Effects of Footwear on Anterior Cruciate Ligament Forces during Landing in Young Adult Females
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agel, J.; Rockwood, T.; Klossner, D. Collegiate ACL Injury Rates Across 15 Sports: National Collegiate Athletic Association Injury Surveillance System Data Update (2004–2005 Through 2012–2013). Clin. J. Sport Med. 2016, 26, 518–523. [Google Scholar] [CrossRef] [PubMed]
- Lie, M.M.; Risberg, M.A.; Storheim, K.; Engebretsen, L.; Øiestad, B.E. What’s the rate of knee osteoarthritis 10 years after anterior cruciate ligament injury? An updated systematic review. Br. J. Sports Med. 2019, 53, 1162–1167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zbrojkiewicz, D.; Vertullo, C.; Grayson, J.E. Increasing rates of anterior cruciate ligament reconstruction in young Australians, 2000–2015. Med. J. Aust. 2018, 208, 354–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agel, J.; Arendt, E.A.; Bershadsky, B. Anterior Cruciate Ligament Injury in National Collegiate Athletic Association Basketball and Soccer: A 13-Year Review. Am. J. Sports Med. 2005, 33, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.S.; Pierpoint, L.A.; Comstock, R.D.; Saper, M.G. Sex-Based Differences in Anterior Cruciate Ligament Injuries Among United States High School Soccer Players: An Epidemiological Study. Orthop. J. Sports Med. 2020, 8, 2325967120919178. [Google Scholar] [CrossRef]
- Griffin, L.Y.; Agel, J.; Albohm, M.J.; Arendt, E.A.; Dick, R.W.; Garrett, W.E.; Garrick, J.G.; Hewett, T.E.; Huston, L.; Ireland, M.L.; et al. Noncontact Anterior Cruciate Ligament Injuries: Risk Factors and Prevention Strategies. J. Am. Acad. Orthop. Surg. 2000, 8, 141–150. [Google Scholar] [CrossRef] [Green Version]
- Jeon, N.; Choi, N.-H.; Hwangbo, B.-H.; Victoroff, B.N. An Increased Lateral Femoral Condyle Ratio in Addition to Increased Posterior Tibial Slope and Narrower Notch Index is a Risk Factor for Female Anterior Cruciate Ligament Injury. Arthrosc. J. Arthrosc. Relat. Surg. 2022, 38, 1597–1604. [Google Scholar] [CrossRef]
- Zebis, M.K.; Aagaard, P.; Andersen, L.L.; Hölmich, P.; Clausen, M.B.; Brandt, M.; Husted, R.S.; Lauridsen, H.B.; Curtis, D.J.; Bencke, J. First-time anterior cruciate ligament injury in adolescent female elite athletes: A prospective cohort study to identify modifiable risk factors. Knee Surg. Sports Traumatol. Arthrosc. 2022, 30, 1341–1351. [Google Scholar] [CrossRef]
- Boden, B.P.; Torg, J.S.; Knowies, S.B.; Hewett, T.E. Video analysis of anterior cruciate ligament injury: Abnormalities in hip and ankle kinematics. Am. J. Sports Med. 2009, 37, 252–259. [Google Scholar] [CrossRef]
- Otsuki, R.; Del Bel, M.J.; Benoit, D.L. Sex differences in muscle activation patterns associated with anterior cruciate ligament injury during landing and cutting tasks: A systematic review. J. Electromyogr. Kinesiol. 2021, 60, 102583. [Google Scholar] [CrossRef]
- Beynnon, B.D.; Vacek, P.M.; Newell, M.K.; Tourville, T.W.; Smith, H.C.; Shultz, S.J.; Slauterbeck, J.R.; Johnson, R.J. The Effects of Level of Competition, Sport, and Sex on the Incidence of First-Time Noncontact Anterior Cruciate Ligament Injury. Am. J. Sports Med. 2014, 42, 1806–1812. [Google Scholar] [CrossRef] [PubMed]
- Lutter, C.; Jacquet, C.; Verhagen, E.; Seil, R.; Tischer, T. Does prevention pay off? Economic aspects of sports injury prevention: A systematic review. Br. J. Sports Med. 2021, 56, 470–476. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Jabalera, J.; Fílter-Ruger, A.; Dos’Santos, T.; Afonso, J.; Della Villa, F.; Morente-Sánchez, J.; Soto-Hermoso, V.M.; Requena, B. Exercise-Based Training Strategies to Reduce the Incidence or Mitigate the Risk Factors of Anterior Cruciate Ligament Injury in Adult Football (Soccer) Players: A Systematic Review. Int. J. Environ. Res. Public Health 2021, 18, 13351. [Google Scholar] [CrossRef] [PubMed]
- Menz, H.B.; Sherrington, C. The Footwear Assessment Form: A reliable clinical tool to assess footwear characteristics of relevance to postural stability in older adults. Clin. Rehabil. 2000, 14, 657–664. [Google Scholar] [CrossRef]
- Sayer, T.A.; Hinman, R.S.; Paterson, K.L.; Bennell, K.L.; Fortin, K.; Bryant, A.L. Effect of high and low-supportive footwear on female tri-planar knee moments during single limb landing. J. Foot Ankle Res. 2018, 11, 51. [Google Scholar] [CrossRef]
- Barton, C.J.; Bonanno, D.; Menz, H.B. Development and evaluation of a tool for the assessment of footwear characteristics. J. Foot Ankle Res. 2009, 2, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Malisoux, L.; Chambon, N.; Delattre, N.; Gueguen, N.; Urhausen, A.; Theisen, D. Injury risk in runners using standard or motion control shoes: A randomised controlled trial with participant and assessor blinding. Br. J. Sports Med. 2016, 50, 481–487. [Google Scholar] [CrossRef]
- Bennell, K.L.; Kean, C.O.; Wrigley, T.V.; Hinman, R.S. Effects of a modified shoe on knee load in people with and those without knee osteoarthritis. Arthritis Care Res. 2013, 65, 701–709. [Google Scholar] [CrossRef]
- Bonacci, J.; Vicenzino, B.; Spratford, W.; Collins, P. Take your shoes off to reduce patellofemoral joint stress during running. Br. J. Sports Med. 2013, 48, 425–428. [Google Scholar] [CrossRef]
- Joseph, M.; Tiberio, D.; Baird, J.L.; Trojian, T.H.; Anderson, J.M.; Kraemer, W.J.; Maresh, C.M. Knee valgus during drop jumps in National Collegiate Athletic Association Division I female athletes: The effect of a medial post. Am. J. Sports Med. 2008, 36, 285–289. [Google Scholar] [CrossRef]
- Hewett, T.E.; Myer, G.D.; Ford, K.R.; Heidt, R.S., Jr.; Colosimo, A.J.; McLean, S.G.; Van Den Bogert, A.J.; Paterno, M.V.; Succop, P. Biomechanical Measures of Neuromuscular Control and Valgus Loading of the Knee Predict Anterior Cruciate Ligament Injury Risk in Female Athletes: A Prospective Study. Am. J. Sports Med. 2005, 33, 492–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trepczynski, A.; Kutzner, I.; Schwachmeyer, V.; Heller, M.O.; Pfitzner, T.; Duda, G.N. Impact of antagonistic muscle co-contraction on in vivo knee contact forces. J. Neuroeng. Rehabil. 2018, 15, 101. [Google Scholar] [CrossRef] [PubMed]
- Walter, J.P.; D’Lima, D.D.; Colwell Jr, C.W.; Fregly, B.J. Decreased knee adduction moment does not guarantee decreased medial contact force during gait. J. Orthop. Res. 2010, 28, 1348–1354. [Google Scholar] [CrossRef] [Green Version]
- Saxby, D.J.; Modenese, L.; Bryant, A.L.; Gerus, P.; Killen, B.; Fortin, K.; Wrigley, T.V.; Bennell, K.L.; Cicuttini, F.M.; Lloyd, D.G. Tibiofemoral contact forces during walking, running and sidestepping. Gait Posture 2016, 49, 78–85. [Google Scholar] [CrossRef] [Green Version]
- Khandha, A.; Manal, K.; Capin, J.; Dpt, E.W.; Marmon, A.; Snyder-Mackler, L.; Buchanan, T.S. High muscle co-contraction does not result in high joint forces during gait in anterior cruciate ligament deficient knees. J. Orthop. Res. 2019, 37, 104–112. [Google Scholar] [CrossRef] [Green Version]
- Nasseri, A.; Khataee, H.; Bryant, A.L.; Lloyd, D.; Saxby, D.J. Modelling the loading mechanics of anterior cruciate ligament. Comput. Methods Programs Biomed. 2020, 184, 105098. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, A.; Lloyd, D.G.; Bryant, A.L.; Headrick, J.; Sayer, T.A.; Saxby, D.J. Mechanism of Anterior Cruciate Ligament Loading during Dynamic Motor Tasks. Med. Sci. Sports Exerc. 2021, 53, 1235–1244. [Google Scholar] [CrossRef]
- Tanner, J. 1 Normal growth and techniques of growth assessment. Clin. Endocrinol. Metab. 1986, 15, 411–451. [Google Scholar] [CrossRef]
- Tanner, J.; Davies, P.S. Clinical longitudinal standards for height and height velocity for North American children. J. Pediatr. 1985, 107, 317–329. [Google Scholar] [CrossRef]
- Telford, A.; Salmon, J.; Jolley, D.; Crawford, D. Reliability and Validity of Physical Activity Questionnaires for Children: The Children’s Leisure Activities Study Survey (CLASS). Pediatr. Exerc. Sci. 2004, 16, 64–78. [Google Scholar] [CrossRef]
- Schache, A.G.; Baker, R. On the expression of joint moments during gait. Gait Posture 2007, 25, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Mantoan, A.; Pizzolato, C.; Sartori, M.; Sawacha, Z.; Cobelli, C.; Reggiani, M. MOtoNMS: A MATLAB toolbox to process motion data for neuromusculoskeletal modeling and simulation. Source Code Biol. Med. 2015, 10, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akhundov, R.; Saxby, D.J.; Edwards, S.; Snodgrass, S.; Clausen, P.; Diamond, L. Development of a deep neural network for automated electromyographic pattern classification. J. Exp. Biol. 2019, 222, jeb198101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lloyd, D.G.; Besier, T.F. An EMG-driven musculoskeletal model to estimate muscle forces and knee joint moments in vivo. J. Biomech. 2003, 36, 765–776. [Google Scholar] [CrossRef]
- Rajagopal, A.; Dembia, C.L.; DeMers, M.S.; Delp, D.D.; Hicks, J.L.; Delp, S.L. Full-Body Musculoskeletal Model for Muscle-Driven Simulation of Human Gait. IEEE Trans. Biomed. Eng. 2016, 63, 2068–2079. [Google Scholar] [CrossRef]
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [Green Version]
- Modenese, L.; Ceseracciu, E.; Reggiani, M.; Lloyd, D.G. Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique. J. Biomech. 2016, 49, 141–148. [Google Scholar] [CrossRef] [Green Version]
- Handsfield, G.G.; Meyer, C.H.; Hart, J.M.; Abel, M.F.; Blemker, S.S. Relationships of 35 lower limb muscles to height and body mass quantified using MRI. J. Biomech. 2014, 47, 631–638. [Google Scholar] [CrossRef]
- Modenese, L.; Phillips, A.; Bull, A. An open source lower limb model: Hip joint validation. J. Biomech. 2011, 44, 2185–2193. [Google Scholar] [CrossRef] [Green Version]
- Pataky, T.C.; Robinson, M.A.; Vanrenterghem, J. Region-of-interest analyses of one-dimensional biomechanical trajectories: Bridging 0D and 1D theory, augmenting statistical power. PeerJ 2016, 4, e2652. [Google Scholar] [CrossRef] [Green Version]
- Sayer, T.A. Influence of Female Pubertal Development and Athletic Footwear on Lower Limb Biomechanics: Implications for Non-Contact ACL Injury and Patellofemoral Pain; University of Melbourne: Melbourne, Australia, 2017. [Google Scholar]
- Bates, N.A.; Schilaty, N.D.; Ueno, R.; Hewett, T.E. Timing of Strain Response of the ACL and MCL Relative to Impulse Delivery during Simulated Landings Leading up to ACL Failure. J. Appl. Biomech. 2020, 1–8. [Google Scholar] [CrossRef]
- Hatton, A.L.; Rome, K.; Dixon, J.; Martin, D.J.; McKkeon, P.O. Footwear Interventions A Review of Their Sensorimotor and Mechanical Effects on Balance Performance and Gait in Older Adults. J. Am. Podiatr. Med. Assoc. 2013, 103, 516–533. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, A.; Lloyd, D.G.; Minahan, C.; Sayer, T.A.; Paterson, K.; Vertullo, C.J.; Saxby, D.J. Effects of Pubertal Maturation on ACL Forces during a Landing Task in Females. Am. J. Sports Med. 2021, 49, 3322–3334. [Google Scholar] [CrossRef] [PubMed]
- Sayer, T.A.; Hinman, R.S.; Paterson, K.L.; Bennell, K.L.; Fortin, K.; Timmi, A.; Pivonka, P.; Bryant, A.L. Differences in Hip and Knee Landing Moments across Female Pubertal Development. Med. Sci. Sports Exerc. 2019, 51, 123–131. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akhundov, R.; Bryant, A.L.; Sayer, T.; Paterson, K.; Saxby, D.J.; Nasseri, A. Effects of Footwear on Anterior Cruciate Ligament Forces during Landing in Young Adult Females. Life 2022, 12, 1119. https://doi.org/10.3390/life12081119
Akhundov R, Bryant AL, Sayer T, Paterson K, Saxby DJ, Nasseri A. Effects of Footwear on Anterior Cruciate Ligament Forces during Landing in Young Adult Females. Life. 2022; 12(8):1119. https://doi.org/10.3390/life12081119
Chicago/Turabian StyleAkhundov, Riad, Adam L. Bryant, Tim Sayer, Kade Paterson, David J. Saxby, and Azadeh Nasseri. 2022. "Effects of Footwear on Anterior Cruciate Ligament Forces during Landing in Young Adult Females" Life 12, no. 8: 1119. https://doi.org/10.3390/life12081119
APA StyleAkhundov, R., Bryant, A. L., Sayer, T., Paterson, K., Saxby, D. J., & Nasseri, A. (2022). Effects of Footwear on Anterior Cruciate Ligament Forces during Landing in Young Adult Females. Life, 12(8), 1119. https://doi.org/10.3390/life12081119