, G.; Ayzenberg, O.; Smirin, N.; Lysyansky, P.; Edri, O.; Deutsch, L.; Caspi, A.; Friedman, Z. Differential effects of coronary artery stenosis on myocardial function: The value of myocardial strain analysis for the detection of coronary artery disease. J. Am. Soc. Echocardiogr. 2011, 24, 748–757. [Google Scholar] [CrossRef]
- Ari, A. A path to successful patient outcomes through aerosol drug delivery to children: A narrative review. Ann. Transl. Med. 2021, 9, 593. [Google Scholar] [CrossRef] [PubMed]
- Louie, S.; Zeki, A.A.; Schivo, M.; Chan, A.L.; Yoneda, K.Y.; Avdalovic, M.; Morrissey, B.M.; Albertson, T.E. The asthma-chronic obstructive pulmonary disease overlap syndrome: Pharmacotherapeutic considerations. Expert Rev. Clin. Pharmacol. 2013, 6, 197–219. [Google Scholar] [CrossRef]
- Azizoglu, E.; Ozer, O.; Prausnitz, M.R. Fabrication of pure-drug microneedles for delivery of montelukast sodium. Drug Deliv. Transl. Res. 2022, 12, 444–458. [Google Scholar] [CrossRef]
- Belice, P.J.; Mosnaim, G.; Galant, S.; Kim, Y.; Shin, H.W.; Pires-Barracosa, N.; Hall, J.P.; Malik, R.; Becker, E. The impact of caregiver health literacy on healthcare outcomes for low income minority children with asthma. J. Asthma 2020, 57, 1316–1322. [Google Scholar] [CrossRef]
- Biddiscombe, M.F.; Usmani, O.S. Delivery and adherence with inhaled therapy in asthma. Minerva Med. 2021, 112, 564–572. [Google Scholar] [CrossRef]
- Bridgeman, M.B.; Wilken, L.A. Essential Role of Pharmacists in Asthma Care and Management. J. Pharm. Pract. 2021, 34, 149–162. [Google Scholar] [CrossRef]
- Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein. J. Nanotechnol. 2018, 9, 1050–1074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunaugh, A.D.; Sharma, S.; Smyth, H. Inhaled fixed-dose combination powders for the treatment of respiratory infections. Expert Opin. Drug Deliv. 2021, 18, 1101–1115. [Google Scholar] [CrossRef] [PubMed]
- Casula, L.; Sinico, C.; Valenti, D.; Pini, E.; Pireddu, R.; Schlich, M.; Lai, F.; Fadda, A.M. Delivery of beclomethasone dipropionate nanosuspensions with an electronic cigarette. Int. J. Pharm. 2021, 596, 120293. [Google Scholar] [CrossRef] [PubMed]
- Cataldo, D.; Louis, R.; Michils, A.; Peché, R.; Pilette, C.; Schleich, F.; Ninane, V.; Hanon, S. Severe asthma: Oral corticosteroid alternatives and the need for optimal referral pathways. J. Asthma 2021, 58, 448–458. [Google Scholar] [CrossRef] [Green Version]
- Emami, F.; Mostafavi, S.J.; Yazdi, D.H. Na, Poly(lactic acid)/poly(lactic-co-glycolic acid) particulate carriers for pulmonary drug delivery. J. Pharm. Investig. 2019, 49, 427–442. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Arens, R.; Chidambaram, A.G.; Capponi, S.; Alshawa, L.; Claeys, T.A.; Hayes, D., Jr.; Robinson, R.T. Vaping Associated Pulmonary Nontuberculous Mycobacteria. Lung 2021, 199, 21–27. [Google Scholar] [CrossRef]
- Cooper, A.; Parker, J.; Berry, M.; Wallace, R.; Ward, J.; Allan, R. Wixela Inhub: Dosing Performance In Vitro and Inhaled Flow Rates in Healthy Subjects and Patients Compared with Advair Diskus. J. Aerosol Med. Pulm. Drug Deliv. 2020, 33, 323–341. [Google Scholar] [CrossRef]
- Datusalia, A.K.; Singh, G.; Yadav, N.; Gaun, S.; Manik, M.; Singh, R.K. Targeted delivery of montelukast for treatment of Alzheimer’s disease. CNS Neurol. Disord. Drug Targets 2021, 34477536. [Google Scholar] [CrossRef]
- De Volder, J.; Vereecke, L.; Joos, G.; Maes, T. Targeting neutrophils in asthma: A therapeutic opportunity? Biochem. Pharmacol. 2020, 182, 114292. [Google Scholar] [CrossRef]
- Dhayanandamoorthy, Y.; Antoniraj, M.G.; Kandregula, C.A.B.; Kandasamy, R. Aerosolized hyaluronic acid decorated, ferulic acid loaded chitosan nanoparticle: A promising asthma control strategy. Int. J. Pharm. 2020, 591, 119958. [Google Scholar] [CrossRef]
- Patil, J.S.; Sarasija, S. Pulmonary drug delivery strategies: A concise, systematic review. Lung India Off. Organ Indian Chest Soc. 2012, 29, 44–49. [Google Scholar]
- Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Zarrin, V.; Moghadam, E.R.; Hashemi, F.; Makvandi, P.; Samarghandian, S.; Khan, H.; Hashemi, F.; et al. Toward Regulatory Effects of Curcumin on Transforming Growth Factor-Beta Across Different Diseases: A Review. Front. Pharmacol. 2020, 11, 585413. [Google Scholar] [CrossRef] [PubMed]
- Doroudian, M.; O’Neill, A.; Loughlin, R.M.; Prina-Mello, A.; Volkov, Y.; Donnelly, S.C. Nanotechnology in pulmonary medicine. Curr. Opin. Pharmacol. 2021, 56, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Drmosh, Q.A.; Alade, I.O.; Qamar, M.; Akbar, S. Zinc Oxide-Based Acetone Gas Sensors for Breath Analysis: A Review. Chemistry 2021, 16, 1519–1538. [Google Scholar] [CrossRef]
- Patra, J.K.; Das, G.; Fraceto, L.; Campos, E.; Rodríguez-Torres, M.D.P.; Acosta-Torres, L.; Diaz-Torres, L.; Grillo, R.; Swamy, M.; Sharma, S.; et al. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol. 2018, 16, 71. [Google Scholar] [CrossRef] [Green Version]
- Escarrer-Jaume, M.; Juliá-Benito, J.C.; Quevedo-Teruel, S.; del Prado, A.P.; Sandoval-Ruballos, M.; Quesada-Sequeira, F.; Álvaro-Lozano, M. Changes in epidemiology and clinical practice in IgE-mediated Allergy in children. An. Pediatr. 2021, 95, 56.e51–56.e58. [Google Scholar] [CrossRef]
- Fan, P.S.; Sun, M.J.; Qin, D.; Yuan, C.S.; Chen, X.G.; Liu, Y. Nanosystems as curative platforms for allergic disorder management. J. Mater. Chem. B 2021, 9, 1729–1744. [Google Scholar] [CrossRef]
- Gulati, N.; Dua, K.; Dureja, H. Role of chitosan based nanomedicines in the treatment of chronic respiratory diseases. Int. J. Biol. Macromol. 2021, 185, 20–30. [Google Scholar] [CrossRef]
- Ren, J.; Liu, Y.; Yao, Y.; Feng, L.; Zhao, X.; Li, Z.; Yang, L. Intranasal delivery of MSC-derived exosomes attenuates allergic asthma via expanding IL-10 producing lung interstitial macrophages in mice. Int. Immunopharmacol. 2021, 91, 107288. [Google Scholar] [CrossRef]
- Theoharides, T.C. Ways to Address Perinatal Mast Cell Activation and Focal Brain Inflammation, including Response to SARS-CoV-2, in Autism Spectrum Disorder. J. Pers. Med. 2021, 11, 860. [Google Scholar] [CrossRef] [PubMed]
- Honmane, S.; Hajare, A.; More, H.; Osmani, R.A.M.; Salunkhe, S. Lung delivery of nanoliposomal salbutamol sulfate dry powder inhalation for facilitated asthma therapy. J. Liposome Res. 2019, 29, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Loureiro, J.A.; Andrade, S.; Ramalho, M.J.; Oliveira, N.; Pereira, M.C. The interaction of a β2 adrenoceptor agonist drug with biomimetic cell membrane models: The case of terbutaline sulphate. Life Sci. 2021, 285, 119992. [Google Scholar] [CrossRef] [PubMed]
- Arafa, M.; Ayoub, B. Nano-vesicles of salbutamol sulphate in metered dose inhalers: Formulation, characterization and in vitro evaluation. Int. J. App. Pharm. 2017, 9, 100–105. [Google Scholar] [CrossRef] [Green Version]
- Komalla, V.; Allam, V.; Kwok, P.C.L.; Sheikholeslami, B.; Owen, L.; Jaffe, A.; Waters, S.A.; Mohammad, S.; Oliver, B.G.; Chen, H.; et al. A phospholipid-based formulation for the treatment of airway inflammation in chronic respiratory diseases. Eur. J. Pharm. Biopharm. 2020, 157, 47–58. [Google Scholar] [CrossRef]
- Chen, X.; Huang, W.; Wong, B.C.; Yin, L.; Wong, Y.F.; Xu, M.; Yang, Z. Liposomes prolong the therapeutic effect of anti-asthmatic medication via pulmonary delivery. Int. J. Nanomed. 2012, 7, 1139–1148. [Google Scholar]
- Wong, J.-Y.; Ng, Z.Y.; Mehta, M.; Shukla, S.D.; Panneerselvam, J.; Madheswaran, T.; Gupta, G.; Negi, P.; Kumar, P.; Pillay, V.; et al. Curcumin-loaded niosomes downregulate mRNA expression of pro-inflammatory markers involved in asthma: An in vitro study. Nanomedicine 2020, 15, 2955–2970. [Google Scholar]
- Konduri, K.S.; Nandedkar, S.; Düzgünes, N.; Suzara, V.; Artwohl, J.; Bunte, R.; Gangadharam, P.R. Efficacy of liposomal budesonide in experimental asthma. J. Allergy Clin. Immunol. 2003, 111, 321–327. [Google Scholar] [CrossRef]
- Ng, Z.; Wong, J.-Y.; Panneerselvam, J.; Madheswaran, T.; Kumar, P.; Pillay, V.; Hsu, A.; Hansbro, N.; Bebawy, M.; Wark, P.; et al. Assessing the Potential of Liposomes Loaded with Curcumin as a Therapeutic Intervention in Asthma. Colloids Surf. B Biointerfaces 2018, 172, 51–79. [Google Scholar] [CrossRef]
- Alberca-Custodio, R.W.; Faustino, L.D.; Gomes, E.; Nunes, F.P.B.; de Siqueira, M.K.; Labrada, A.; Almeida, R.R.; Câmara, N.O.S.; da Fonseca, D.M.; Russo, M. Allergen-Specific Immunotherapy with Liposome Containing CpG-ODN in Murine Model of Asthma Relies on MyD88 Signaling in Dendritic Cells. Front. Immunol. 2020, 11, 692. [Google Scholar] [CrossRef] [Green Version]
- Raju, R.S.; Kumar, M.N.S.; Kannan, E.; Ambhore, N.S.; Mulukutla, S.; Gowthamarajan, K. Drug loaded liposomes of mesalamine incorporated into disease responsive microgels (Micro) for treating allergic asthma: An approach using smart drug delivery system. Eur. Respir. J. 2015, 46, PA5011. [Google Scholar]
- Alvarez, M.J.; Echechipía, S.; García, B.; Tabar, A.I.; Martín, S.; Rico, P.; Olaguibel, J.M. Liposome-entrapped D. pteronyssinus vaccination in mild asthma patients: Effect of 1-year double-blind, placebo-controlled trial on inflammation, bronchial hyperresponsiveness and immediate and late bronchial responses to the allergen. Clin. Exp. Allergy J. 2002, 32, 1574–1582. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhan, S.; Liu, Q.; Su, H.; Dai, X.; Wang, H.; Beng, H.; Tan, W. Preparation of a Sustained-Release Nebulized Aerosol of R-terbutaline Hydrochloride Liposome and Evaluation of Its Anti-asthmatic Effects via Pulmonary Delivery in Guinea Pigs. AAPS PharmSciTech 2018, 19, 232–241. [Google Scholar] [CrossRef] [PubMed]
- Arora, M.; Patel, K.; Choudhary, P.; Jain, P.; Malhotra, M.; Trivedi, P. Liposome: A Novel Aerosol Carrier of Doxophylline in Treatment of Chronic Asthma & Chronic Obstructive Pulmonary Disease. J. Mol. Gen. Med. 2012, 3, 351–361. [Google Scholar]
- Elhissi, A.; Islam, M.A.; Arafat, B.; Taylor, M.; Ahmed, W. Development and characterisation of freeze-dried liposomes containing two anti-asthma drugs. Micro Nano Lett. 2010, 5, 184–188. [Google Scholar] [CrossRef]
- Paranjpe, M.; Müller-Goymann, C.C. Nanoparticle-mediated pulmonary drug delivery: A review. Int. J. Mol. Sci. 2014, 15, 5852–5873. [Google Scholar] [CrossRef]
- Nassimi, M.; Schleh, C.; Lauenstein, H.D.; Hussein, R.; Lübbers, K.; Pohlmann, G.; Switalla, S.; Sewald, K.; Müller, M.; Krug, N.; et al. Low cytotoxicity of solid lipid nanoparticles in in vitro and ex vivo lung models. Inhal. Toxicol. 2009, 1 (Suppl. 21), 104–109. [Google Scholar] [CrossRef]
- Paranjpe, M.; Neuhaus, V.; Finke, J.H.; Richter, C.; Gothsch, T.; Kwade, A.; Büttgenbach, S.; Braun, A.; Müller-Goymann, C.C. In vitro and ex vivo toxicological testing of sildenafil-loaded solid lipid nanoparticles. Inhal. Toxicol. 2013, 25, 536–543. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, R.; Xie, Q.; Li, A.; Xiao, Y.; Li, K.; Liu, H.; Cui, D.; Chen, Y.; Wang, S. Enhanced bioavailability and efficiency of curcumin for the treatment of asthma by its formulation in solid lipid nanoparticles. Int. J. Nanomed. 2012, 7, 3667–3677. [Google Scholar] [CrossRef] [Green Version]
- Lv, C.; Li, H.; Cui, H.; Bi, Q.; Wang, M. Solid lipid nanoparticle delivery of rhynchophylline enhanced the efficiency of allergic asthma treatment via the upregulation of suppressor of cytokine signaling 1 by repressing the p38 signaling pathway. Bioengineered 2021, 12, 8635–8649. [Google Scholar] [CrossRef]
- Da Silva, A.L.; Martini, S.V.; Abreu, S.C.; Cdos, S.S.; Diaz, B.L.; Fernezlian, S.; de Sá, V.K.; Capelozzi, V.L.; Boylan, N.J.; Goya, R.G.; et al. DNA nanoparticle-mediated thymulin gene therapy prevents airway remodeling in experimental allergic asthma. J. Control Release 2014, 180, 125–133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oyarzun-Ampuero, F.A.; Brea, J.; Loza, M.I.; Torres, D.; Alonso, M.J. Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int. J. Pharm. 2009, 381, 122–129. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, P.; Pathak, M.; Patowary, P.; Chakrabarti, S.; Goyary, D.; Karmakar, S.; Dwivedi, S. Synthesized atropine nanoparticles ameliorate airway hyperreactivity and remodeling in a murine model of chronic asthma. J. Drug Deliv. Sci. Technol. 2020, 56, 101507. [Google Scholar] [CrossRef]
- Yong, D.; Saker, S.; Chellappan, D.K.; Madheswaran, T.; Panneerselvam, J.; Wadhwa, R.; Kumar, P.; Pillay, V.; Gupta, G.; Oliver, B.; et al. Preparation, characterization and in-vitro efficacy of quercetin loaded liquid crystalline nanoparticles for the treatment of asthma. J. Drug Deliv. Sci. Technol. 2019, 54, 101297. [Google Scholar] [CrossRef]
- Ramelli, S.C.; Comer, B.S.; McLendon, J.M.; Sandy, L.L.; Ferretti, A.P.; Barrington, R.; Sparks, J.; Matar, M.; Fewell, J.; Gerthoffer, W.T. Nanoparticle Delivery of Anti-inflammatory LNA Oligonucleotides Prevents Airway Inflammation in a HDM Model of Asthma. Mol. Ther. Nucleic Acids 2020, 19, 1000–1014. [Google Scholar] [CrossRef]
- Wang, D.; Nasab, E.; Athari, S. Study effect of Chitosan-nanoparticle encapsulated/loaded Baicalein on allergic Asthma pathology in mouse model. Saudi J. Biol. Sci. 2021, 28, 4311–4317. [Google Scholar] [CrossRef]
- Wang, K.; Feng, Y.; Li, S.; Li, W.; Chen, X.; Yi, R.; Zhang, H.; Hong, Z. Oral Delivery of Bavachinin-Loaded PEG-PLGA Nanoparticles for Asthma Treatment in a Murine Model. J. Biomed. Nanotechnol. 2018, 14, 1806–1815. [Google Scholar] [CrossRef]
- Chakraborty, S.; Ehsan, I.; Mukherjee, B.; Mondal, L.; Roy, S.; Saha, K.D.; Paul, B.; Debnath, M.; Bera, T. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. Nanomed. Nanotechnol. Biol. Med. 2019, 20, 102006. [Google Scholar] [CrossRef]
- Cao, M.; Zhan, M.; Wang, Z.; Wang, Z.; Li, X.-M.; Miao, M. Development of an Orally Bioavailable Isoliquiritigenin Self-Nanoemulsifying Drug Delivery System to Effectively Treat Ovalbumin-Induced Asthma. Int. J. Nanomed. 2020, 15, 8945–8961. [Google Scholar] [CrossRef]
- Casula, L.; Lai, F.; Pini, E.; Valenti, D.; Sinico, C.; Cardia, M.C.; Marceddu, S.; Ailuno, G.; Fadda, A.M. Pulmonary Delivery of Curcumin and Beclomethasone Dipropionate in a Multicomponent Nanosuspension for the Treatment of Bronchial Asthma. Pharmaceutics 2021, 13, 1300. [Google Scholar] [CrossRef]
- Inapagolla, R.; Guru, B.; Emre, Y.; Gao, X.; Lieh-Lai, M.; Bassett, D.J.P.; Kannan, R.M. In vivo efficacy of dendrimer-methylprednisolone conjugate formulation for the treatment of lung inflammation. Int. J. Pharm. 2010, 399, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Chawla, R.; Sahu, B.; Mishra, M.; Rani, V.; Singh, R. Intranasal micellar curcumin for the treatment of chronic asthma. J. Drug Deliv. Sci. Technol. 2022, 67, 102922. [Google Scholar] [CrossRef]
- Sahib, M.; Darwis, Y.; Kok-Khiang, P.; Abdulameer, S.; Tan, Y. Incorporation of Beclomethasone Dipropionate into Polyethylene Glycol-Diacyl Lipid Micelles as a Pulmonary Delivery System. Drug Dev. Res. 2012, 73, 114. [Google Scholar] [CrossRef]
- Choi, M.; Jeong, H.; Kim, S.; Kim, M.; Lee, M.; Rhim, T. Targeted delivery of Chil3/Chil4 siRNA to alveolar macrophages using ternary complexes composed of HMG and oligoarginine micelles. Nanoscale 2019, 12, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, R.; Shukla, S.D.; Chellappan, D.K.; Gupta, G.; Collet, T.; Hansbro, N.; Oliver, B.; Williams, K.; Hansbro, P.M.; Dua, K. Phytotherapy in Inflammatory Lung Diseases: An Emerging Therapeutic Interventional Approach. In Phytochemistry: An In-Silico and In-Vitro Update; Springer: Singapore, 2019; pp. 331–347. [Google Scholar]
- Onoue, S.; Matsui, T.; Aoki, Y.; Ishida, H.; Nukaya, H.; Kou, K.; Yamada, S. Self-assembled micellar formulation of chafuroside A with improved anti-inflammatory effects in experimental asthma/COPD-model rats. Eur. J. Pharm. Sci. 2011, 45, 184–189. [Google Scholar] [CrossRef]
- Paudel, K.R.; Mehta, M.; Yin, G.H.S.; Yen, L.L.; Malyla, V.; Patel, V.K.; Panneerselvam, J.; Madheswaran, T.; MacLoughlin, R.; Jha, N.K. Berberine-Loaded Liquid Crystalline Nanoparticles Inhibit Non-Small Cell Lung Cancer Proliferation and Migration in Vitro. Environ. Sci. Pollut. Res. 2022, 13, 112–132. [Google Scholar] [CrossRef]
- Wadhwa, R.; Aggarwal, T.; Thapliyal, N.; Chellappan, D.K.; Gupta, G.; Gulati, M.; Collet, T.; Oliver, B.; Williams, K.; Hansbro, P.M. Nanoparticle-based drug delivery for chronic obstructive pulmonary disorder and asthma: Progress and challenges. In Nanotechnology in Modern Animal Biotechnology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 59–73. [Google Scholar]
- Vij, N.; Min, T.; Bodas, M.; Gorde, A.; Roy, I. Neutrophil Targeted Nano-Drug Delivery System for Chronic Obstructive Lung Diseases. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 2415–2427. [Google Scholar] [CrossRef]
- Nasr, M.; Najlah, M.; D’Emanuele, A.; Elhissi, A. PAMAM Dendrimers as Aerosol Drug Nanocarriers for Pulmonary Delivery Via Nebulization. Int. J. Pharm. 2013, 461, 242–250. [Google Scholar] [CrossRef]
- Pandey, P.; Purohit, D.; Chellappan, D.K.; Gupta, G.; Tambuwala, M.M.; Aljabali, A.A.; Satija, S.; Dureja, H. Advancement in translational respiratory research using nanotechnology. In Targeting Chronic Inflammatory Lung Diseases Using Advanced Drug Delivery Systems; Academic Press: Cambridge, MA, USA, 2020; pp. 211–225. [Google Scholar]
- Patil, A.; Kydarkunte, A.; Patole, M.; Pokharkar, V. Montelukast-loaded nanostructured lipid carriers: Part II Pulmonary drug delivery and in vitro–in vivo aerosol performance. Eur. J. Pharm. Biopharm. 2014, 88, 169–177. [Google Scholar] [CrossRef]
- Gupta, G.; Chellappan, D.K.; Singh, S.K.; Gupta, P.K.; Kesari, K.K.; Jha, N.K.; Thangavelu, L.; Oliver, B.G.; Dua, K. Advanced drug delivery approaches in managing TGF-β-mediated remodeling in lung diseases. Nanomedicine 2021, 25, 2243–2247. [Google Scholar] [CrossRef]
- Mehrabi Nasab, D.; Taheri, A.; Athari, S.S. Design and Fabrication of Gold Nanoparticles for Anti-Asthma Drug Delivery. Arch. Med. Lab. Sci. 2020, 6, 1–9. [Google Scholar]
- Omlor, A.; Le, D.; Schlicker, J.; Hannig, M.; Ewen, R.; Heck, S.; Herr, C.; Kraegeloh, A.; Hein, C.; Kautenburger, R.; et al. Local Effects on Airway Inflammation and Systemic Uptake of 5 nm PEGylated and Citrated Gold Nanoparticles in Asthmatic Mice. Small 2016, 13, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Allam, V.S.R.R.; Paudel, K.R.; Singh, S.K.; Gulati, M.; Dhanasekaran, M.; Gupta, P.K.; Jha, N.K.; Devkota, H.P.; Gupta, G. Nutraceuticals: Unlocking newer paradigms in the mitigation of inflammatory lung diseases. Crit. Rev. Food Sci. Nutr. 2021, 3, 1–31. [Google Scholar] [CrossRef] [PubMed]
- Park, H.; Kim, K.; Jang, S.; Park, J.w.; Cha, H.; Lee, J.; Kim, J.-O.; Kim, S.; Lee, C.; Kim, J.; et al. Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int. J. Nanomed. 2010, 5, 2010–2515. [Google Scholar] [CrossRef] [Green Version]
- Chan, Y.; Mehta, M.; Paudel, K.R.; Madheswaran, T.; Panneerselvam, J.; Gupta, G.; Su, Q.P.; Hansbro, P.M.; MacLoughlin, R.; Dua, K. Versatility of liquid crystalline nanoparticles in inflammatory lung diseases. Nanomedicine 2021, 16, 1545–1548. [Google Scholar] [CrossRef]
- Valluri, V.; Katari, N.; Khatri, C.; Vyas, G.; Polagani, S. Highly sensitive liquid chromatography–tandem mass spectrometry assay for the determination of azathioprine in presence of mercaptopurine and its application to a human pharmacokinetic study. Sep. Sci. Plus 2021, 4, 121802. [Google Scholar] [CrossRef]
- Halwani, R.; Shaik, A.; Ratemi, E.; Afzal, S.; Kenana, R.; Al-Muhsen, S.; al Faraj, A. A novel anti-IL4R nanoparticle efficiently controls lung inflammation during asthma. Exp. Mol. Med. 2016, 48, e262. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, W.; Wang, H.; Yue, J.; Mao, Y.; Zhou, W.; Kong, X.; Guo, Q.; Zhang, L.; Xu, P.; et al. Anti-ST2 Nanoparticle Alleviates Lung Inflammation by Targeting ILC2s-CD4(+)T Response. Int. J. Nanomedicine 2020, 15, 9745–9758. [Google Scholar] [CrossRef]
- Anderson, C.; Grimmett, M.; Domalewski, C.; Cui, H. Inhalable nanotherapeutics to improve treatment efficacy for common lung diseases. Nanomed. Nanobiotechnol. 2019, 12, e1586. [Google Scholar] [CrossRef]
- Vyas, G.; Mathur, M.; Patel, N.A.; Patel, R.P. Aphrodisiac Efficacy of Blepharis sindica seeds: A comparative assessment using different solvent types. Indian J. Biochem. Biophys. 2017, 54, 223–230. [Google Scholar]
- Mathur, M.; Vyas, G. Role of nanoparticles for production of smart herbal drug-An overview. Indian J. Nat. Prod. Resour. 2013, 4, 329–338. [Google Scholar]
- Zhao, M.-Z.; Li, Y.; Han, H.-Y.; Lihua, M.; Yang, G.; Liu, Z.-Q.; Ma, C.; Yang, P.-C.; Liu, S. Specific Ag-guiding nano-vaccines attenuate neutrophil-dominant allergic asthma. Mol. Immunol. 2020, 129, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, V.B.; Katari, N.K.; Ponnam, V.; Konduru, N.; Dongala, T.; Marisetti, V.M.; Vyas, G. Stability-indicating reversed-phase-HPLC method development and validation for sacubitril/valsartan complex in the presence of impurities and degradation products: Robustness by quality-by-design approach. Biomed. Chromatogr. 2021, 36, e5240. [Google Scholar] [CrossRef] [PubMed]
- Conde, E.; Bertrand, R.; Balbino, B.; Bonnefoy, J.; Stackowicz, J.; Caillot, N.; Colaone, F.; Hamdi, S.; Houmadi, R.; Loste, A.; et al. Dual vaccination against IL-4 and IL-13 protects against chronic allergic asthma in mice. Nat. Commun. 2021, 12, 2574. [Google Scholar] [CrossRef] [PubMed]
- Chan, Y.; Ng, S.W.; Chellappan, D.K.; Madheswaran, T.; Zeeshan, F.; Kumar, P.; Pillay, V.; Gupta, G.; Wadhwa, R.; Mehta, M. Celastrol-loaded liquid crystalline nanoparticles as an anti-inflammatory intervention for the treatment of asthma. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 754–763. [Google Scholar] [CrossRef]
- Grozdanovic, M.; Laffey, K.; Abdelkarim, H.; Hitchinson, B.; Harijith, A.; Moon, H.G.; Park, G.; Rousslang, L.; Masterson, J.; Furuta, G.; et al. Novel Peptide Nanoparticle Biased Antagonist of CCR3 Blocks Eosinophil Recruitment and Airway Hyperresponsiveness. J. Allergy Clin. Immunol. 2018, 143, 669–680. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Kong, X.; Behera, A.; Hellermann, G.; Lockey, R.; Mohapat, S. Chitosan IFN-gamma-pDNA nanoparticle (CIN) therapy for allergic asthma. Genet. Vaccines Ther. 2003, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Hellermann, G.; Zhang, W.; Jena, P.; Kumar, M.; Behera, A.; Behera, S.; Lockey, R.; Mohapat, S. Chitosan Interferon-γ Nanogene Therapy for Lung Disease: Modulation of T-Cell and Dendritic Cell Immune Responses. Allergy Asthma Clin. Immunol. 2008, 4, 95–105. [Google Scholar] [CrossRef] [Green Version]
- Muchakayala, S.K.; Katari, N.K.; Dongala, T.; Marisetti, V.M.; Vyas, G.; Vegesna, R.V.K. Eco-friendly and green chromatographic method for the simultaneous determination of chlorocresol and betamethasone dipropionate in topical formulations using Box–Behnken design. J. Iran. Chem. Soc. 2021, 19, 1397–1412. [Google Scholar] [CrossRef]
Author | Drug | Developmental Stage | Average Particle Size | Findings | Ref. |
---|---|---|---|---|---|
Honmane, et al. | Salbutamol sulfate | In vitro | 167.2 ± 0.170 nm | The novel liposomal formulation might be a helpful alternative to traditional treatments | [31] |
Arafa, et al. | Salbutamol sulfate | Phase I | 400–451 nm | The entrapping drugs in niosomes, which can be bundled into aerosols meeting USP rules, is a promising option for developing a controlled drug delivery system. | [33] |
Chen, et al. | Salbutamol sulfate | Preclinical studies | 57 ± 21 nm | Liposomes increased salbutamol sulfate concentration and retention duration, and hence prolonged salbutamol therapeutic impact on asthma patients. | [35] |
Elhissi, et al. | Salbutamol sulphate and Beclometasonedipropionate | In vitro | 100–136 nm | The freeze-dried liposomes containing two anti-asthma medicines could be produced and may be used in pulmonary delivery. | [44] |
Konduri, et al. | Budesonide | Preclinical studies | Minimize toxicity and increase compliance in asthma patients. | [37] | |
Ng, et al. | Curcumin | In vitro | 271.3 ± 3.06 nm | Liposomal curcumin may be a viable asthma therapeutic strategy because of its ability to decrease key asthma pathogenesis pro-inflammatory signals. | [38] |
Alberca-Custodio, et al. | Allergens and CpG | Preclinical studies | To treat eosinophilic (high type 2) asthma endotype, immunotherapy liposomal delivery method may be of benefit, and this may point to the critical role played by dendritic cells expressing Myd88 in the process. | [39] | |
Raju, et al. | Mesalamine | In vitro | 200 nm | Mesalamine-loaded liposomes in disease-responsive microgels effective in asthmatic treatment. | [40] |
Alvarez, et al. | D. pteronyssinus | Clinical studies | Extensive D. Pteronyssinus immunisation with liposome-entrapped mites protects moderate asthma patients against protracted mite exposure and lowers allergen-related functional and inflammatory alterations. | [41] | |
Li, et al. | R-terbutaline hydrochloride | Preclinical Studies | 145 ± 20 nm | The R-terbutaline hydrochloride liposome group exhibited a longer anti-asthma effect than the R-terbutaline hydrochloride solution group | [42] |
Arora, et al. | Doxophylline | In vitro | 212.9 + 7.2 nm | Better retained in the liposomal formulation than in the controlled release formulation. | [43] |
Author | Nanoparticle Type | Drug | Developmental Stage | Finding | Ref. |
---|---|---|---|---|---|
A.L. da Silva, et al. | Polymeric | Thymulin | Preclinical studies | Nanoparticle-based gene treatments to deliver therapeutic genes for asthma safely and effectively. | [50] |
Oyarzun-Ampuero, et al. | Polymeric | Heparin | Preclinical studies | Chitosan (CS) and hyaluronic acid (HA)mucoadhesive nanocarriers and containing the macromolecular drug heparin, suitable for pulmonary delivery | [51] |
Chattopadhyay, et al. | Polymeric | Atropine | Preclinical studies | Enhances the lung airway surfaces, reducing hyperresponsiveness and inflammation. | [52] |
D.O. Cherk Yong, et al. | Polymeric | Quercetin | In vitro | Effective in reducing the generation of main pro-inflammatory cytokines associated with the progression of asthma. | [53] |
Ramelli, et al. | Polymeric | Nucleic acid/DNA oligonucleotides | Preclinical studies | Locked nucleic acid/DNA oligonucleotides may be delivered intravenously and have an impact on lung inflammation. | [54] |
D. Wang, E. MehrabiNasab, and S.S. Athari | Polymeric | Baicalein | Preclinical studies | Encapsulated and loaded Baicalein nanoparticles both reduced airway hyperresponsiveness and inflammation, making them potential anti-asthma drugs. | [55] |
Wang, et al. | Polymeric | Bavachinin | Preclinical studies | Pharmacokinetically effective and rational therapy. | [56] |
Chakraborty, et al. | Polymeric | Andrographolide | Preclinical studies | Nanoparticle formulations have higher bioavailability, efficacy, and efficiency than other formulations. | [57] |
Cao, et al. | Nano suspension | Isoliquiritigenin | Preclinical studies | Isoliquiritigenin self-nano emulsifying drug delivery system was shown to have much better bioavailability and anti-asthma effect than isoliquiritigenin suspensions | [58] |
Chawla, et al. | Nano Micelles | Curcumin | Preclinical studies | Micellarcurcumin produces an anti-asthmatic effect in a sustained manner. | [61] |
Sahib, et al. | Nano Micelles | Beclomethasonedipropionate | Preclinical studies | BAL fluid samples showed a marked decrease in the number of inflammatory cells. | [62] |
Choi, et al. | Nano Micelles | Chil3 and Chil4 siRNA | In vitro | Asthma symptoms like airway inflammation and mucus production were reduced. | [63] |
Onoue, et al. | Nano Micelles | Chafuroside A | Preclinical studies | Asthma may be treated with the self-assembled micellar formulation of chafuroside A. | [65] |
Inapagolla, et al. | Dendrimer | Methylprednisolone | Preclinical studies | For the treatment of inflammatory illnesses such as asthma, dendrimer-conjugated drugs may improve medication retention in the lungs. | [60] |
Mahanasr, et al. | Dendrimer | Beclomethasonedipropionate | Preclinical studies | Dexamethasone NPs are superior to free dexamethasone in reducing airway hyperresponsiveness. | [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, A. Pharmacological Strategies and Recent Advancement in Nano-Drug Delivery for Targeting Asthma. Life 2022, 12, 596. https://doi.org/10.3390/life12040596
Ahmad A. Pharmacological Strategies and Recent Advancement in Nano-Drug Delivery for Targeting Asthma. Life. 2022; 12(4):596. https://doi.org/10.3390/life12040596
Chicago/Turabian StyleAhmad, Aftab. 2022. "Pharmacological Strategies and Recent Advancement in Nano-Drug Delivery for Targeting Asthma" Life 12, no. 4: 596. https://doi.org/10.3390/life12040596
APA StyleAhmad, A. (2022). Pharmacological Strategies and Recent Advancement in Nano-Drug Delivery for Targeting Asthma. Life, 12(4), 596. https://doi.org/10.3390/life12040596