Prediction and Classification of COVID-19 Admissions to Intensive Care Units (ICU) Using Weighted Radial Kernel SVM Coupled with Recursive Feature Elimination (RFE)
Abstract
:1. Introduction
2. Materials and Methods
2.1. COVID-19 Data Set
2.2. Classification Methods
2.3. Linear Discriminant Analysis (LDA)
2.4. Support Vector Machine (SVM)
2.5. Recursive Feature Elimination (RFE) in SVM
2.6. Repeated Cross-Validated Accuracy
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sohrabi, C.; Alsafi, Z.; O’neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg. 2020, 76, 71–76, Erratum in Int. J. Surg. 2020, 77, 217. [Google Scholar] [CrossRef] [PubMed]
- Lu, H.; Stratton, C.W.; Tang, Y.W. Outbreak of pneumonia of unknown etiology in Wuhan, China: The mystery and the miracle. J. Med. Virol. 2020, 92, 401–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- World Health Organization. 2020 Coronavirus Disease 2019 (COVID-19): Situation Report, 82. World Health Organization. Available online: https://apps.who.int/iris/handle/10665/331780 (accessed on 16 January 2022).
- Worldometers.info. Dover, Delaware, U.S.A. Worldometer. Available online: https://www.worldometers.info/coronavirus/country/saudi-arabia/ (accessed on 16 January 2022).
- Dowd, J.B.; Andriano, L.; Brazel, D.M.; Rotondi, V.; Block, P.; Ding, X.; Liu, Y.; Mills, M.C. Demographic science aids in understanding the spread and fatality rates of COVID-19. Proc. Natl. Acad. Sci. USA 2020, 117, 9696–9698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanini, S.; Montaldo, C.; Nicastri, E.; Vairo, F.; Agrati, C.; Petrosillo, N.; Scognamiglio, P.; Antinori, A.; Puro, V.; Di Caro, A.; et al. COVID-19 disease-Temporal analyses of complete blood count parameters over course of illness, and relationship to patient demographics and management outcomes in survivors and non-survivors: A longitudinal descriptive cohort study. PLoS ONE 2020, 15, e0244129. [Google Scholar] [CrossRef] [PubMed]
- Asai, N.; Sakanashi, D.; Ohashi, W.; Nakamura, A.; Yamada, A.; Kawamoto, Y.; Miyazaki, N.; Ohno, T.; Koita, I.; Suematsu, H.; et al. Could threshold cycle value correctly reflect the severity of novel coronavirus disease 2019 (COVID-19)? J. Infect. Chemother. 2021, 27, 117–119. [Google Scholar] [CrossRef] [PubMed]
- Alosaimi, B.; Mubarak, A.; Hamed, M.E.; Almutairi, A.Z.; Alrashed, A.A.; AlJuryyan, A.; Enani, M.; Alenzi, F.Q.; Alturaiki, W. Complement Anaphylatoxins and Inflammatory Cytokines as Prognostic Markers for COVID-19 Severity and In-Hospital Mortality. Front. Immunol. 2021, 12, 668725. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, W.; Guo, W.; Guo, Y.; Shi, M.; Dong, G.; Ge, Q.; Zhu, J.; Lu, J. Prominent coagulation disorder is closely related to inflammatory response and could be as a prognostic indicator for ICU patients with COVID-19. J. Thromb. Thrombolysis 2020, 50, 825–832. [Google Scholar] [CrossRef]
- Primessnig, U.; Pieske, B.M.; Sherif, M. Increased mortality and worse cardiac outcome of acute myocardial infarction during the early COVID-19 pandemic. ESC Heart Fail. 2021, 8, 333–343. [Google Scholar] [CrossRef]
- Gu, X.; Li, X.; An, X.; Yang, S.; Wu, S.; Yang, X.; Wang, H. Elevated serum aspartate aminotransferase level identifies patients with coronavirus disease 2019 and predicts the length of hospital stay. J. Clin. Lab. Anal. 2020, 34, e23391. [Google Scholar] [CrossRef]
- Gagliardi, I.; Patella, G.; Michael, A.; Serra, R.; Provenzano, M.; Andreucci, M. COVID-19 and the Kidney: From Epidemiology to Clinical Practice. J. Clin. Med. 2020, 9, 2506. [Google Scholar] [CrossRef]
- Kebria, P.M.; Khosravi, A.; Salaken, S.M.; Hossain, I.; Kabir, H.M.; Koohestani, A.; Alizadehsani, R.; Nahavandi, S. Deep imitation learning: The impact of depth on policy performance. In International Conference on Neural Information Processing; Springer: Cham, Switzerland, 2018; pp. 172–181. [Google Scholar]
- Shamsi, A.; Asgharnezhad, H.; Jokandan, S.S.; Khosravi, A.; Kebria, P.M.; Nahavandi, D.; Nahavandi, S.; Srinivasan, D. An uncertainty-aware transfer learning-based framework for COVID-19 diagnosis. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 1408–1417. [Google Scholar] [CrossRef] [PubMed]
- Zoabi, Y.; Deri-Rozov, S.; Shomron, N. Machine learning-based prediction of COVID-19 diagnosis based on symptoms. Npj Digit. Med. 2021, 4, 3. [Google Scholar] [CrossRef] [PubMed]
- Moulaei, K.; Shanbehzadeh, M.; Mohammadi-Taghiabad, Z.; Kazemi-Arpanahi, H. Comparing machine learning algorithms for predicting COVID-19 mortality. BMC Med. Inform. Decis. Mak. 2022, 22, 2. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Deng, R.; Gou, L.; Fu, Z.; Zhang, X.; Shao, F.; Wang, G.; Fu, W.; Xiao, J.; Ding, X.; et al. Preliminary study to identify severe from moderate cases of COVID-19 using combined hematology parameters. Ann. Transl. Med. 2020, 8, 593. [Google Scholar] [CrossRef]
- Singh, V.; Poonia, R.C.; Kumar, S.; Dass, P.; Agarwal, P.; Bhatnagar, V.; Raja, L. Prediction of COVID-19 corona virus pandemic based on time series data using support vector machine. J. Discret. Math. Sci. Cryptogr. 2020, 23, 1583–1597. [Google Scholar] [CrossRef]
- Chatterjee, S.; Dey, D.; Munshi, S. Integration of morphological preprocessing and fractal based feature extraction with recursive feature elimination for skin lesion types classification. Comput. Methods Programs Biomed. 2019, 178, 201–218. [Google Scholar] [CrossRef]
- Weston, J.; Elisseeff, A.; Schölkopf, B.; Tipping, M. Use of the zero norm with linear models and kernel methods. J. Mach. Learn. Res. 2003, 3, 1439–1461. [Google Scholar]
- Zhou, D.X.; Jetter, K. Approximation with polynomial kernels and SVM classifiers. Adv. Comput. Math. 2006, 25, 323–344. [Google Scholar] [CrossRef]
- Chang, Q.; Chen, Q.; Wang, X. Scaling Gaussian RBF kernel width to improve SVM classification. In Proceedings of the 2005 International Conference on Neural Networks and Brain, Beijing, China, 13–15 October 2005; pp. 19–22. [Google Scholar] [CrossRef]
- Wei, W.; Jia, Q. Weighted Feature Gaussian Kernel SVM for Emotion Recognition. Comput. Intell. Neurosci. 2016, 2016, 7696035. [Google Scholar] [CrossRef] [Green Version]
- Huang, M.L.; Hung, Y.H.; Lee, W.M.; Li, R.K.; Jiang, B.R. SVM-RFE based feature selection and Taguchi parameters optimization for multiclass SVM classifier. Sci. World J. 2014, 2014, 795624. [Google Scholar] [CrossRef]
- Pourhomayoun, M.; Shakibi, M. Predicting mortality risk in patients with COVID-19 using machine learning to help medical decision-making. Smart Health 2021, 20, 100178. [Google Scholar] [CrossRef] [PubMed]
Variable | All Patients (n = 100) | Non-ICU (n = 50) | ICU (n = 50) |
---|---|---|---|
Demographic | |||
Age | |||
range | 24–84 | 24–84 | 25–79 |
Gender | |||
Male | 56 (56%) | 25 (50%) | 31 (62%) |
Female | 44 (44%) | 25 (50%) | 19 (38%) |
Nationality | |||
Saudi | 57 (57%) | 28 (56%) | 29 (58%) |
Non- Saudi | 43 (43%) | 22 (44%) | 21 (42%) |
Fatality | |||
Died | 10 (10%) | 0 (0%) | 10 (20%) |
Survived | 90 (90%) | 50 (100%) | 40 (80%) |
Respiratory Disease | |||
Yes | 12 (12%) | 3 (6%) | 9 (18%) |
No | 88 (88%) | 47 (94%) | 41 (82%) |
Chronic Disease | |||
Yes | 62 (62%) | 30 (60%) | 32 (64%) |
No | 38 (38%) | 20 (40%) | 18 (36%) |
Circulatory Disease | |||
Yes | 47 (47%) | 24 (48%) | 23 (46%) |
No | 53 (53%) | 26 (52%) | 27 (54%) |
Metabolic Disease | |||
Yes | 62 (62%) | 20 (40%) | 18 (36%) |
No | 38 (38%) | 30 (60%) | 32 (64%) |
Kidney Disease | |||
Yes | 8 (8%) | 1 (2%) | 7 (14%) |
No | 92 (92%) | 49 (98%) | 43 (86%) |
Variable | Non-ICU Mean (SD) | ICU Mean (SD) | p-Value * | |
---|---|---|---|---|
1 | Weight | 81.8 (18.6) | 95.4 (30.9) | 0.009 |
2 | PCR Ct Value | 27.0 (4.1) | 25.4 (5.3) | 0.091 |
3 | CCL19 | 0.1 (0.2) | 0.2 (0.2) | 0.307 |
4 | INF-β | 12.8 (21.7) | 53.4 (55.1) | <0.001 |
5 | BLC | 0.2 (0.2) | 0.5 (0.6) | 0.001 |
6 | INR | 1.0 (0.2) | 1.3 (0.8) | 0.009 |
7 | PT | 13.6 (2.3) | 17.6 (10.4) | 0.009 |
8 | PTT | 38.0 (10.7) | 45.3 (13.4) | 0.003 |
9 | CK.MB | 26.1 (8.4) | 43.8 (58.5) | 0.036 |
10 | HB | 12.6 (2.0) | 9.5 (2.1) | <0.001 |
11 | Platelets | 346.3 (118.8) | 239.5 (132.3) | <0.001 |
12 | RBC | 4.5 (0.6) | 3.3 (0.8) | <0.001 |
13 | Urea | 6.3 (3.4) | 13.5 (11.1) | <0.001 |
14 | Creatinine | 78.5 (28.9) | 116.0 (85.1) | 0.004 |
15 | Albumin | 33.4 (3.8) | 27.1 (6.0) | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshanbari, H.M.; Mehmood, T.; Sami, W.; Alturaiki, W.; Hamza, M.A.; Alosaimi, B. Prediction and Classification of COVID-19 Admissions to Intensive Care Units (ICU) Using Weighted Radial Kernel SVM Coupled with Recursive Feature Elimination (RFE). Life 2022, 12, 1100. https://doi.org/10.3390/life12071100
Alshanbari HM, Mehmood T, Sami W, Alturaiki W, Hamza MA, Alosaimi B. Prediction and Classification of COVID-19 Admissions to Intensive Care Units (ICU) Using Weighted Radial Kernel SVM Coupled with Recursive Feature Elimination (RFE). Life. 2022; 12(7):1100. https://doi.org/10.3390/life12071100
Chicago/Turabian StyleAlshanbari, Huda M., Tahir Mehmood, Waqas Sami, Wael Alturaiki, Mauawia A. Hamza, and Bandar Alosaimi. 2022. "Prediction and Classification of COVID-19 Admissions to Intensive Care Units (ICU) Using Weighted Radial Kernel SVM Coupled with Recursive Feature Elimination (RFE)" Life 12, no. 7: 1100. https://doi.org/10.3390/life12071100
APA StyleAlshanbari, H. M., Mehmood, T., Sami, W., Alturaiki, W., Hamza, M. A., & Alosaimi, B. (2022). Prediction and Classification of COVID-19 Admissions to Intensive Care Units (ICU) Using Weighted Radial Kernel SVM Coupled with Recursive Feature Elimination (RFE). Life, 12(7), 1100. https://doi.org/10.3390/life12071100