Immune Responses to Some Viral Infections That Have a High Evolutionary Potential—A Case Report with Literature Review
Abstract
:1. Introduction
2. Post-Treatment Lyme Disease Syndrome
3. SARS-CoV-2 Infection
4. Diagnostic Possibilities in SARS-CoV-2 Infection
4.1. Laboratory Investigations
4.1.1. Level I
4.1.2. Level II
4.1.3. Positive Diagnosis
- Children and adolescents aged 0 to 19 years old.
- Fever lasting more than 3 days.
- Two of the following: skin manifestations similar to Kawasaki disease, hypotension or shock, signs of myocardial, pericardial, or valvular dysfunction, coronary abnormalities as well as changes in troponin and NT-proBNP levels, changes in coagulopathy (prothrombin PT and the partial thromboplastin time APPT as well as D-dimers), acute gastrointestinal symptoms: vomiting, diarrhea, and abdominal pain.
- Inflammation markers increased: ESR, CRP, and procalcitonin (PCT).
- Elimination of obvious causes of bacterial infection: bacterial sepsis, staphylococcal or streptococcal toxic shock syndromes.
- RT-PCR SARS-COV-2 positive, SARS-COV-2 antigen-positive, serology positive, or contact with a person positive for SARS-COV-2 virus.
4.1.4. Differential Diagnosis
5. Treatment of MISC-C
5.1. Immunomodulatory Anti-Inflammatory Treatment
5.2. Antiviral Treatment
5.3. Anticoagulant and Antiplatelet Agents
5.4. Antibiotic Treatment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sur, G.; Delia, S.; Sur, L.; Sur, D.; Floca, E. Disease with a Thousand Faces—A Case Report. 2013. Available online: https://www.omicsonline.org/scientific-reports/0975-0851-SR-659.pdf (accessed on 8 March 2022).
- Schmid, H.; Heininger, U. Posttreatment Lyme Disease Syndrome-What It Might Be and What It Is Not. Pediatr. Infect. Dis. J. 2021, 40, S31–S34. Available online: https://journals.lww.com/pidj/Fulltext/2021/05001/Posttreatment_Lyme_Disease_Syndrome_What_It_Might.7.aspx (accessed on 8 March 2022). [CrossRef]
- Huppertz, H.I.; Bartmann, P.; Heininger, U.; Fingerle, V.; Kinet, M.; Klein, R.; Korenke, G.C.; Nentwich, H.J. Rational diagnostic strategies for Lyme borreliosis in children and adolescents: Recommendations by the Committee for Infectious Diseases and Vaccinations of the German Academy for Pediatrics and Adolescent Health. Eur. J. Pediatr. 2012, 171, 1619–1624. Available online: https://link.springer.com/article/10.1007/s00431-012-1779-4 (accessed on 8 March 2022). [CrossRef] [Green Version]
- Epidemiologisches Bulletin, Robert Koch-Institut. Seroprävalenz der Lyme-Borreliose bei Kindern und Jugend-lichen in Deutschland; Robert Koch-Institut: Berlin, Germany, 2012. [Google Scholar]
- Stanek, G.; Fingerle, V.; Hunfeld, K.-P.; Jaulhac, B.; Kaiser, R.; Krause, A.; Kristoferitsch, W.; O’Connell, S.; Ornstein, K.; Strle, F.; et al. Lyme borreliosis: Clinical case definitions for diagnosis and management in Europe. Clin. Microbiol. Infect. 2011, 17, 69–79. Available online: https://pubmed.ncbi.nlm.nih.gov/20132258/ (accessed on 8 March 2022). [CrossRef] [Green Version]
- Sanchez, E.; Vannier, E.; Wormser, G.P.; Hu, L.T. Diagnosis, Treatment, and Prevention of Lyme Disease, Human Granulocytic Anaplasmosis, and Babesiosis: A Review. JAMA 2016, 315, 1767–1777. Available online: https://pubmed.ncbi.nlm.nih.gov/27115378/ (accessed on 8 March 2022). [CrossRef]
- Huppertz, H.I.; Böhme, M.; Standaert, S.M.; Karch, H.; Plotkin, S.A. Incidence of Lyme borreliosis in the Würzburg region of Germany. Eur. J. Clin. Microbiol. Infect. Dis. 1999, 18, 697–703. Available online: https://pubmed.ncbi.nlm.nih.gov/10584895/ (accessed on 8 March 2022). [CrossRef]
- Gerber, M.A.; Shapiro, E.D.; Burke, G.S.; Parcells, V.J.; Bell, G.L. Lyme disease in children in southeastern Connecticut. Pediatric Lyme Disease Study Group. N. Engl. J. Med. 1996, 335, 1270–1274. Available online: https://pubmed.ncbi.nlm.nih.gov/8857006/ (accessed on 8 March 2022). [CrossRef]
- Halperin, J.J. Nervous system Lyme disease: Is there a controversy? Semin. Neurol. 2011, 31, 317–324. Available online: https://pubmed.ncbi.nlm.nih.gov/21964848/ (accessed on 8 March 2022). [CrossRef] [Green Version]
- Oksi, J.; Nikoskelainen, J.; Hiekkanen, H.; Lauhio, A.; Peltomaa, M.; Pitkäranta, A.; Nyman, D.; Granlund, H.; Carlsson, S.A.; Seppälä, I.; et al. Duration of antibiotic treatment in disseminated Lyme borreliosis: A double-blind, randomized, placebo-controlled, multicenter clinical study. Eur. J. Clin. Microbiol. Infect. Dis. 2007, 26, 571–581. Available online: https://pubmed.ncbi.nlm.nih.gov/17587070/ (accessed on 8 March 2022). [CrossRef]
- Klempner, M.S.; Hu, L.T.; Evans, J.; Schmid, C.H.; Johnson, G.M.; Trevino, R.P.; Norton, D.; Levy, L.; Wall, D.; McCall, J.; et al. Two controlled trials of antibiotic treatment in patients with persistent symptoms and a history of Lyme disease. N. Engl. J. Med. 2001, 345, 85–92. Available online: https://pubmed.ncbi.nlm.nih.gov/11450676/ (accessed on 8 March 2022). [CrossRef] [Green Version]
- Berende, A.; ter Hofstede, H.J.; Vos, F.J.; van Middendorp, H.; Vogelaar, M.L.; Tromp, M.; van den Hoogen, F.H.; Donders, A.R.T.; Evers, A.W.; Kullberg, B.J. Randomized Trial of Longer-Term Therapy for Symptoms Attributed to Lyme Disease. N. Engl. J. Med. 2016, 374, 1209–1220. Available online: https://pubmed.ncbi.nlm.nih.gov/27028911/ (accessed on 8 March 2022). [CrossRef]
- Nemeth, J.; Bernasconi, E.; Heininger, U.; Abbas, M.; Nadal, D.; Strahm, C.; Erb, S.; Zimmerli, S.; Furrer, H.; Delaloye, J.; et al. Update of the Swiss guidelines on post-treatment Lyme disease syndrome. Swiss Med. Wkly. 2016, 146, w14353. Available online: https://pubmed.ncbi.nlm.nih.gov/27922168/ (accessed on 8 March 2022). [CrossRef] [PubMed] [Green Version]
- Krupp, L.B.; Hyman, L.G.; Grimson, R.; Coyle, P.K.; Melville, P.; Ahnn, S.; Dattwyler, R.; Chandler, B. Study and treatment of post Lyme disease (STOP-LD): A randomized double masked clinical trial. Neurology 2003, 60, 1923–1930. Available online: https://pubmed.ncbi.nlm.nih.gov/12821734/ (accessed on 8 March 2022). [CrossRef] [PubMed]
- Vázquez, M.; Sparrow, S.S.; Shapiro, E.D. Long-term neuropsychologic and health outcomes of children with facial nerve palsy attributable to Lyme disease. Pediatrics 2003, 112, e93–e97. Available online: https://pubmed.ncbi.nlm.nih.gov/12897313/ (accessed on 8 March 2022). [CrossRef] [PubMed] [Green Version]
- Sood, M.; Sharma, S.; Sood, I.; Sharma, K.; Kaushik, A. Emerging Evidence on Multisystem Inflammatory Syndrome in Children Associated with SARS-CoV-2 Infection: A Systematic Review with Meta-analysis. SN Compr. Clin. Med. 2021, 3, 38–47. Available online: https://pubmed.ncbi.nlm.nih.gov/33432304/ (accessed on 12 March 2022). [CrossRef]
- Esposito, S.; Principi, N. Multisystem Inflammatory Syndrome in Children Related to SARS-CoV-2. Paediatr. Drugs 2021, 23, 119–129. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7819738/ (accessed on 12 March 2022). [CrossRef]
- Henderson, L.A.; Canna, S.W.; Friedman, K.G.; Gorelik, M.; Lapidus, S.K.; Bassiri, H.; Behrens, E.M.; Ferris, A.; Kernan, K.F.; Schulert, G.S.; et al. American College of Rheumatology Clinical Guidance for Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 and Hyperinflammation in Pediatric COVID-19: Version 2. Arthritis Rheumatol. 2021, 73, e13–e29. Available online: https://pubmed.ncbi.nlm.nih.gov/33277976/ (accessed on 12 March 2022). [CrossRef]
- Feldstein, L.R.; Tenforde, M.W.; Friedman, K.G.; Newhams, M.; Rose, E.B.; Dapul, H.; Soma, V.L.; Maddux, A.B.; Mourani, P.M.; Bowens, C.; et al. Characteristics and Outcomes of US Children and Adolescents With Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19. JAMA 2021, 325, 1074–1087. Available online: https://pubmed.ncbi.nlm.nih.gov/33625505/ (accessed on 12 March 2022). [CrossRef]
- Cirks, B.T.; Rowe, S.J.; Jiang, S.Y.; Brooks, R.M.; Mulreany, M.P.; Hoffner, W.; Jones, O.Y.; Hickey, P.W. Sixteen Weeks Later: Expanding the Risk Period for Multisystem Inflammatory Syndrome in Children. J. Pediatric. Infect. Dis. Soc. 2021, 10, 686–690. Available online: https://pubmed.ncbi.nlm.nih.gov/33458751/ (accessed on 12 March 2022). [CrossRef]
- Kaushik, A.; Gupta, S.; Sood, M.; Sharma, S.; Verma, S. A Systematic Review of Multisystem Inflammatory Syndrome in Children Associated With SARS-CoV-2 Infection. Pediatr. Infect. Dis. J. 2020, 39, e340–e346. Available online: https://pubmed.ncbi.nlm.nih.gov/32925547/ (accessed on 12 March 2022). [CrossRef]
- Ahmed, M.; Advani, S.; Moreira, A.; Zoretic, S.; Martinez, J.; Chorath, K.; Acosta, S.; Naqvi, R.; Burmeister-Morton, F.; Burmeister, F.; et al. Multisystem inflammatory syndrome in children: A systematic review. EClinicalMedicine 2020, 26, 100527. Available online: https://pubmed.ncbi.nlm.nih.gov/32923992/ (accessed on 12 March 2022). [CrossRef]
- Davies, P.; Evans, C.; Kanthimathinathan, H.K.; Lillie, J.; Brierley, J.; Waters, G.; Johnson, M.; Griffiths, B.; Du Pré, P.; Mohammad, Z.; et al. Intensive care admissions of children with paediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2 (PIMS-TS) in the UK: A multicentre observational study. Lancet Child Adolesc. Health 2020, 4, 669–677. Available online: https://pubmed.ncbi.nlm.nih.gov/32653054/ (accessed on 12 March 2022). [CrossRef]
- Rubens, J.H.; Akindele, N.P.; Tschudy, M.M.; Sick-Samuels, A.C. Acute covid-19 and multisystem inflammatory syndrome in children. BMJ 2021, 372, n385. Available online: https://pubmed.ncbi.nlm.nih.gov/33648933/ (accessed on 12 March 2022). [CrossRef] [PubMed]
- Multisystem Inflammatory Syndrome in Children (MIS-C) Interim Guidance. Available online: https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/clinical-guidance/multisystem-inflammatory-syndrome-in-children-mis-c-interim-guidance/ (accessed on 12 March 2022).
- Godfred-Cato, S.; Bryant, B.; Leung, J.; Oster, M.E.; Conklin, L.; Abrams, J.; Roguski, K.; Wallace, B.; Prezzato, E.; Koumans, E.H.; et al. COVID-19-Associated Multisystem Inflammatory Syndrome in Children—United States, March–July 2020. MMWR Morb. Mortal Wkly. Rep. 2020, 69, 1074–1080. Available online: https://pubmed.ncbi.nlm.nih.gov/32790663/ (accessed on 12 March 2022). [CrossRef] [PubMed]
- Sperotto, F.; Friedman, K.G.; Son, M.B.F.; VanderPluym, C.J.; Newburger, J.W.; Dionne, A. Cardiac manifestations in SARS-CoV-2-associated multisystem inflammatory syndrome in children: A comprehensive review and proposed clinical approach. Eur. J. Pediatr. 2021, 180, 307–322. Available online: https://pubmed.ncbi.nlm.nih.gov/32803422/ (accessed on 12 March 2022). [CrossRef]
- Dolhnikoff, M.; Ferranti, J.F.; de Almeida Monteiro, R.A.; Duarte-Neto, A.N.; Gomes-Gouvêa, M.S.; Degaspare, N.V.; Delgado, A.F.; Fiorita, C.M.; Leal, G.N.; Rodrigues, R.M.; et al. SARS-CoV-2 in cardiac tissue of a child with COVID-19-related multisystem inflammatory syndrome. Lancet Child Adolesc. Health 2020, 4, 790–794. Available online: https://pubmed.ncbi.nlm.nih.gov/32828177/ (accessed on 12 March 2022). [CrossRef]
- Whittaker, E.; Bamford, A.; Kenny, J.; Kaforou, M.; Jones, C.E.; Shah, P.; Ramnarayan, P.; Fraisse, A.; Miller, O.; Davies, P.; et al. Clinical Characteristics of 58 Children with a Pediatric Inflammatory Multisystem Syndrome Temporally Associated with SARS-CoV-2. JAMA-J. Am. Med. Assoc. 2020, 324, 259–269. [Google Scholar] [CrossRef]
- Webb, K.; Abraham, D.R.; Faleye, A.; McCulloch, M.; Rabie, H.; Scott, C. Multisystem inflammatory syndrome in children in South Africa. Lancet Child Adolesc. Health 2020, 4, e38. Available online: https://pubmed.ncbi.nlm.nih.gov/32835654/ (accessed on 12 March 2022). [CrossRef]
- Tullie, L.; Ford, K.; Bisharat, M.; Watson, T.; Thakkar, H.; Mullassery, D.; Giuliani, S.; Blackburn, S.; Cross, K.; De Coppi, P.; et al. Gastrointestinal features in children with COVID-19: An observation of varied presentation in eight children. Lancet Child Adolesc. Health 2020, 4, e19–e20. Available online: http://www.thelancet.com/article/S2352464220301656/fulltext (accessed on 12 March 2022). [CrossRef]
- Abdel-Mannan, O.; Eyre, M.; Löbel, U.; Bamford, A.; Eltze, C.; Hameed, B.; Hemingway, C.; Hacohen, Y. Neurologic and Radiographic Findings Associated With COVID-19 Infection in Children. JAMA Neurol. 2020, 77, 1440–1445. Available online: https://pubmed.ncbi.nlm.nih.gov/32609336/ (accessed on 12 March 2022). [CrossRef]
- LaRovere, K.L.; Riggs, B.J.; Poussaint, T.Y.; Young, C.C.; Newhams, M.M.; Maamari, M.; Walker, T.C.; Singh, A.R.; Dapul, H.; Hobbs, C.V.; et al. Neurologic Involvement in Children and Adolescents Hospitalized in the United States for COVID-19 or Multisystem Inflammatory Syndrome. JAMA Neurol. 2021, 78, 536–547. Available online: https://pubmed.ncbi.nlm.nih.gov/33666649/ (accessed on 12 March 2022). [CrossRef]
- Rekhtman, S.; Tannenbaum, R.; Strunk, A.; Birabaharan, M.; Wright, S.; Garg, A. Mucocutaneous disease and related clinical characteristics in hospitalized children and adolescents with COVID-19 and multisystem inflammatory syndrome in children. J. Am. Acad. Dermatol. 2021, 84, 408–414. Available online: https://pubmed.ncbi.nlm.nih.gov/33323343/ (accessed on 12 March 2022). [CrossRef] [PubMed]
- Feldstein, L.R.; Rose, E.B.; Horwitz, S.M.; Collins, J.P.; Newhams, M.M.; Son, M.B.F.; Newburger, J.W.; Kleinman, L.C.; Heidemann, S.M.; Martin, A.A.; et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N. Engl. J. Med. 2020, 383, 334–346. Available online: https://www.nejm.org/doi/full/10.1056/NEJMoa2021680 (accessed on 12 March 2022). [CrossRef] [PubMed]
- Dufort, E.M.; Koumans, E.H.; Chow, E.J.; Rosenthal, E.M.; Muse, A.; Rowlands, J.; Barranco, M.A.; Maxted, A.M.; Rosenberg, E.S.; Easton, D.; et al. Multisystem Inflammatory Syndrome in Children in New York State. N. Engl. J. Med. 2020, 383, 347–358. Available online: https://www.nejm.org/doi/full/10.1056/NEJMoa2021756 (accessed on 12 March 2022). [CrossRef]
- Verdoni, L.; Mazza, A.; Gervasoni, A.; Martelli, L.; Ruggeri, M.; Ciuffreda, M.; Bonanomi, E.; D’Antiga, L. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: An observational cohort study. Lancet 2020, 395, 1771–1778. Available online: http://www.thelancet.com/article/S014067362031103X/fulltext (accessed on 12 March 2022). [CrossRef]
- Toubiana, J.; Poirault, C.; Corsia, A.; Bajolle, F.; Fourgeaud, J.; Angoulvant, F.; Debray, A.; Basmaci, R.; Salvador, E.; Biscardi, S.; et al. Kawasaki-like multisystem inflammatory syndrome in children during the covid-19 pandemic in Paris, France: Prospective observational study. BMJ 2020, 369, m2094. Available online: https://pubmed.ncbi.nlm.nih.gov/32493739/ (accessed on 12 March 2022). [CrossRef] [PubMed]
- Pouletty, M.; Borocco, C.; Ouldali, N.; Caseris, M.; Basmaci, R.; Lachaume, N.; Bensaid, P.; Pichard, S.; Kouider, H.; Morelle, G.; et al. Paediatric multisystem inflammatory syndrome temporally associated with SARS-CoV-2 mimicking Kawasaki disease (Kawa-COVID-19): A multicentre cohort. Ann. Rheum. Dis. 2020, 79, 999–1006. Available online: https://ard.bmj.com/content/79/8/999 (accessed on 12 March 2022). [CrossRef]
- Yetkin, O.; Hacievliyagil, S.S.; Gunen, H. Assessment of B-type natriuretic peptide in patients with pneumonia. Int. J. Clin. Pract. 2008, 62, 488–491. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/j.1742-1241.2007.01305.x (accessed on 12 March 2022). [CrossRef]
- Ouldali, N.; Toubiana, J.; Antona, D.; Javouhey, E.; Madhi, F.; Lorrot, M.; Léger, P.L.; Galeotti, C.; Claude, C.; Wiedemann, A.; et al. Association of Intravenous Immunoglobulins Plus Methylprednisolone vs Immunoglobulins Alone With Course of Fever in Multisystem Inflammatory Syndrome in Children. JAMA 2021, 325, 855–864. Available online: https://pubmed.ncbi.nlm.nih.gov/33523115/ (accessed on 12 March 2022). [CrossRef]
- Paediatric Multisystem Inflammatory Syndrome Temporally Associated with COVID-19 (PIMS)—Guidance for Clinicians|RCPCH. Available online: https://www.rcpch.ac.uk/resources/paediatric-multisystem-inflammatory-syndrome-temporally-associated-covid-19-pims-guidance (accessed on 12 March 2022).
- Multisystem Inflammatory Syndrome in Children and Adolescents Temporally Related to COVID-19. Available online: https://www.who.int/news-room/commentaries/detail/multisystem-inflammatory-syndrome-in-children-and-adolescents-with-covid-19 (accessed on 12 March 2022).
- Son, M.B.F.; Newburger, J.W. Kawasaki Disease. Pediatr. Rev. 2018, 39, 78–90. Available online: https://pubmed.ncbi.nlm.nih.gov/29437127/ (accessed on 12 March 2022). [CrossRef] [Green Version]
- McCrindle, B.W.; Rowley, A.H.; Newburger, J.W.; Burns, J.C.; Bolger, A.F.; Gewitz, M.; Baker, A.L.; Jackson, M.A.; Takahashi, M.; Shah, P.B.; et al. Diagnosis, Treatment, and Long-Term Management of Kawasaki Disease: A Scientific Statement for Health Professionals From the American Heart Association. Circulation 2017, 135, e927–e999. Available online: https://pubmed.ncbi.nlm.nih.gov/28356445/ (accessed on 12 March 2022). [CrossRef]
- Lee, P.Y.; Day-Lewis, M.; Henderson, L.A.; Friedman, K.G.; Lo, J.; Roberts, J.E.; Lo, M.S.; Platt, C.D.; Chou, J.; Hoyt, K.J.; et al. Distinct clinical and immunological features of SARS-CoV-2-induced multisystem inflammatory syndrome in children. J. Clin. Investig. 2020, 130, 5942–5950. Available online: https://pubmed.ncbi.nlm.nih.gov/32701511/ (accessed on 12 March 2022). [CrossRef] [PubMed]
- Kurz, H.; Gombala, T. Multisystem Inflammatory Syndrome in Children (MIS-C)—A Case Series in December 2020 in Vienna, Austria. Front. Pediatr. 2021, 9, 564. [Google Scholar] [CrossRef] [PubMed]
- Cattalini, M.; Taddio, A.; Bracaglia, C.; Cimaz, R.; Paolera, S.D.; Filocamo, G.; La Torre, F.; Lattanzi, B.; Marchesi, A.; Simonini, G.; et al. Childhood multisystem inflammatory syndrome associated with COVID-19 (MIS-C): A diagnostic and treatment guidance from the Rheumatology Study Group of the Italian Society of Pediatrics. Ital. J. Pediatr. 2021, 47, 24. Available online: https://ijponline.biomedcentral.com/articles/10.1186/s13052-021-00980-2 (accessed on 12 March 2022). [CrossRef] [PubMed]
- Kaushik, S.; Aydin, S.I.; Derespina, K.R.; Bansal, P.B.; Kowalsky, S.; Trachtman, R.; Gillen, J.K.; Perez, M.M.; Soshnick, S.H.; Conway Jr, E.E.; et al. Multisystem Inflammatory Syndrome in Children Associated with Severe Acute Respiratory Syndrome Coronavirus 2 Infection (MIS-C): A Multi-institutional Study from New York City. J. Pediatr. 2020, 224, 24–29. Available online: https://pubmed.ncbi.nlm.nih.gov/32553861/ (accessed on 12 March 2022). [CrossRef]
- Manco-Johnson, M.J. How I treat venous thrombosis in children. Blood 2006, 107, 21–29. Available online: https://ashpublications.org/blood/article/107/1/21/21733/How-I-treat-venous-thrombosis-in-children (accessed on 12 March 2022). [CrossRef] [Green Version]
- Hennon, T.R.; Penque, M.D.; Abdul-Aziz, R.; Alibrahim, O.S.; McGreevy, M.B.; Prout, A.J.; Schaefer, B.A.; Ambrusko, S.J.; Pastore, J.V.; Turkovich, S.J.; et al. COVID-19 associated Multisystem Inflammatory Syndrome in Children (MIS-C) guidelines; a Western New York approach. Prog. Pediatr. Cardiol. 2020, 62, 101232. Available online: https://pubmed.ncbi.nlm.nih.gov/34121829/ (accessed on 12 March 2022). [CrossRef]
The Organ System Involved | Early Stage | Late Stage | |
---|---|---|---|
Localized | Disseminated | ||
Skin | Erythema migrans (EM) | Multiple EM Lymphocytoma | Acrodermatitis chronica atrophicans (rare in children) |
Dx: clinical Tx: Amoxicillin (<8 years of age) 10–14 days PO or Doxycycline (>9 years of age) 14–30 days PO | |||
Central nervous system | Not applicable | Peripheral facial nerve palsy Lymphocytic meningitis Meningopolyradiculitis Dx: clinical suspicion + serology in serum and CSF Tx: Ceftriaxone IV 14–21 days OR Doxycycline PO 14–21 days if isolated facial palsy without meningitis and age >9 years | Chronic encephalomyelitis Dx: clinical suspicion+ serology in serum and cerebrospinal fluid Tx: Ceftriaxone IV 14–28 days |
Musculoskeletal system | Not applicable | Arthralgia Myalgia Dx/Tx: associated with other manifestations, not established as a standalone manifestation | Episodic arthritis Chronic arthritis Dx: clinical suspicion +serum anti-B.b Ig G Tx: Amoxicillin (<8 years of age) or Doxycycline (>9 years of age) 28 days PO OR Ceftriaxone IV 14 days |
Heart | Not applicable | AV block Myocarditis Pericarditis Dx: clinical suspicion + serology Tx: Ceftriaxone IV 14–21 days OR Doxycycline age >9 years/Amoxicillin age <8 years PO 21 days in outpatients with only first-degree atrioventricular block with PR interval <300 milliseconds | Not applicable |
Kawasaki Disease | MISC-C | |
---|---|---|
Age | under 5 years | schoolchildren/teenagers |
Clinical: | ||
Fever | +++ | +++ |
Gastrointestinal symptoms | +/− | +++ |
Myocardical dysfunction | +/− | +++ |
Structural impairment | +++ | +++ |
Heart: | ||
Shock | +/− | +++ |
Left ventricular dysfunction | +/− | +++ |
Paraclinical: | ||
D-dimer | + | +++ |
Ferritin | + | +++ |
Troponin | + | +++ |
NT-proBNP | + | +++ |
CRP | + | ++ |
Lymphopenia | +/− | ++ |
Thrombocytopenia | +/− | ++ |
Thrombocytosis | ++ | +/− |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sur, M.L.; Moldovan, B.-S.; Mocanu, D.; Samasca, G.; Lupan, I.; Armat, I.; Harabagiu, M.; Sur, G.; Lazar, C. Immune Responses to Some Viral Infections That Have a High Evolutionary Potential—A Case Report with Literature Review. Life 2022, 12, 940. https://doi.org/10.3390/life12070940
Sur ML, Moldovan B-S, Mocanu D, Samasca G, Lupan I, Armat I, Harabagiu M, Sur G, Lazar C. Immune Responses to Some Viral Infections That Have a High Evolutionary Potential—A Case Report with Literature Review. Life. 2022; 12(7):940. https://doi.org/10.3390/life12070940
Chicago/Turabian StyleSur, Maria Lucia, Bogdan-Stefan Moldovan, Diana Mocanu, Gabriel Samasca, Iulia Lupan, Ionel Armat, Marin Harabagiu, Genel Sur, and Calin Lazar. 2022. "Immune Responses to Some Viral Infections That Have a High Evolutionary Potential—A Case Report with Literature Review" Life 12, no. 7: 940. https://doi.org/10.3390/life12070940
APA StyleSur, M. L., Moldovan, B. -S., Mocanu, D., Samasca, G., Lupan, I., Armat, I., Harabagiu, M., Sur, G., & Lazar, C. (2022). Immune Responses to Some Viral Infections That Have a High Evolutionary Potential—A Case Report with Literature Review. Life, 12(7), 940. https://doi.org/10.3390/life12070940