Combined miR-486 and GP88 (Progranulin) Serum Levels Are Suggested as Supportive Biomarkers for Therapy Decision in Elderly Prostate Cancer Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Sampling and RNA Isolation
2.3. Quantitative PCR
2.4. GP88 ELISA
2.5. Statistical Methods
3. Results
3.1. GP88 Levels
3.2. miRNA Levels
3.3. Models for Distinction between Patients’ Treatment Intentions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Baca, S.C.; Prandi, D.; Lawrence, M.S.; Mosquera, J.M.; Romanel, A.; Drier, Y.; Park, K.; Kitabayashi, N.; MacDonald, T.Y.; Ghandi, M.; et al. Punctuated evolution of prostate cancer genomes. Cell 2013, 153, 666–677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilt, T.J.; Vo, T.N.; Langsetmo, L.; Dahm, P.; Wheeler, T.; Aronson, W.J.; Cooperberg, M.R.; Taylor, B.C.; Brawer, M.K. Radical Prostatectomy or Observation for Clinically Localized Prostate Cancer: Extended Follow-up of the Prostate Cancer Intervention Versus Observation Trial (PIVOT). Eur. Urol. 2020, 77, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Casanova-Salas, I.; Athie, A.; Boutros, P.C.; Del Re, M.; Miyamoto, D.T.; Pienta, K.J.; Posadas, E.M.; Sowalsky, A.G.; Stenzl, A.; Wyatt, A.W.; et al. Quantitative and Qualitative Analysis of Blood-based Liquid Biopsies to Inform Clinical Decision-making in Prostate Cancer. Eur. Urol. 2021, 79, 762–771. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.T.; Delijani, K.; Mecum, A.; Goldkorn, A. Current status of liquid biopsies for the detection and management of prostate cancer. Cancer Manag. Res. 2019, 11, 5271–5291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kafka, M.; Eder, I.E.; Klocker, H.; Heidegger, I. Emerging promising biomarkers for treatment decision in metastatic castration-resistant prostate cancer. Urol. Oncol. 2020, 38, 801–815. [Google Scholar] [CrossRef] [PubMed]
- McGrath, S.; Christidis, D.; Perera, M.; Hong, S.K.; Manning, T.; Vela, I.; Lawrentschuk, N. Prostate cancer biomarkers: Are we hitting the mark? Prostate Int. 2016, 4, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Shariat, S.F.; Semjonow, A.; Lilja, H.; Savage, C.; Vickers, A.J.; Bjartell, A. Tumor markers in prostate cancer I: Blood-based markers. Acta Oncol. 2011, 50 (Suppl. S1), 61–75. [Google Scholar] [CrossRef] [Green Version]
- Esquela-Kerscher, A.; Slack, F. Oncomirs—microRNAs with a role in cancer. Nat. Rev. Cancer 2006, 6, 259–269. [Google Scholar] [CrossRef]
- Slack, F.J.; Weidhaas, J.B. MicroRNAs as a potential magic bullet in cancer. Future Oncol. 2006, 2, 73–82. [Google Scholar] [CrossRef]
- Fabbri, M.; Ivan, M.; Cimmino, A.; Negrini, M.; Calin, G.A. Regulatory mechanisms of microRNAs involvement in cancer. Expert Opin. Biol. Ther. 2007, 7, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Keck, B.; Borkowetz, A.; Poellmann, J.; Jansen, T.; Fischer, M.; Fuessel, S.; Kahlmeyer, A.; Wirth, M.; Huber, J.; Cavallaro, A.; et al. Serum miRNAs Support the Indication for MRI-Ultrasound Fusion-Guided Biopsy of the Prostate in Patients with Low-PI-RADS Lesions. Cells 2021, 10, 1315. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Pan, C.X.; Cheng, L. GRN (granulin). Atlas Genet. Cytogenet. Oncol. Haematol. 2008, 12, 208–212. [Google Scholar] [CrossRef]
- Serrero, G. Progranulin/GP88, A Complex and Multifaceted Player of Tumor Growth by Direct Action and via the Tumor Microenvironment. Adv. Exp. Med. Biol. 2021, 1329, 475–498. [Google Scholar] [CrossRef]
- Pan, Y.; Cheung, S.T.; Tong, J.H.M.; Tin, K.Y.; Kang, W.; Lung, R.W.M.; Wu, F.; Li, H.; Ng, S.S.M.; Mak, T.W.C.; et al. Granulin epithelin precursor promotes colorectal carcinogenesis by activating MARK/ERK pathway. J. Transl. Med. 2018, 16, 150. [Google Scholar] [CrossRef]
- Yang, D.; Wang, L.-L.; Dong, T.-T.; Shen, Y.-H.; Guo, X.-S.; Liu, C.-Y.; Liu, J.; Zhang, P.; Li, J.; Sun, Y.-P. Progranulin promotes colorectal cancer proliferation and angiogenesis through TNFR2/Akt and ERK signaling pathways. Am. J. Cancer Res. 2015, 5, 3085–3097. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Li, R.; Wang, H.; Wang, J.; Han, L.; Pan, L.; Li, X.; Kong, Q.; Wang, G.; Su, X. Clinical implications of progranulin in gastric cancer and its regulation via a positive feedback loop involving AKT and ERK signaling pathways. Mol. Med. Rep. 2017, 16, 9685–9691. [Google Scholar] [CrossRef] [Green Version]
- Ding, D.; Li, C.; Zhao, T.; Li, D.; Yang, L.; Zhang, B. LncRNA H19/miR-29b-3p/PGRN Axis Promoted Epithelial-Mesenchymal Transition of Colorectal Cancer Cells by Acting on Wnt Signaling. Mol. Cells 2018, 41, 423–435. [Google Scholar]
- Liu, F.; Zhang, W.; Yang, F.; Feng, T.; Zhou, M.; Yu, Y.; Yu, X.; Zhao, W.; Yi, F.; Tang, W.; et al. Interleukin-6-stimulated progranulin expression contributes to the malignancy of hepatocellular carcinoma cells by activating mTOR signaling. Sci. Rep. 2016, 6, 21260. [Google Scholar] [CrossRef]
- Tangkeangsirisin, W.; Serrero, G. PC cell-derived growth factor (PCDGF/GP88, progranulin) stimulates migration, invasiveness and VEGF expression in breast cancer cells. Carcinogenesis 2004, 25, 1587–1592. [Google Scholar] [CrossRef]
- Greither, T.; Fischer, K.; Theil, G.; Marcou, M.; Holzhausen, H.-J.; Weigelt, K.; Serrero, G.; Hicks, D.; Yue, B.; Fornara, P.; et al. Expression of GP88 (progranulin) in serum of prostate cancer patients is associated with Gleason scores and overall survival. Cancer Manag. Res. 2018, 10, 4173–4180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Vickers, A.J.; Elkin, E.B. Decision curve analysis: A novel method for evaluating prediction models. Med. Decis. Mak. 2006, 26, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Manceau, C.; Fromont, G.; Beauval, J.B.; Barret, E.; Brureau, L.; Créhange, G.; Dariane, C.; Fiard, G.; Gauthé, M.; Mathieu, R.; et al. On Behalf Of The Cc-Afu Cancerology Committee Of The Association Française d’Urologie. Biomarker in Active Surveillance for Prostate Cancer: A Systematic Review. Cancers 2021, 13, 4251. [Google Scholar] [CrossRef] [PubMed]
- Dall’Era, M. Liquid biomarkers in active surveillance. World J. Urol. 2022, 40, 21–26. [Google Scholar] [CrossRef] [PubMed]
- Abdulrahman, A.; Eckstein, M.; Jung, R.; Guzman, J.; Weigelt, K.; Serrero, G.; Yue, B.; Geppert, C.; Stöhr, R.; Hartmann, A.; et al. Expression of GP88 (Progranulin) Protein Is an Independent Prognostic Factor in Prostate Cancer Patients. Cancers 2019, 11, 2029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhindi, B.; Trottier, G.; Elharram, M.; Fernandes, K.A.; Lockwood, G.; Toi, A.; Hersey, K.M.; Finelli, A.; Evans, A.; van der Kwast, T.H.; et al. Measurement of Peri-Prostatic Fat Thickness Using Transrectal Ultrasonography (TRUS): A New Risk Factor for Prostate Cancer. BJU Int. 2012, 110, 980–986. [Google Scholar] [CrossRef]
- Taylor, R.A.; Lo, J.; Ascui, N.; Watt, M.J. Linking Obesogenic Dysregulation to Prostate Cancer Progression. Endocr. Connect. 2015, 4, R68–R80. [Google Scholar] [CrossRef] [Green Version]
- Fidelito, G.; Watt, M.J.; Taylor, R.A. Personalized Medicine for Prostate Cancer: Is Targeting Metabolism a Reality? Front. Oncol. 2022, 11, 778761. [Google Scholar] [CrossRef]
- Zapała, P.; Dybowski, B.; Poletajew, S.; Radziszewski, P. What Can Be Expected from Prostate Cancer Biomarkers A Clinical Perspective. Urol. Int. 2018, 100, 1–12. [Google Scholar] [CrossRef]
- Liu, R.S.; Olkhov-Mitsel, E.; Jeyapala, R.; Zhao, F.; Commisso, K.; Klotz, L.; Loblaw, A.; Liu, S.; Vesprini, D.; Fleshner, N.E.; et al. Assessment of Serum microRNA Biomarkers to Predict Reclassification of Prostate Cancer in Patients on Active Surveillance. J. Urol. 2018, 199, 1475–1481. [Google Scholar] [CrossRef] [PubMed]
- Wach, S.; Al-Janabi, O.; Weigelt, K.; Fischer, K.; Greither, T.; Marcou, M.; Theil, G.; Nolte, E.; Holzhausen, H.J.; Stöhr, R.; et al. The combined serum levels of miR-375 and urokinase plasminogen activator receptor are suggested as diagnostic and prognostic biomarkers in prostate cancer. Int. J. Cancer 2015, 137, 1406–1416. [Google Scholar] [CrossRef] [PubMed]
- Jiang, M.; Li, X.; Quan, X.; Yang, X.; Zheng, C.; Hao, X.; Qu, R.; Zhou, B. MiR-486 as an effective biomarker in cancer diagnosis and prognosis: A systematic review and meta-analysis. Oncotarget 2018, 9, 13948–13958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, X.P.; Hou, J.; Shen, X.Y.; Huang, C.Y.; Zhang, X.H.; Xie, Y.A.; Luo, X.L. MicroRNA-486–5p, which is downregulated in hepatocellular carcinoma, suppresses tumor growth by targeting PIK3R1. FEBS J. 2015, 282, 579–594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yi, Y.; Lu, X.; Chen, J.; Jiao, C.; Zhong, J.; Song, Z.; Yu, X.; Lin, B. Downregulated miR-486–5p acts as a tumor suppressor in esophageal squamous cell carcinoma. Exp. Ther. Med. 2016, 12, 3411–3416. [Google Scholar] [CrossRef] [Green Version]
- Ninawe, A.; Guru, S.A.; Yadav, P.; Masroor, M.; Samadhiya, A.; Bhutani, N.; Gupta, N.; Gupta, R.; Saxena, A. miR-486-5p: A Prognostic Biomarker for Chronic Myeloid Leukemia. ACS Omega 2021, 6, 7711–7718. [Google Scholar] [CrossRef]
- Mees, S.T.; Mardin, W.A.; Sielker, S.; Willscher, E.; Senninger, N.; Schleicher, C.; Colombo-Benkmann, M.; Haier, J. Involvement of CD40 targeting miR-224 and miR-486 on the progression of pancreatic ductal adenocarcinomas. Ann. Surg. Oncol. 2009, 16, 2339–2350. [Google Scholar] [CrossRef]
- Lopez-Bertoni, H.; Kotchetkov, I.S.; Mihelson, N.; Lal, B.; Rui, Y.; Ames, H.; Lugo-Fagundo, M.; Guerrero-Cazares, H.; Quiñones-Hinojosa, A.; Green, J.J.; et al. A Sox2:miR-486-5p Axis Regulates Survival of GBM Cells by Inhibiting Tumor Suppressor Networks. Cancer Res. 2020, 80, 1644–1655. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.; Zhu, J.; Cai, T.; Du, W.; Zhang, Y.; Zhu, Q.; Liu, Z.; Huang, J.A. Suppression of non-small cell lung cancer migration and invasion by hsa-miR-486-5p via the TGF-β/SMAD2 signaling pathway. J. Cancer 2019, 10, 6014–6024. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, X.; Zhao, Y.; Tian, T.; Jin, G.; Shu, Y.; Chen, Y.; Xu, L.; Zen, K.; Zhang, C.; et al. Serum microRNA signatures identified in a genome-wide serum microRNA expression profiling predict survival of non-small-cell lung cancer. J. Clin. Oncol. 2010, 28, 1721–1726. [Google Scholar] [CrossRef]
- Yang, Y.; Ji, C.; Guo, S.; Su, X.; Zhao, X.; Zhang, S.; Liu, G.; Qiu, X.; Zhang, Q.; Guo, H.; et al. The miR-486-5p plays a causative role in prostate cancer through negative regulation of multiple tumor suppressor pathways. Oncotarget 2017, 8, 72835–72846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, C.; Chen, H.; Wang, T.; Zhang, W.; Ru, G.; Lang, J. Expression profile analysis of microRNAs in prostate cancer by next-generation sequencing. Prostate 2015, 75, 500–516. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, T.; Yang, K.; Zhang, M.; Wang, K. miR-486-5p suppresses prostate cancer metastasis by targeting Snail and regulating epithelial-mesenchymal transition. Onco. Targets Ther. 2016, 9, 6909–6914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hünten, S.; Kaller, M.; Drepper, F.; Oeljeklaus, S.; Bonfert, T.; Erhard, F.; Dueck, A.; Eichner, N.; Friedel, C.C.; Meister, G.; et al. p53-Regulated Networks of Protein, mRNA, miRNA, and lncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses. Mol. Cell. Proteom. 2015, 14, 2609–2629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Dou, J.; Wang, W.; Liu, H.; Qin, Y.; Yang, Q.; Jiang, W.; Liang, Y.; Liu, Y.; He, J.; et al. High expression of citron kinase predicts poor prognosis of prostate cancer. Oncol. Lett. 2020, 19, 1815–1823. [Google Scholar] [CrossRef] [Green Version]
- Greither, T.; Steiner, T.; Bache, M.; Serrero, G.; Otto, S.; Taubert, H.; Eckert, A.W.; Kappler, M. GP88/PGRN Serum Levels Are Associated with Prognosis for Oral Squamous Cell Carcinoma Patients. Biology 2021, 10, 400. [Google Scholar] [CrossRef]
- Abrhale, T.; Brodie, A.; Sabnis, G.; Macedo, L.; Tian, C.; Yue, B.; Serrero, G. GP88 (PC-Cell Derived Growth Factor, progranulin) stimulates proliferation and confers letrozole resistance to aromatase overexpressing breast cancer cells. BMC Cancer 2011, 11, 231. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, G.O.; Zhou, X.C.; Koch, A.; Gharib, M.; Raval, S.; Bible, K.; Jones, M.B. Prosurvival function of the granulin-epithelin precursor is important in tumor progression and chemoresponse. Int. J. Cancer 2007, 120, 2339–2343. [Google Scholar] [CrossRef]
- Monami, G.; Emiliozzi, V.; Bitto, A.; Lovat, F.; Xu, S.Q.; Goldoni, S.; Fassan, M.; Serrero, G.; Gomella, L.G.; Baffa, R.; et al. Proepithelin regulates prostate cancer cell biology by promoting cell growth, migration, and anchorage-independent growth. Am. J. Pathol. 2009, 174, 1037–1047. [Google Scholar] [CrossRef] [Green Version]
- Tanimoto, R.; Morcavallo, A.; Terracciano, M.; Xu, S.Q.; Stefanello, M.; Buraschi, S.; Lu, K.G.; Bagley, D.H.; Gomella, L.G.; Scotlandi, K.; et al. Sortilin regulates progranulin action in castration-resistant prostate cancer cells. Endocrinology 2015, 156, 58–70. [Google Scholar] [CrossRef] [Green Version]
- Tanimoto, R.; Palladino, C.; Xu, S.Q.; Buraschi, S.; Neill, T.; Gomella, L.G.; Peiper, S.C.; Belfiore, A.; Iozzo, R.V.; Morrione, A. The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin. Matrix Biol. 2017, 64, 27–39. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Padukkavidana, T.; Vaegter, C.B.; Brady, O.A.; Zheng, Y.; Mackenzie, I.R.; Feldman, H.H.; Nykjaer, A.; Strittmatter, S.M. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron 2010, 68, 654–667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westaby, D.; Viscuse, P.V.; Ravilla, R.; de la Maza, M.L.D.F.; Hahn, A.; Sharp, A.; de Bono, J.; Aparicio, A.; Fleming, M.T. Beyond the Androgen Receptor: The Sequence, the Mutants, and New Avengers in the Treatment of Castrate-Resistant Metastatic Prostate Cancer. Am. Soc. Clin. Oncol. Educ. Book 2021, 41, e190–e202. [Google Scholar] [CrossRef] [PubMed]
- Mottet, N.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Cumberbatch, M.G.; De Santis, M.; Fanti, S.; Fossati, N.; Gandaglia, G.; Gillessen, S.; et al. EAU-EANM-ESTRO-ESUR-SIOG Guidelines on Prostate Cancer-2020 Update. Part 1: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2021, 79, 243–262. [Google Scholar] [CrossRef]
N | N | |
---|---|---|
All/PCa Patients | Elderly PCa Patients | |
All suspected patients | 136 | 56 |
Age range (median) | 40–86 (67) | >68 |
PCa patients | 86 | 41 |
Tumor-free patients | 50 | 15 |
PCa patients Age range (median) | (48–86) 68 | >68 |
ISUP grading of biopsy | ||
GG1 (GS6) | 22 | 10 |
GG2 (GS7a) | 28 | 15 |
GG3 (GS7b) | 15 | 6 |
GG4 (GS8) | 8 | 3 |
GG5 (GS9–10) | 13 | 7 |
Treatment | ||
Curative treatments | 60 | 29 |
Active surveillance | 26 | 12 |
PSA at biopsy range (median) | 0.6–112 (8.1) | 2.2–85.0 (8.0) |
<4 ng/mL | 10 | 4 |
≥4 ng/mL | 122 | 37 |
Unknown | 4 | 0 |
GP88 level range (median) | 25.9–99.4 (49.6) | 25.9–96.8 (48.7) |
ΔCt miR-141 range (median) | 9.1–16.5 (12.9) | 9.7–16.5 (12.8) |
ΔCt miR-375 range (median) | 7.8–15.7 (12.2) | 8.2–15.1 (12.0) |
ΔCt miR-21 range (median) | 2.7–7.6 (4.1) | 3.2–5.9 (4.0) |
ΔCt miR-320 range (median) | 7.5–11.9 (9.7) | 8.5–11.9 (9.7) |
ΔCt miR-210 range (median) | 9.8–16.5 (11.6) | 9.9–16.5 (11.6) |
ΔCt let-7 range (median) | 7.8–15.6 (9.6) | 8.2–14.7 (9.8) |
ΔCt miR-486 range (median) | 4.7–7.3 (6.0) | 5.2–7.3 (6.0) |
Overall survival | ||
Alive | 131 | 39 |
Deceased | 5 | 2 |
GP88 Level in Elder PCa Patients | Sum | ||||
---|---|---|---|---|---|
≤45.3 ng/mL | >45.3 ng/mL | N | |||
therapy decision | active surveillance | N | 7 | 5 | 12 |
curative treatment | N | 6 | 23 | 29 | |
Sum | N | 13 | 28 | 41 |
ΔCt miR486 Expression in Elder PCa Patients | Sum | ||||
---|---|---|---|---|---|
ΔCt ≤ 5.67 | ΔCt > 5.67 | N | |||
therapy decision | active surveillance | N | 6 | 6 | 12 |
curative treatment | N | 4 | 25 | 29 | |
Sum | N | 10 | 31 | 41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fichte, A.; Neumann, A.; Weigelt, K.; Guzman, J.; Jansen, T.; Keinert, J.; Serrero, G.; Yue, B.; Stöhr, R.; Greither, T.; et al. Combined miR-486 and GP88 (Progranulin) Serum Levels Are Suggested as Supportive Biomarkers for Therapy Decision in Elderly Prostate Cancer Patients. Life 2022, 12, 732. https://doi.org/10.3390/life12050732
Fichte A, Neumann A, Weigelt K, Guzman J, Jansen T, Keinert J, Serrero G, Yue B, Stöhr R, Greither T, et al. Combined miR-486 and GP88 (Progranulin) Serum Levels Are Suggested as Supportive Biomarkers for Therapy Decision in Elderly Prostate Cancer Patients. Life. 2022; 12(5):732. https://doi.org/10.3390/life12050732
Chicago/Turabian StyleFichte, Alexander, Angela Neumann, Katrin Weigelt, Juan Guzman, Thilo Jansen, Julia Keinert, Ginette Serrero, Binbin Yue, Robert Stöhr, Thomas Greither, and et al. 2022. "Combined miR-486 and GP88 (Progranulin) Serum Levels Are Suggested as Supportive Biomarkers for Therapy Decision in Elderly Prostate Cancer Patients" Life 12, no. 5: 732. https://doi.org/10.3390/life12050732
APA StyleFichte, A., Neumann, A., Weigelt, K., Guzman, J., Jansen, T., Keinert, J., Serrero, G., Yue, B., Stöhr, R., Greither, T., Hartmann, A., Wullich, B., Taubert, H., Wach, S., & Lieb, V. (2022). Combined miR-486 and GP88 (Progranulin) Serum Levels Are Suggested as Supportive Biomarkers for Therapy Decision in Elderly Prostate Cancer Patients. Life, 12(5), 732. https://doi.org/10.3390/life12050732