Prothrombinase-Induced Clotting Time to Measure Drug Concentrations of Rivaroxaban, Apixaban, and Edoxaban in Clinical Practice: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Setting, and Population
2.2. Data Collection and Samples
2.3. Determination of the Prothrombinase-Induced Clotting Time
2.4. LC-MS/MS Measurements
2.5. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Association between PiCT Measurements and DOAC Concentrations
3.3. Prediction of Clinically Significant Drug Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Barnes, G.D.; Lucas, E.; Alexander, G.C.; Goldberger, Z.D. National Trends in Ambulatory Oral Anticoagulant Use. Am. J. Med. 2015, 128, 1300–1305.e2. [Google Scholar] [CrossRef] [Green Version]
- Van den Heuvel, J.M.; Hovels, A.M.; Buller, H.R.; Mantel-Teeuwisse, A.K.; de Boer, A.; Maitland-van der Zee, A.H. NOACs replace VKA as preferred oral anticoagulant among new patients: A drug utilization study in 560 pharmacies in The Netherlands. Thromb. J. 2018, 16, 7. [Google Scholar] [CrossRef]
- Sauter, T.C.; Eberle, B.; Wuillemin, W.A.; Thiele, T.; Angelillo-Scherrer, A.; Exadaktylos, A.K.; Erdoes, G.; Cuker, A.; Nagler, M. How I manage patients with anticoagulation-associated bleeding or urgent surgery. Swiss Med. Wkly. 2018, 148, w14598. [Google Scholar] [CrossRef]
- Cuker, A. Laboratory measurement of the non-vitamin K antagonist oral anticoagulants: Selecting the optimal assay based on drug, assay availability, and clinical indication. J. Thromb. Thrombolysis 2016, 41, 241–247. [Google Scholar] [CrossRef]
- Cuker, A.; Siegal, D. Monitoring and reversal of direct oral anticoagulants. Am. Soc. Hematol. Educ. Program 2015, 2015, 117–124. [Google Scholar] [CrossRef]
- Enriquez, A.; Lip, G.Y.; Baranchuk, A. Anticoagulation reversal in the era of the non-vitamin K oral anticoagulants. Europace 2016, 18, 955–964. [Google Scholar] [CrossRef]
- Milling, T.J., Jr.; Frontera, J. Exploring indications for the Use of direct oral anticoagulants and the associated risks of major bleeding. Am. J. Manag. Care 2017, 23, S67–S80. [Google Scholar]
- Cuker, A.; Burnett, A.; Triller, D.; Crowther, M.; Ansell, J.; Van Cott, E.M.; Wirth, D.; Kaatz, S. Reversal of direct oral anticoagulants: Guidance from the Anticoagulation Forum. Am. J. Hematol. 2019, 94, 697–709. [Google Scholar] [CrossRef] [Green Version]
- Levy, J.H.; Ageno, W.; Chan, N.C.; Crowther, M.; Verhamme, P.; Weitz, J.I.; Subcommittee on Control of Anticoagulation. When and how to use antidotes for the reversal of direct oral anticoagulants: Guidance from the SSC of the ISTH. J. Thromb. Haemost. JTH 2016, 14, 623–627. [Google Scholar] [CrossRef]
- Lindhoff-Last, E. Direct oral anticoagulants (DOAC)—Management of emergency situations. Hamostaseologie 2017, 37, 257–266. [Google Scholar] [CrossRef]
- Moner-Banet, T.; Alberio, L.; Bart, P.A. Does One Dose Really Fit All? On the Monitoring of Direct Oral Anticoagulants: A Review of the Literature. Hamostaseologie 2020, 40, 184–200. [Google Scholar] [CrossRef]
- Lutz, J.; Jurk, K.; Schinzel, H. Direct oral anticoagulants in patients with chronic kidney disease: Patient selection and special considerations. Int. J. Nephrol. Renov. Dis. 2017, 10, 135–143. [Google Scholar] [CrossRef]
- Turpie, A.G.G.; Purdham, D.; Ciaccia, A. Nonvitamin K antagonist oral anticoagulant use in patients with renal impairment. Adv. Cardiovasc. Dis. 2017, 11, 243–256. [Google Scholar] [CrossRef] [Green Version]
- Kaserer, A.; Schedler, A.; Jetter, A.; Seifert, B.; Spahn, D.R.; Stein, P.; Studt, J.D. Risk Factors for Higher-than-Expected Residual Rivaroxaban Plasma Concentrations in Real-Life Patients. Thromb. Haemost. 2018, 118, 808–817. [Google Scholar] [CrossRef]
- Meihandoest, T.; Studt, J.D.; Mendez, A.; Alberio, L.; Fontana, P.; Wuillemin, W.A.; Schmidt, A.; Graf, L.; Gerber, B.; Maeder, G.M.; et al. Automated Thrombin Generation Assay for Rivaroxaban, Apixaban, and Edoxaban Measurements. Front. Cardiovasc. Med. 2021, 8, 717939. [Google Scholar] [CrossRef]
- Adcock, D.M.; Gosselin, R. Direct Oral Anticoagulants (DOACs) in the Laboratory: 2015 Review. Thromb. Res. 2015, 136, 7–12. [Google Scholar] [CrossRef] [Green Version]
- Douxfils, J.; Adcock, D.M.; Bates, S.M.; Favaloro, E.J.; Gouin-Thibault, I.; Guillermo, C.; Kawai, Y.; Lindhoff-Last, E.; Kitchen, S.; Gosselin, R.C. 2021 Update of the International Council for Standardization in Haematology Recommendations for Laboratory Measurement of Direct Oral Anticoagulants. Thromb. Haemost. 2021, 121, 1008–1020. [Google Scholar] [CrossRef]
- Douxfils, J.; Ageno, W.; Samama, C.M.; Lessire, S.; Ten Cate, H.; Verhamme, P.; Dogne, J.M.; Mullier, F. Laboratory testing in patients treated with direct oral anticoagulants: A practical guide for clinicians. J. Thromb. Haemost. JTH 2018, 16, 209–219. [Google Scholar] [CrossRef]
- Fontana, P.; Alberio, L.; Angelillo-Scherrer, A.; Asmis, L.M.; Korte, W.; Mendez, A.; Schmid, P.; Stricker, H.; Studt, J.D.; Tsakiris, D.A.; et al. Impact of rivaroxaban on point-of-care assays. Thromb. Res. 2017, 153, 65–70. [Google Scholar] [CrossRef]
- Nagakari, K.; Emmi, M.; Iba, T. Prothrombin Time Tests for the Monitoring of Direct Oral Anticoagulants and Their Evaluation as Indicators of the Reversal Effect. Clin. Appl. Thromb./Hemost. 2017, 23, 677–684. [Google Scholar] [CrossRef]
- Burki, S.; Brand, B.; Escher, R.; Wuillemin, W.A.; Nagler, M. Accuracy, reproducibility and costs of different laboratory assays for the monitoring of unfractionated heparin in clinical practice: A prospective evaluation study and survey among Swiss institutions. BMJ Open 2018, 8, e022943. [Google Scholar] [CrossRef]
- Brisset, A.C.; Ferrandez, A.; Krause, M.; Rathbun, S.; Marlar, R.; Korte, W. The PiCT((R)) test is a reliable alternative to the activated partial thromboplastin time in unfractionated heparin therapy management: Results from a multicenter study. J. Thromb. Haemost. JTH 2016, 14, 2187–2193. [Google Scholar] [CrossRef]
- Lind, S.E.; Boyle, M.E.; Fisher, S.; Ishimoto, J.; Trujillo, T.C.; Kiser, T.H. Comparison of the aPTT with alternative tests for monitoring direct thrombin inhibitors in patient samples. Am. J. Clin. Pathol. 2014, 141, 665–674. [Google Scholar] [CrossRef] [Green Version]
- Korte, W.; Jovic, R.; Hollenstein, M.; Degiacomi, P.; Gautschi, M.; Ferrandez, A. The uncalibrated prothrombinase-induced clotting time test. Equally convenient but more precise than the aPTT for monitoring of unfractionated heparin. Hamostaseologie 2010, 30, 212–216. [Google Scholar]
- Schaden, E.; Jilch, S.; Hacker, S.; Schober, A.; Kozek-Langenecker, S. Monitoring of unfractionated heparin with rotational thrombelastometry using the prothrombinase-induced clotting time reagent (PiCT(R)). Clin. Chim. Acta 2012, 414, 202–205. [Google Scholar] [CrossRef]
- Meihandoest, T.; Studt, J.D.; Mendez, A.; Alberio, L.; Fontana, P.; Wuillemin, W.A.; Schmidt, A.; Graf, L.; Gerber, B.; Amstutz, U.; et al. Accuracy of a Single, Heparin-Calibrated Anti-Xa Assay for the Measurement of Rivaroxaban, Apixaban, and Edoxaban Drug Concentrations: A Prospective Cross-Sectional Study. Front. Cardiovasc. Med. 2022, 9, 817826. [Google Scholar] [CrossRef]
- Willekens, G.; Studt, J.D.; Mendez, A.; Alberio, L.; Fontana, P.; Wuillemin, W.A.; Schmidt, A.; Graf, L.; Gerber, B.; Bovet, C.; et al. A universal anti-Xa assay for rivaroxaban, apixaban, and edoxaban measurements: Method validation, diagnostic accuracy and external validation. Br. J. Haematol. 2021, 193, 1203–1212. [Google Scholar] [CrossRef]
- CLSI. Collection, Transport, and Processing of Blood Specimens for Testing Plasma-Based Coagulation Assays and Molecular Hemostasis Assays; Approved Guideline—Fifth Edition; CLSI Document H21-A5; CLSI: Wayne, PA, USA, 2008. [Google Scholar]
- Wolfensberger, N.; Georgiou, G.; Giabbani, E.; Reusser, M.; Njue, L.M.; Fiedler, M.; Leichtle, A.B.; Nagler, M. Rapid Centrifugation in the Routine Hemostasis Laboratory. Thromb. Haemost. 2019, 119, 2025–2033. [Google Scholar] [CrossRef] [Green Version]
- Raivio, P.; Kuitunen, A.; Petaja, J.; Ilveskero, S.; Lassila, R. Monitoring high-dose heparinization during cardiopulmonary by-pass—A comparison between prothrombinase-induced clotting time (PiCT) and two chromogenic anti-factor Xa activity assays. Thromb. Haemost. 2008, 99, 427–434. [Google Scholar] [CrossRef]
Patients Treated With | ||||
---|---|---|---|---|
Any Drug | Rivaroxaban | Apixaban | Edoxaban | |
Patients (n/%) | 851 (100) | 373 (43.8) | 414 (48.7) | 64 (7.5) |
Age (median/IQR) | 76 (66, 83) | 74 (63, 83) | 78 (68, 82) | 75 (56, 81) |
Female sex (n/%) | 360 (42.7) | 164 (44.1) | 167 (40.9) | 29 (46.0) |
Patients Treated with | ||||
---|---|---|---|---|
Any Drug | Rivaroxaban | Apixaban | Edoxaban | |
Spearman’s correlation coefficient (95% CI) | 0.75 (0.72, 0.78) | 0.85 (0.82, 0.88) | 0.66 (0.60, 0.71) | 0.78 (0.65, 0.86) |
Deming regression Slope (95% CI) | 0.14 (0.12, 0.16) | 0.15 (0.12, 0.18) | 0.12 (0.09, 0.16) | 0.10 (0.04, 0.17) |
Y-intercept (95% CI) | 37.5 (35.2, 39.9) | 36.1 (33.4, 38.8) | 38.9 (34.5, 43.2) | 41.3 (35.6, 47.0) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sathanantham, V.; Alberio, L.; Bovet, C.; Fontana, P.; Gerber, B.; Graf, L.; Mendez, A.; Sauter, T.C.; Schmidt, A.; Studt, J.-D.; et al. Prothrombinase-Induced Clotting Time to Measure Drug Concentrations of Rivaroxaban, Apixaban, and Edoxaban in Clinical Practice: A Cross-Sectional Study. Life 2022, 12, 1027. https://doi.org/10.3390/life12071027
Sathanantham V, Alberio L, Bovet C, Fontana P, Gerber B, Graf L, Mendez A, Sauter TC, Schmidt A, Studt J-D, et al. Prothrombinase-Induced Clotting Time to Measure Drug Concentrations of Rivaroxaban, Apixaban, and Edoxaban in Clinical Practice: A Cross-Sectional Study. Life. 2022; 12(7):1027. https://doi.org/10.3390/life12071027
Chicago/Turabian StyleSathanantham, Vepusha, Lorenzo Alberio, Cédric Bovet, Pierre Fontana, Bernhard Gerber, Lukas Graf, Adriana Mendez, Thomas C. Sauter, Adrian Schmidt, Jan-Dirk Studt, and et al. 2022. "Prothrombinase-Induced Clotting Time to Measure Drug Concentrations of Rivaroxaban, Apixaban, and Edoxaban in Clinical Practice: A Cross-Sectional Study" Life 12, no. 7: 1027. https://doi.org/10.3390/life12071027
APA StyleSathanantham, V., Alberio, L., Bovet, C., Fontana, P., Gerber, B., Graf, L., Mendez, A., Sauter, T. C., Schmidt, A., Studt, J. -D., Wuillemin, W. A., & Nagler, M. (2022). Prothrombinase-Induced Clotting Time to Measure Drug Concentrations of Rivaroxaban, Apixaban, and Edoxaban in Clinical Practice: A Cross-Sectional Study. Life, 12(7), 1027. https://doi.org/10.3390/life12071027