Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems
Abstract
:1. Introduction
2. N2O Emission
2.1. Hydroxylamine Oxidation
2.2. Nitrifier Denitrification
2.3. Heterotrophic Denitrification
2.4. NosZ-Dominated N2O Sink
3. N2O Emission Rate and Influence Factors
3.1. Dissolved Oxygen
3.2. NH4+ and NO2− Concentrations
3.3. Organics Availability
3.4. Flocs Formation
4. N2O Mitigation Strategies
4.1. Operational Parameters Control
4.2. Microbial Community Structure
5. Evaluation of N2O Mitigation Strategies
6. Conclusions and Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Eggleston, S.; Buendia, L.; Miwa, K. 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Intergovernmental Panel on Climate Change; Institute for Global Environmental Strategies: Hayama, Japan, 2006. [Google Scholar]
- Zumft, W.G.; Kroneck, P.M.H. Respiratory Transformation of Nitrous Oxide (N2O) to Dinitrogen by Bacteria and Archaea. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2006; Volume 52, pp. 107–227. ISBN 978-0-12-027752-0. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- Hockstad, L.; Cook, B. Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2010; USEPA: Washington, DC, USA, 2012. [Google Scholar]
- Cao, Y.; van Loosdrecht, M.C.M.; Daigger, G.T. Mainstream Partial Nitritation–Anammox in Municipal Wastewater Treatment: Status, Bottlenecks, and Further Studies. Appl. Microbiol. Biotechnol. 2017, 101, 1365–1383. [Google Scholar] [CrossRef]
- Lackner, S.; Gilbert, E.M.; Vlaeminck, S.E.; Joss, A.; Horn, H.; van Loosdrecht, M.C.M. Full-Scale Partial Nitritation/Anammox Experiences—An Application Survey. Water Res. 2014, 55, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Russ, L.; Kartal, B.; Op Den Camp, H.J.M.; Sollai, M.; Le Bruchec, J.; Caprais, J.-C.; Godfroy, A.; Sinninghe Damsté, J.S.; Jetten, M.S.M. Presence and Diversity of Anammox Bacteria in Cold Hydrocarbon-Rich Seeps and Hydrothermal Vent Sediments of the Guaymas Basin. Front. Microbiol. 2013, 4, 219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zekker, I.; Mandel, A.; Rikmann, E.; Jaagura, M.; Salmar, S.; Ghangrekar, M.M.; Tenno, T. Ameliorating Effect of Nitrate on Nitrite Inhibition for Denitrifying P-Accumulating Organisms. Sci. Total Environ. 2021, 797, 149133. [Google Scholar] [CrossRef] [PubMed]
- Muangthong-on, T. Evaluation of N2O Production from Anaerobic Ammonium Oxidation (Anammox) at Different Influent Ammonia to Nitrite Ratios. Energy Procedia 2011, 8, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Zekker, I.; Artemchuk, O.; Rikmann, E.; Ohimai, K.; Dhar Bhowmick, G.; Madhao Ghangrekar, M.; Burlakovs, J.; Tenno, T. Start-Up of Anammox SBR from Non-Specific Inoculum and Process Acceleration Methods by Hydrazine. Water 2021, 13, 350. [Google Scholar] [CrossRef]
- Mulder, A.; Graaf, A.A.; Robertson, L.A.; Kuenen, J.G. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized Bed Reactor. FEMS Microbiol. Ecol. 1995, 16, 177–184. [Google Scholar] [CrossRef]
- Connan, R.; Dabert, P.; Moya-Espinosa, M.; Bridoux, G.; Béline, F.; Magrí, A. Coupling of Partial Nitritation and Anammox in Two- and One-Stage Systems: Process Operation, N2O Emission and Microbial Community. J. Clean. Prod. 2018, 203, 559–573. [Google Scholar] [CrossRef]
- Ma, C.; Jensen, M.M.; Smets, B.F.; Thamdrup, B. Pathways and Controls of N2O Production in Nitritation–Anammox Biomass. Environ. Sci. Technol. 2017, 51, 8981–8991. [Google Scholar] [CrossRef]
- Kampschreur, M.J.; van der Star, W.R.L.; Wielders, H.A.; Mulder, J.W.; Jetten, M.S.M.; van Loosdrecht, M.C.M. Dynamics of Nitric Oxide and Nitrous Oxide Emission during Full-Scale Reject Water Treatment. Water Res. 2008, 42, 812–826. [Google Scholar] [CrossRef]
- Chen, R.; Ji, J.; Chen, Y.; Takemura, Y.; Liu, Y.; Kubota, K.; Ma, H.; Li, Y.-Y. Successful Operation Performance and Syntrophic Micro-Granule in Partial Nitritation and Anammox Reactor Treating Low-Strength Ammonia Wastewater. Water Res. 2019, 155, 288–299. [Google Scholar] [CrossRef] [PubMed]
- Hallin, S.; Philippot, L.; Löffler, F.E.; Sanford, R.A.; Jones, C.M. Genomics and Ecology of Novel N2O-Reducing Microorganisms. Trends Microbiol. 2018, 26, 43–55. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Ni, B.; Sin, G. Nitrous Oxide Production in Autotrophic Nitrogen Removal Granular Sludge: A Modeling Study. Biotechnol. Bioeng. 2019, 116, 1280–1291. [Google Scholar] [CrossRef] [Green Version]
- Wunderlin, P.; Mohn, J.; Joss, A.; Emmenegger, L.; Siegrist, H. Mechanisms of N2O Production in Biological Wastewater Treatment under Nitrifying and Denitrifying Conditions. Water Res. 2012, 46, 1027–1037. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Lebedeva, E.V.; Pjevac, P.; Han, P.; Herbold, C.; Albertsen, M.; Jehmlich, N.; Palatinszky, M.; Vierheilig, J.; Bulaev, A.; et al. Complete Nitrification by Nitrospira Bacteria. Nature 2015, 528, 504–509. [Google Scholar] [CrossRef] [PubMed]
- van Kessel, M.A.H.J.; Speth, D.R.; Albertsen, M.; Nielsen, P.H.; Op den Camp, H.J.M.; Kartal, B.; Jetten, M.S.M.; Lücker, S. Complete Nitrification by a Single Microorganism. Nature 2015, 528, 555–559. [Google Scholar] [CrossRef] [Green Version]
- Caranto, J.D.; Lancaster, K.M. Nitric Oxide Is an Obligate Bacterial Nitrification Intermediate Produced by Hydroxylamine Oxidoreductase. Proc. Natl. Acad. Sci. USA 2017, 114, 8217–8222. [Google Scholar] [CrossRef] [Green Version]
- Hink, L.; Gubry-Rangin, C.; Nicol, G.W.; Prosser, J.I. The Consequences of Niche and Physiological Differentiation of Archaeal and Bacterial Ammonia Oxidisers for Nitrous Oxide Emissions. ISME J. 2018, 12, 1084–1093. [Google Scholar] [CrossRef]
- Kits, K.D.; Jung, M.-Y.; Vierheilig, J.; Pjevac, P.; Sedlacek, C.J.; Liu, S.; Herbold, C.; Stein, L.Y.; Richter, A.; Wissel, H.; et al. Low Yield and Abiotic Origin of N2O Formed by the Complete Nitrifier Nitrospira Inopinata. Nat. Commun. 2019, 10, 1836. [Google Scholar] [CrossRef]
- Liu, S.; Han, P.; Hink, L.; Prosser, J.I.; Wagner, M.; Brüggemann, N. Abiotic Conversion of Extracellular NH2OH Contributes to N2O Emission during Ammonia Oxidation. Environ. Sci. Technol. 2017, 51, 13122–13132. [Google Scholar] [CrossRef] [Green Version]
- Caranto, J.D.; Vilbert, A.C.; Lancaster, K.M. Nitrosomonas Europaea Cytochrome P460 Is a Direct Link between Nitrification and Nitrous Oxide Emission. Proc. Natl. Acad. Sci. USA 2016, 113, 14704–14709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soler-Jofra, A.; Pérez, J.; van Loosdrecht, M.C.M. Hydroxylamine and the Nitrogen Cycle: A Review. Water Res. 2021, 190, 116723. [Google Scholar] [CrossRef] [PubMed]
- Kuypers, M.M.M.; Marchant, H.K.; Kartal, B. The Microbial Nitrogen-Cycling Network. Nat. Rev. Microbiol. 2018, 16, 263–276. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhang, Y.; Wang, X.; Chen, F.; Lin, L.; Ruan, Q.; Wang, Y.; Wang, F.; Cao, W.; Chiang, P. Optimizing of Operation Strategies of the Single-Stage Partial Nitrification-Anammox Process. J. Clean. Prod. 2020, 256, 120667. [Google Scholar] [CrossRef]
- Bowman, L.A.H.; McLean, S.; Poole, R.K.; Fukuto, J.M. The Diversity of Microbial Responses to Nitric Oxide and Agents of Nitrosative Stress. In Advances in Microbial Physiology; Elsevier: Amsterdam, The Netherlands, 2011; Volume 59, pp. 135–219. ISBN 978-0-12-387661-4. [Google Scholar]
- Kozlowski, J.A.; Kits, K.D.; Stein, L.Y. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria. Front. Microbiol. 2016, 7, 1090. [Google Scholar] [CrossRef] [Green Version]
- Hink, L.; Nicol, G.W.; Prosser, J.I. Archaea Produce Lower Yields of N2O than Bacteria during Aerobic Ammonia Oxidation in Soil: N2O Production by Soil Ammonia Oxidisers. Environ. Microbiol. 2017, 19, 4829–4837. [Google Scholar] [CrossRef] [Green Version]
- Stieglmeier, M.; Mooshammer, M.; Kitzler, B.; Wanek, W.; Zechmeister-Boltenstern, S.; Richter, A.; Schleper, C. Aerobic Nitrous Oxide Production through N-Nitrosating Hybrid Formation in Ammonia-Oxidizing Archaea. ISME J. 2014, 8, 1135–1146. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.-Y.; Gwak, J.-H.; Rohe, L.; Giesemann, A.; Kim, J.-G.; Well, R.; Madsen, E.L.; Herbold, C.W.; Wagner, M.; Rhee, S.-K. Indications for Enzymatic Denitrification to N2O at Low PH in an Ammonia-Oxidizing Archaeon. ISME J. 2019, 13, 2633–2638. [Google Scholar] [CrossRef] [Green Version]
- Shoun, H.; Fushinobu, S.; Jiang, L.; Kim, S.-W.; Wakagi, T. Fungal Denitrification and Nitric Oxide Reductase Cytochrome P450nor. Philos. Trans. R. Soc. B 2012, 367, 1186–1194. [Google Scholar] [CrossRef] [Green Version]
- Sutka, R.L.; Adams, G.C.; Ostrom, N.E.; Ostrom, P.H. Isotopologue Fractionation during N2O Production by Fungal Denitrification. Rapid Commun. Mass Spectrom. 2008, 22, 3989–3996. [Google Scholar] [CrossRef]
- Daiber, A.; Shoun, H.; Ullrich, V. Nitric Oxide Reductase (P450nor) from Fusarium Oxysporum. In The Smallest Biomolecules: Diatomics and Their Interactions with Heme Proteins; Elsevier: Amsterdam, The Netherlands, 2008; pp. 354–377. ISBN 978-0-444-52839-1. [Google Scholar]
- Stein, L.Y.; Klotz, M.G. Nitrifying and Denitrifying Pathways of Methanotrophic Bacteria. Biochem. Soc. Trans. 2011, 39, 1826–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Wan, J.; Ma, Y.; Wang, Y.; Huang, Y.; Fan, H. A Comprehensive Model of N2O Emissions in an Anaerobic/Oxygen-Limited Aerobic Process under Dynamic Conditions. Bioprocess. Biosyst. Eng. 2020, 43, 1093–1104. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zheng, S.; Qiu, D.; Yang, J.; Han, Y.; Huo, Z.; Su, X.; Sun, J. Characteristics of N2O Generation within the Internal Micro-Environment of Activated Sludge Flocs under Different Dissolved Oxygen Concentrations. Bioresour. Technol. 2019, 291, 121867. [Google Scholar] [CrossRef] [PubMed]
- Zumft, W.G. Cell Biology and Molecular Basis of Denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533–616. [Google Scholar] [PubMed]
- Haleem, D.; von Wintzingerode, F.; Moter, A.; Moawad, H.; Gobel, U. Phylogenetic Analysis of Rhizosphere-Associated Beta-Subclass Proteobacterial Ammonia Oxidizers in a Municipal Wastewater Treatment Plant Based on Rhizoremediation Technology. Lett. Appl. Microbiol. 2000, 31, 34–38. [Google Scholar] [CrossRef]
- Jones, C.M.; Hallin, S. Ecological and Evolutionary Factors Underlying Global and Local Assembly of Denitrifier Communities. ISME J. 2010, 4, 633–641. [Google Scholar] [CrossRef]
- Hallin, S.; Throback, I.; Dicksved, J.; Pell, M. Metabolic Profiles and Genetic Diversity of Denitrifying Communities in Activated Sludge after Addition of Methanol or Ethanol. Appl. Environ. Microbiol. 2006, 72, 5445–5452. [Google Scholar] [CrossRef] [Green Version]
- Graf, D.R.H.; Jones, C.M.; Hallin, S. Intergenomic Comparisons Highlight Modularity of the Denitrification Pathway and Underpin the Importance of Community Structure for N2O Emissions. PLoS ONE 2014, 9, e114118. [Google Scholar] [CrossRef] [Green Version]
- Jones, C.M.; Graf, D.R.; Bru, D.; Philippot, L.; Hallin, S. The Unaccounted yet Abundant Nitrous Oxide-Reducing Microbial Community: A Potential Nitrous Oxide Sink. ISME J. 2013, 7, 417–426. [Google Scholar] [CrossRef] [Green Version]
- Sanford, R.A.; Wagner, D.D.; Wu, Q.; Chee-Sanford, J.C.; Thomas, S.H.; Cruz-García, C.; Rodríguez, G.; Massol-Deyá, A.; Krishnani, K.K.; Ritalahti, K.M.; et al. Unexpected Nondenitrifier Nitrous Oxide Reductase Gene Diversity and Abundance in Soils. Proc. Natl. Acad. Sci. USA 2012, 109, 19709–19714. [Google Scholar] [CrossRef] [Green Version]
- Suenaga, T.; Ota, T.; Oba, K.; Usui, K.; Sako, T.; Hori, T.; Riya, S.; Hosomi, M.; Chandran, K.; Lackner, S.; et al. Combination of 15N Tracer and Microbial Analyses Discloses N2O Sink Potential of the Anammox Community. Environ. Sci. Technol. 2021, 55, 9231–9242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhou, J.; Yuan, D.; Wang, W.; Zhou, L.; Pi, Y.; Zhu, G. NirS-Type N2O-Producers and NosZ II-Type N2O-Reducers Determine the N2O Emission Potential in Farmland Rhizosphere Soils. J. Soils Sediments 2020, 20, 461–471. [Google Scholar] [CrossRef]
- Chee-Sanford, J.C.; Connor, L.; Krichels, A.; Yang, W.H.; Sanford, R.A. Hierarchical Detection of Diverse Clade II (Atypical) NosZ Genes Using New Primer Sets for Classical- and Multiplex PCR Array Applications. J. Microbiol. Methods 2020, 172, 105908. [Google Scholar] [CrossRef] [PubMed]
- Joss, A.; Salzgeber, D.; Eugster, J.; König, R.; Rottermann, K.; Burger, S.; Fabijan, P.; Leumann, S.; Mohn, J.; Siegrist, H. Full-Scale Nitrogen Removal from Digester Liquid with Partial Nitritation and Anammox in One SBR. Environ. Sci. Technol. 2009, 43, 5301–5306. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; van den Akker, B.; Thwaites, B.J.; Peng, L.; Herman, C.; Pan, Y.; Ni, B.-J.; Watt, S.; Yuan, Z.; Ye, L. Mitigating Nitrous Oxide Emissions at a Full-Scale Wastewater Treatment Plant. Water Res. 2020, 185, 116196. [Google Scholar] [CrossRef]
- Wan, X.; Laureni, M.; Jia, M.; Volcke, E.I.P. Impact of Organics, Aeration and Flocs on N2O Emissions during Granular-Based Partial Nitritation-Anammox. Sci. Total Environ. 2021, 797, 149092. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhou, Y.; Liu, Y.; Li, W. Flocs Are the Main Source of Nitrous Oxide in a High-Rate Anammox Granular Sludge Reactor: Insights from Metagenomics and Fed-Batch Experiments. Water Res. 2020, 186, 116321. [Google Scholar] [CrossRef]
- Jin, Y.; Wang, D.; Zhang, W. Effects of Substrates on N2O Emissions in an Anaerobic Ammonium Oxidation (Anammox) Reactor. SpringerPlus 2016, 5, 741. [Google Scholar] [CrossRef] [Green Version]
- Christensson, M.; Ekström, S.; Chan, A.A.; Le Vaillant, E.; Lemaire, R. Experience from Start-Ups of the First ANITA Mox Plants. Water Sci. Technol. 2013, 67, 2677–2684. [Google Scholar] [CrossRef]
- Yang, J.; Trela, J.; Plaza, E. Nitrous Oxide Emissions from One-Step Partial Nitritation/Anammox Processes. Water Sci. Technol. 2016, 74, 2870–2878. [Google Scholar] [CrossRef]
- Blackburne, R.; Yuan, Z.; Keller, J. Partial Nitrification to Nitrite Using Low Dissolved Oxygen Concentration as the Main Selection Factor. Biodegradation 2008, 19, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Wyffels, S.; Van Hulle, S.W.H.; Boeckx, P.; Volcke, E.I.P.; Cleemput, O.V.; Vanrolleghem, P.A.; Verstraete, W. Modeling and Simulation of Oxygen-Limited Partial Nitritation in a Membrane-Assisted Bioreactor (MBR). Biotechnol. Bioeng. 2004, 86, 531–542. [Google Scholar] [CrossRef] [PubMed]
- Wan, X.; Baeten, J.E.; Volcke, E.I.P. Effect of Operating Conditions on N2O Emissions from One-Stage Partial Nitritation-Anammox Reactors. Biochem. Eng. J. 2019, 143, 24–33. [Google Scholar] [CrossRef]
- Daelman, M.R.J.; van Voorthuizen, E.M.; van Dongen, U.G.J.M.; Volcke, E.I.P.; van Loosdrecht, M.C.M. Seasonal and Diurnal Variability of N2O Emissions from a Full-Scale Municipal Wastewater Treatment Plant. Sci. Total Environ. 2015, 536, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jenni, S.; Vlaeminck, S.E.; Morgenroth, E.; Udert, K.M. Successful Application of Nitritation/Anammox to Wastewater with Elevated Organic Carbon to Ammonia Ratios. Water Res. 2014, 49, 316–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.-J.; Zheng, P.; Ding, S.; Lu, H.-F. Enhanced Nitrogen Removal from Ammonium-Rich Wastewater Containing High Organic Contents by Coupling with Novel High-Rate ANAMMOX Granules Addition. Chem. Eng. J. 2014, 240, 454–461. [Google Scholar] [CrossRef]
- Feng, Y. Discrepant Gene Functional Potential and Cross-Feedings of Anammox Bacteria Ca. Jettenia Caeni and Ca. Brocadia Sinica in Response to Acetate. Water Res. 2019, 11, 114974. [Google Scholar] [CrossRef]
- Hanaki, K.; Hong, Z.; Matsuo, T. Production of Nitrous Oxide Gas during Denitrification of Wastewater. Water Sci. Technol. 1992, 26, 1027–1036. [Google Scholar] [CrossRef]
- Zhou, Y.; Pijuan, M.; Zeng, R.J.; Yuan, Z. Free Nitrous Acid Inhibition on Nitrous Oxide Reduction by a Denitrifying-Enhanced Biological Phosphorus Removal Sludge. Environ. Sci. Technol. 2008, 42, 8260–8265. [Google Scholar] [CrossRef]
- Pan, Y.; Ni, B.-J.; Yuan, Z. Modeling Electron Competition among Nitrogen Oxides Reduction and N2O Accumulation in Denitrification. Environ. Sci. Technol. 2013, 47, 11083–11091. [Google Scholar] [CrossRef]
- Chung, Y.-C.; Chung, M.-S. BNP Test to Evaluate the Influence of C/N Ratio on N2O Production in Biological Denitrification. Water Sci. Technol. 2000, 42, 23–27. [Google Scholar] [CrossRef]
- Itokawa, H.; Hanaki, K.; Matsuo, T. Nitrous Oxide Production in High-Loading Biological Nitrogen Removal Process under Low COD/N Ratio Condition. Water Res. 2001, 35, 657–664. [Google Scholar] [CrossRef]
- Schalk-Otte, S. Nitrous Oxide (N2O) Production by Alcaligenes Faecalis during Feast and Famine Regimes. Water Res. 2000, 34, 2080–2088. [Google Scholar] [CrossRef]
- Chen, C.; Sun, F.; Zhang, H.; Wang, J.; Shen, Y.; Liang, X. Evaluation of COD Effect on Anammox Process and Microbial Communities in the Anaerobic Baffled Reactor (ABR). Bioresour. Technol. 2016, 216, 571–578. [Google Scholar] [CrossRef]
- Molinuevo, B.; Garcia, M.; Karakashev, D.; Angelidaki, I. Anammox for Ammonia Removal from Pig Manure Effluents: Effect of Organic Matter Content on Process Performance. Bioresour. Technol. 2009, 100, 2171–2175. [Google Scholar] [CrossRef]
- Ahn, Y.-H.; Hwang, I.-S.; Min, K.-S. ANAMMOX and Partial Denitritation in Anaerobic Nitrogen Removal from Piggery Waste. Water Sci. Technol. 2004, 49, 145–153. [Google Scholar] [CrossRef]
- Pijuan, M.; Ribera-Guardia, A.; Balcázar, J.L.; Micó, M.M.; de la Torre, T. Effect of COD on Mainstream Anammox: Evaluation of Process Performance, Granule Morphology and Nitrous Oxide Production. Sci. Total Environ. 2020, 712, 136372. [Google Scholar] [CrossRef]
- Innerebner, G.; Insam, H.; Franke-Whittle, I.H.; Wett, B. Identification of Anammox Bacteria in a Full-Scale Deammonification Plant Making Use of Anaerobic Ammonia Oxidation. Syst. Appl. Microbiol. 2007, 30, 408–412. [Google Scholar] [CrossRef]
- Vlaeminck, S.E.; Terada, A.; Smets, B.F.; De Clippeleir, H.; Schaubroeck, T.; Bolca, S.; Demeestere, L.; Mast, J.; Boon, N.; Carballa, M.; et al. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox. Appl. Environ. Microbiol. 2010, 76, 900–909. [Google Scholar] [CrossRef] [Green Version]
- Winkler, M.K.H.; Yang, J.; Kleerebezem, R.; Plaza, E.; Trela, J.; Hultman, B.; van Loosdrecht, M.C.M. Nitrate Reduction by Organotrophic Anammox Bacteria in a Nitritation/Anammox Granular Sludge and a Moving Bed Biofilm Reactor. Bioresour. Technol. 2012, 114, 217–223. [Google Scholar] [CrossRef]
- Hubaux, N.; Wells, G.; Morgenroth, E. Impact of Coexistence of Flocs and Biofilm on Performance of Combined Nitritation-Anammox Granular Sludge Reactors. Water Res. 2015, 68, 127–139. [Google Scholar] [CrossRef] [PubMed]
- Volcke, E.I.P.; Picioreanu, C.; De Baets, B.; van Loosdrecht, M.C.M. The Granule Size Distribution in an Anammox-Based Granular Sludge Reactor Affects the Conversion-Implications for Modeling. Biotechnol. Bioeng. 2012, 109, 1629–1636. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.; Wessels, H.J.C.T.; van Alen, T.; Jetten, M.S.M.; Kartal, B. Nitric Oxide-Dependent Anaerobic Ammonium Oxidation. Nat. Commun. 2019, 10, 1244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prather, M.J. Time Scales in Atmospheric Chemistry: Coupled Perturbations to N2O, NOy, and O3. Science 1998, 279, 1339–1341. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Azari, M.; Herbold, C.W.; Li, M.; Chen, H.; Ding, X.; Denecke, M.; Gu, J.-D. Activities and Metabolic Versatility of Distinct Anammox Bacteria in a Full-Scale Wastewater Treatment System. Water Res. 2021, 206, 117763. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, J.; Zhou, Z.; Wu, J.; Liu, Y.; Lin, J.-G.; Hong, Y.; Li, X.; Li, M.; Gu, J.-D. Complex Microbial Nitrogen-Cycling Networks in Three Distinct Anammox-Inoculated Wastewater Treatment Systems. Water Res. 2020, 168, 115142. [Google Scholar] [CrossRef]
- Wan, X.; Volcke, E.I.P. Dynamic Modelling of N2O Emissions from a Full-scale Granular Sludge Partial Nitritation-anammox Reactor. Biotechnol. Bioeng. 2022, 119, 1426–1438. [Google Scholar] [CrossRef]
- Yang, Y.; Daims, H.; Liu, Y.; Herbold, C.W.; Pjevac, P.; Lin, J.-G.; Li, M.; Gu, J.-D. Activity and Metabolic Versatility of Complete Ammonia Oxidizers in Full-Scale Wastewater Treatment Systems. mBio 2020, 11, e03175-19. [Google Scholar] [CrossRef] [Green Version]
- Roots, P.; Wang, Y.; Rosenthal, A.F.; Griffin, J.S.; Sabba, F.; Petrovich, M.; Yang, F.; Kozak, J.A.; Zhang, H.; Wells, G.F. Comammox Nitrospira Are the Dominant Ammonia Oxidizers in a Mainstream Low Dissolved Oxygen Nitrification Reactor. Water Res. 2019, 157, 396–405. [Google Scholar] [CrossRef]
- Itakura, M.; Uchida, Y.; Akiyama, H.; Hoshino, Y.T.; Shimomura, Y.; Morimoto, S.; Tago, K.; Wang, Y.; Hayakawa, C.; Uetake, Y.; et al. Mitigation of Nitrous Oxide Emissions from Soils by Bradyrhizobium Japonicum Inoculation. Nat. Clim. Change 2013, 3, 208–212. [Google Scholar] [CrossRef]
- Massara, T.; Solis, B.; Guisasola, A.; Katsou, E.; Baeza, J. Development of an ASM2d-N2O Model to Describe Nitrous Oxide Emissions in Municipal WWTPs under Dynamic Conditions. Chem. Eng. J. 2018, 335, 185–196. [Google Scholar] [CrossRef] [Green Version]
- Solís, B.; Guisasola, A.; Pijuan, M.; Corominas, L.; Baeza, J.A. Systematic Calibration of N2O Emissions from a Full-Scale WWTP Including a Tracer Test and a Global Sensitivity Approach. Chem. Eng. J. 2022, 435, 134733. [Google Scholar] [CrossRef]
- Li, Z.; Yang, X.; Chen, H.; Du, M.; Ok, Y.S. Modeling Nitrous Oxide Emissions in Membrane Bioreactors: Advancements, Challenges and Perspectives. Sci. Total Environ. 2022, 806, 151394. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Duan, H.; Liu, L.; Qiu, R.; van den Akker, B.; Ni, B.-J.; Chen, T.; Yin, H.; Yuan, Z.; Ye, L. An Integrated First Principal and Deep Learning Approach for Modeling Nitrous Oxide Emissions from Wastewater Treatment Plants. Environ. Sci. Technol. 2022, 56, 2816–2826. [Google Scholar] [CrossRef]
- Blomberg, K.; Kosse, P.; Mikola, A.; Kuokkanen, A.; Fred, T.; Heinonen, M.; Mulas, M.; Lubken, M.; Wichern, M.; Vahala, R. Development of an Extended ASM3 Model for Predicting the Nitrous Oxide Emissions in a Full-Scale Wastewater Treatment Plant. Environ. Sci. Technol 2018, 52, 5803–5811. [Google Scholar] [CrossRef]
- Kaelin, D.; Manser, R.; Rieger, L.; Eugster, J.; Rottermann, K.; Siegrist, H. Extension of ASM3 for Two-Step Nitrification and Denitrification and Its Calibration and Validation with Batch Tests and Pilot Scale Data. Water Res. 2009, 43, 1680–1692. [Google Scholar] [CrossRef]
Reactor | Strategies | DO (mg/L) | Nitrogen Removal Efficiency (%) | N2O Emission Rate (%) 1 | Emission Factors | Reference |
---|---|---|---|---|---|---|
Lab-scale | one-stage PNA | <1 | - | 1 2 | DO, NH4+ and NO2− | [13] |
one-stage PNA | 0.2−2.3 | 70.87 ± 1.36 | 0.004−0.11 | Aeration control | [28] | |
one-stage PNA | 2 | 73.8 ± 4.1 | 1.0−4.1 3 | Influent organics, aeration control, flocs and NO2− | [52] | |
AMX | ≈0 | 86.7 ± 2.5 | 0.284 | O2 and aggregate size | [47] | |
AMX | <1 | 87.01 | 0.57 ± 0.07 3 | Flocs | [53] | |
AMX | <0.5 | >80 | 0.6−1.0 2 | NH4+ | [54] | |
Full-scale | two-stage PNA | 2.5 | >90 | 1.7 (nitrification)-0.6 (anammox) | DO and NO2− | [14] |
one-stage PNA | <1 | >90 | 0.4 | DO | [50] | |
one-stage PNA | 0.5−1.5 | >90 | 0.2−0.9 2 | DO | [55] | |
one-stage PNA | 0.5−1.5 | 81 | 0.35−1.33 | Aeration control and the nitrogen loads | [56] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, Z.; Ma, K.; Yang, Y. Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems. Life 2022, 12, 971. https://doi.org/10.3390/life12070971
Lin Z, Ma K, Yang Y. Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems. Life. 2022; 12(7):971. https://doi.org/10.3390/life12070971
Chicago/Turabian StyleLin, Zhiman, Kayan Ma, and Yuchun Yang. 2022. "Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems" Life 12, no. 7: 971. https://doi.org/10.3390/life12070971
APA StyleLin, Z., Ma, K., & Yang, Y. (2022). Nitrous Oxide Emission from Full-Scale Anammox-Driven Wastewater Treatment Systems. Life, 12(7), 971. https://doi.org/10.3390/life12070971