Differences in the Sensitivity of the Baroreflex of Heart Rate Regulation to Local Geomagnetic Field Variations in Normotensive and Hypertensive Humans
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kleimenova, N.G.; Kozyreva, O.V.; Malysheva, L.M.; Antonova, E.E.; Kornilova, T.A.; Kornilov, I.A. Wave structure of magnetic substorms at high latitudes. Geomagn. Aeron. 2012, 52, 746–754. [Google Scholar] [CrossRef]
- Markov, A.L.; Zenchenko, T.A.; Solonin, Y.G.; Boiko, E.R. Vulnerability to atmospheric and geomagnetic factors of the body functions in healthy male dwellers of the Russian North. Aerosp. Environ. Med. 2013, 47, 29–32. [Google Scholar]
- Smirnova, S.L.; Suslonova, O.V.; Roshchevskaya, I.M. Cardioelectric field on the body surface during atrial depolarization in rats with spontaneous arterial hypertension. Pract. Med. 2018, 1, 61–64. [Google Scholar]
- Ukhov, Y.I.; Krapivnikova, O.V.; Kositsyn, N.S. Synchronization effects of magnetic wave to the mechanism of cardic rhythm regulation in normal people. IP Pavlov Russ. Med. Biol. Her. 2014, 22, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Komarov, F.I.; Rapoport, S.I.; Breus, T.K.; Chibisov, S.M. Desynchronization of biological rhythms in response to environmental factors. Clin. Med. 2017, 95, 502–512. [Google Scholar] [CrossRef]
- Paus, T.; Sipila, P.K.; Strafella, A.P. Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: An EEG study. J. Neurophysiol. 2001, 86, 1938–1990. [Google Scholar] [CrossRef] [Green Version]
- Borodin, A.S.; Tuzhilkin, D.A.; Gudina, M.V.; Vladimirsky, B.M. Phenomenological features of mortality and morbidity dynamics in Tomsk versus heliogeophysical activity. Izv. Atmos. Ocean. Phys. 2015, 51, 792–805. [Google Scholar] [CrossRef]
- Okada, Y.; Galbreath, M.; Shibata, S.; Jarvis, S.; Van Gundy, T.B.; Meier, R.L.; Vongpatanasin, W.; Levine, B.D.; Fu, Q. Relationship between sympathetic baroreflex sensitivity and arterial stiffness in elderly men and women. Hypertension 2012, 59, 98–104. [Google Scholar] [CrossRef] [Green Version]
- Fu, Q.; Ogoh, S. Sex differences in baroreflex function in health and disease. J. Physiol. Sci. 2019, 69, 851–859. [Google Scholar] [CrossRef]
- Del Colle, S.; Milan, A.; Caserta, M.; Dematteis, A.; Naso, D.; Mulatero, P.; Rabbia, F.; Veglio, F. Baroreflex sensitivity is impaired in essential hypertensives with central obesity. J. Hum. Hypertens. 2007, 21, 473–478. [Google Scholar] [CrossRef] [Green Version]
- Emelyanov, I.V.; Avdonina, N.G.; Mamontov, O.V.; Zvartau, N.E.; Konradi, A.O. Spontaneous arterial baroreflex status as a predictor of antihypertensive treatment efficacy in resistant hypertension. Arter. Hypertens. 2014, 20, 86–91. [Google Scholar] [CrossRef]
- Gmitrov, J. Geomagnetic field modulates artificial static magnetic field effect on arterial baroreflex and on microcirculation. Int. J. Biometeorol. 2007, 51, 335–344. [Google Scholar] [CrossRef]
- Rahman, F.; Pechnik, S.; Gross, D.; Sewell, L.; Goldstein, D.S. Low frequency power of heart rate variability reflects baroreflex function, not cardiac sympathetic innervation. Clin. Auton. Res. 2011, 21, 133–141. [Google Scholar] [CrossRef] [Green Version]
- Thomas, B.L.; Claassen, N.; Becker, P.; Viljoen, M. Validity of commonly used heart rate variability markers of autonomic nervous system function. Neuropsychobiology 2019, 78, 14–26. [Google Scholar] [CrossRef]
- Otsuka, K.; Oinuma, S.; Cornélissen, G.; Weydahl, A.; Ichimaru, Y.; Kobayashi, M.; Yano, S.; Holmeslet, B.; Hansen, T.; Mitsutake, G.; et al. Alternating light-darkness-influenced human electrocardiographic magnetoreception in association with geomagnetic pulsations. Biomed. Pharmacother. 2000, 55 (Suppl. S1), 63–75. [Google Scholar] [CrossRef]
- Nagorskiy, P.; Zenchenko, T.; Breus, T.; Smirnov, S. Variations of Magnetic and Electrostatic Atmospheric Parameters and Dynamics of the Heart Rate in mHz Range. In Proceeding of the 40th COSPAR Scientific Assembly, Moscow, Russia, 2–10 August 2014; Available online: https://ui.adsabs.harvard.edu/abs/2014cosp...40E2219N/abstract (accessed on 4 May 2022).
- Ulmer, W. On the role of the interactions of ions with external magnetic fields in physiologic processes and their importance in chronobiology. In Vivo 2002, 16, 31–36. [Google Scholar]
- Alabdulgade, A.; Maccraty, R.; Atkinson, M.; Landauskas, M. Human Heart Rhythm Sensitivity to Earth Local Magnetic Field Fluctuations. J. Vibroeng. 2015, 17, 3271–3278. Available online: https://www.jvejournals.com/article/16417 (accessed on 4 May 2022).
- Gmitrov, J. Baroreceptor stimulation enhanced nitric oxide vasodilator responsiveness, a new aspect of baroreflex physiology. Microvasc. Res. 2015, 98, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Liboff, A.R. ION cyclotron resonance: Geomagnetic strategy for living systems? Electromagn. Biol. Med. 2019, 38, 143–148. [Google Scholar] [CrossRef]
- Mukchachev, E.V.; Siretskaia, T.V. Theoretical explanation of hybrid magnetic field application to achieve the biotropism based on the V.V. Lednev’s model (analytical review). Appl. Probl. Saf. Tech. Biotech. Syst. 2019, 2, 23–30. [Google Scholar] [CrossRef]
- Gmitrov, J.; Ohkudo, C. Artificial static and geomagnetic field interrelated impact on cardiovascular regulation. Bioelectromagnetics 2002, 23, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Sevoz-Couche, C.; Laborde, S. Heart rate variability and slow-paced breathing:when coherence meets resonance. Neurosci. Biobehav. Rev. 2022, 135, 104576. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.; Goldberger, A.L.; Peng, C.-K. Multiscale entropy analysis of biological signals. Phys. Rev. E 2005, 71, 021906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | Group I (n = 14) | Group II (n = 26) | p |
---|---|---|---|
LF, mc2 | 12/85.7 | 17/65.4 | 0.170 |
LF, % | 11/78.6 | 15/57.7 | 0.187 |
LF, mc2 or LF, % | 14/100 | 18/69.2 | 0.034 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poskotinova, L.; Krivonogova, E.; Demin, D.; Zenchenko, T. Differences in the Sensitivity of the Baroreflex of Heart Rate Regulation to Local Geomagnetic Field Variations in Normotensive and Hypertensive Humans. Life 2022, 12, 1102. https://doi.org/10.3390/life12071102
Poskotinova L, Krivonogova E, Demin D, Zenchenko T. Differences in the Sensitivity of the Baroreflex of Heart Rate Regulation to Local Geomagnetic Field Variations in Normotensive and Hypertensive Humans. Life. 2022; 12(7):1102. https://doi.org/10.3390/life12071102
Chicago/Turabian StylePoskotinova, Liliya, Elena Krivonogova, Denis Demin, and Tatyana Zenchenko. 2022. "Differences in the Sensitivity of the Baroreflex of Heart Rate Regulation to Local Geomagnetic Field Variations in Normotensive and Hypertensive Humans" Life 12, no. 7: 1102. https://doi.org/10.3390/life12071102
APA StylePoskotinova, L., Krivonogova, E., Demin, D., & Zenchenko, T. (2022). Differences in the Sensitivity of the Baroreflex of Heart Rate Regulation to Local Geomagnetic Field Variations in Normotensive and Hypertensive Humans. Life, 12(7), 1102. https://doi.org/10.3390/life12071102