Soil Quality Assessment in Tourism-Disturbed Subtropical Mountain Meadow Areas of Wugong Mountain, Central Southeast China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Sample Collection
2.2.1. Plot Setting
2.2.2. Sample Collection and Determination
- (1)
- The methods for the collection and determination of soil chemical properties, soil enzymes, and microorganisms
- (2)
- Methods for the collection of soil samples and the determination of soil physical properties
2.3. Calculation Method for the Soil Quality Comprehensive Index
2.3.1. Collation of Basic Data Sets
2.3.2. Construction of the Minimum Data Set
2.3.3. Comprehensive Evaluation Index of Soil Quality
3. Results
3.1. Descriptive Statistics of Soil Physicochemical Properties, Microorganisms, and Enzyme Activities in the Mountain Meadow
3.2. Determination of the MDS for Soil Quality Evaluation of Mountain Meadows
3.3. The Comprehensive Evaluation of the Soil Quality of Mountain Meadows at Different Tourism-Disturbance Levels
4. Discussion
4.1. Soil Quality Evaluation of Mountain Meadows
4.2. Soil Quality Evaluation Method Based on the MDS and the SQI Model
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonzaga, M.I.S.; Bispo, M.V.C.; Da Silva, T.L.; Dos Santos, W.M.; De Santana, I.L. Atlantic Forest Soil as Reference in the Soil Quality Evaluation of Coconut Orchards (Cocos Nucífera L) under Different Management. Semin. Agrar. 2016, 37, 3847–3858. [Google Scholar] [CrossRef] [Green Version]
- Paz-Ferreiro, J.; Fu, S. Biological Indices for Soil Quality Evaluation: Perspectives and Limitations. Land Degrad. Dev. 2016, 27, 14–25. [Google Scholar] [CrossRef]
- Horváth, A.; Szűcs, P.; Bidló, A. Soil Condition and Pollution in Urban Soils: Evaluation of the Soil Quality in a Hungarian Town. J. Soils Sediments 2014, 15, 1825–1835. [Google Scholar] [CrossRef] [Green Version]
- Shao, G.; Ai, J.; Sun, Q.; Hou, L.; Dong, Y. Soil Quality Assessment under Different Forest Types in the Mount Tai, Central Eastern China. Ecol. Indic. 2020, 115, 106439. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, L.; Deng, B.; Liu, X.; Yi, H.; Xiang, H.; Li, Z.; Zhang, W.; Guo, X.; Niu, D. Alpine Meadow Restorations by Non-Dominant Species Increased Soil Nitrogen Transformation Rates but Decreased Their Sensitivity to Warming. J. Soils Sediments 2017, 17, 2329–2337. [Google Scholar] [CrossRef]
- Huang, J.; Liu, W.; Yang, S.; Yang, L.; Peng, Z.; Deng, M.; Xu, S.; Zhang, B.; Ahirwal, J.; Liu, L. Plant Carbon Inputs through Shoot, Root, and Mycorrhizal Pathways Affect Soil Organic Carbon Turnover Differently. Soil Biol. Biochem. 2021, 160, 108322. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, R.; Li, H.; Zhao, X.; Liu, X. Heavy Metal Pollution and Soil Quality Assessment under Different Land Uses in the Red Soil Region, Southern China. Int. J. Environ. Res. Public Health 2022, 19, 4125. [Google Scholar] [CrossRef]
- Gao, R.; Ai, N.; Liu, G.; Liu, C.; Zhang, Z. Soil C:N:P Stoichiometric Characteristics and Soil Quality Evaluation under Different Restoration Modes in the Loess Region of Northern Shaanxi Province. Forests 2022, 13, 913. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Masto, R.E.; Yadav, A.; George, J.; Ram, L.C.; Shukla, S.P. Soil Quality Index for Evaluation of Reclaimed Coal Mine Spoil. Sci. Total Environ. 2016, 542, 540–550. [Google Scholar] [CrossRef]
- Fan, S.; Zhao, J.; Su, W.; Yu, L.; Yan, Y. Comprehensive Evaluation of Soil Quality in Phyllostachys Edulis Stands of Different Stocking Stocking Densities. Sci. Silvae Sin. 2015, 51, 1–9. [Google Scholar]
- Raiesi, F. A Minimum Data Set and Soil Quality Index to Quantify the Effect of Land Use Conversion on Soil Quality and Degradation in Native Rangelands of Upland Arid and Semiarid Regions. Ecol. Indic. 2017, 75, 307–320. [Google Scholar] [CrossRef]
- Deng, S.; Zeng, L.; Guan, Q.; Li, P.; Liu, M.; Li, H. Minimum Dataset-Based Soil Quality Assessment of Waterlogged Paddy Field in South China. Acta Pdeologica Sin. 2016, 53, 1326–1333. [Google Scholar]
- Wang, F.; Li, Q.H.; Lin, C.; He, C.M.; Lin, X.J. Establishing a Minimum Data Set of Soil Quality Assessment for Cold-Waterlogged Paddy Field in Fujian Province, China. Chin. J. Appl. Ecol. 2015, 26, 1461–1468. [Google Scholar]
- Askari, M.S.; Holden, N.M. Indices for Quantitative Evaluation of Soil Quality under Grassland Management. Geoderma 2014, 230–231, 131–142. [Google Scholar] [CrossRef]
- Li, Z.; Xiang, Z.; Niu, D.; Guo, X.; Xie, B.; Zhang, X. Hyperspectral Characteristics of Main Community Types in Wugong Mountain Meadow. Pratacultural Sci. 2016, 33, 1492–1501. [Google Scholar]
- Dong, L.; Huang, P.; Hu, M. Tourist Garbage Treatment Under Festival Activity Backgroundin Mountain ScenicAreas: A Case Study of International Tent Festival of Wugong Mountain. Biol. Disaster Sci. 2016, 39, 67–73. [Google Scholar]
- Li, Z.; Siemann, E.; Deng, B.; Wang, S.; Gao, Y.; Liu, X.; Zhang, X.; Guo, X.; Zhang, L. Soil Microbial Community Responses to Soil Chemistry Modifications in Alpine Meadows Following Human Trampling. Catena 2020, 194, 104717. [Google Scholar] [CrossRef]
- Deng, B.; Yuan, Z.; Guo, X. Microelement Distributions and Responses to Human Disturbance in Meadow Soil of Wugong Mountain. Pratacultural Sci. 2015, 32, 1555–1560. [Google Scholar]
- Deng, B.; Li, Z.; Zhang, L.; Ma, Y.; Li, Z.; Zhang, W.; Guo, X.; Niu, D.; Siemann, E. Increases in Soil CO2 and N2O Emissions with Warming Depend on Plant Species in Restored Alpine Meadows of Wugong Mountain, China. J. Soils Sediments 2016, 16, 777–784. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, X.; Zhang, J.; Niu, D.; Shan, L.; Zhang, W.; Wei, X.; Chen, F.; Huang, S.; Li, Z.; et al. Vertical Distribution Character of Soil Inorganic Phosphorus in Mountain Meadow System of WuGong Mountain. Pratacultural Sci. 2014, 31, 1610–1617. [Google Scholar]
- Yuan, Z.; Deng, B.; Li, Z. Study on the Factors Affecting the Distribution of Alkali Hydrolyzable Nitrogen in Meadow Soil in Wugong Mountain. Jiangsu Agric. Sci. 2015, 43, 318–320. [Google Scholar]
- Li, Z.; Yuan, Y.; Zhang, X.; Niu, D.; Zhang, W.; Hu, D.; Guo, X. Distribution Characteristics of Soil Mechanical Composition in Wugong Mountain Mountainous Meadow with Different Disturbance Degree. J. Green Sci. Technol. 2015, 11, 27–28. [Google Scholar]
- Liu, J.; Ye, H.; Xie, G.; Yang, G.; Zhang, W. Re-Os Dating of Molybdenite from the Hukeng Tungsten Deposit in the Wugongshan Area, Jiangxi Province, and Its Geological Implications. Acta Geol. Sin. 2008, 82, 1572–1579. [Google Scholar]
- Cheng, X. Studies on Plant Community Characteristics and Spatial Distribution Attern in Subalpine Meadows of Wugong Mountain; Jiangxi Agricultural University: Nanchang, China, 2014. [Google Scholar]
- Gao, Y.; Wu, P. Effects of Alpine Meadow Degradation on Soil Insect Diversity in the Qinghai-Tibetan Plateau. Acta Ecol. Sin. 2016, 36, 2327–2336. [Google Scholar]
- Liu, S.; Li, L.; Zhang, F.; Du, Y.; Li, Y.; Guo, X.; Ouyang, J.; Cao, G. Effects of Grazing Season and Degradation Degree on the Soil Organic Carbon in Alpine Meadow. Pratacultural Sci. 2016, 33, 11–18. [Google Scholar]
- General Administration of Quality Supervision, Inspection and Quarantine. Parameters for Degradation, Sanctification and Salification of Rangelands; Standards Press of China: Beijing, China, 2004. [Google Scholar]
- Klimkowska, A.; Kotowski, W.; Van Diggelen, R.; Grootjans, A.P.; Dzierża, P.; Brzezińska, K. Vegetation Re-Development After Fen Meadow Restoration by Topsoil Removal and Hay Transfer. Restor. Ecol. 2010, 18, 924–933. [Google Scholar] [CrossRef] [Green Version]
- Institute of Forestry Determination of Forest Soil Percolation Rate; Standards Press of China: Beijing, China, 1999.
- Institute of Forestry Determination of Forest Soil Water-Physical Properties; Standards Press of China: Beijing, China, 1999.
- Bao, S. Agriculture Soil Chemical Analysis; Science Press: Beijing, China, 2000. [Google Scholar]
- Guan, S. Soil Enzyme and Its Research Methods; China Agriculture Press: Beijing, China, 1986. [Google Scholar]
- Chu, H.; Sun, H.; Tripathi, B.M.; Adams, J.M.; Huang, R.; Zhang, Y.; Shi, Y. Bacterial Community Dissimilarity between the Surface and Subsurface Soils Equals Horizontal Differences over Several Kilometers in the Western Tibetan Plateau. Environ. Microbiol. 2016, 18, 1523–1533. [Google Scholar] [CrossRef]
- He, F.Y.; He, F.; Da Wu, Z.; Liu, S.R.; Liu, X.L.; Peng, P.H. Change of Soil Physical Properties along Elevation Gradients in A Bies f Axoniana Natural Forest. J. Northwest Norm. Univ. 2015, 51, 92–98. [Google Scholar]
- Gong, L.; Zhang, X.; Ran, Q. Quality Assessment of Oasis Soil in the Upper Reaches of Tarim River Based on Minimum Data Set. Acta Pedol. Sin. 2015, 57, 682–689. [Google Scholar]
- Cao, L. Effects of Tourist Disturbance on Soil Quality in Yuntai Mountain Scenic Area, He’nan Province. Res. Soil Water Conserv. 2015, 22, 67–71. [Google Scholar]
- Li, L.; Zhang, Y.; Jiang, H.; Xie, Y.; Du, H.; Zhou, Y.; Zhang, H. Effects of Tourist Activities on Soil Quality of Wuyishan Scenery District. Res. Soil Water Conserv. 2009, 16, 56–62. [Google Scholar]
- Zhou, L.; Zhu, H.; Zhong, H.; Yang, H.; Suo, F.; Shao, X.; Zhou, X. Spatial Analysis of Soil Bulk Density in Yili, Xinjiang Uygur Autonomous Region, China. Acta Prataculturae Sin. 2016, 25, 64–75. [Google Scholar]
- Tang, F.; Deng, Y.; Zheng, M.; Guo, H.; Cao, F.; Wu, L. Soil Quality Evaluation in Rocky Desertification of Northwest Hunan Province Based on Gray Correlation Analysis. J. Cent. South Univ. For. Technol. 2016, 36, 36–43. [Google Scholar]
- Zhang, L.; Lai, G.; Kong, Y.; Sun, C. Evaluation of Soil Quality in Beijing Jiulong Mountain Based on Factor Analysis Method. J. Northwest For. Univ. 2016, 31, 7–14. [Google Scholar]
- Yuan, Z.; Deng, B.; Guo, X.; Niu, D.; Hu, Y.-W.; Wang, J.; Zhao, Z.; Liu, Y.; Zhang, W. Soil Total NPK’s Distribution Pattern and Response to Different Degradation Degrees in Wugong Mountain Meadow. J. Northwest For. Univ. 2015, 30, 14–20. [Google Scholar]
- Deng, B.; Yuan, Z.; Wen, W.; Fan, N.; Li, Y.; Li, Z.J.; Guo, X.; Zhang, W. Distribution Patterns and Relationships of Soil Organic Matter, Total Nitrogen and Alkali Hydrolyzable Nitrogen in Wugong Mountain Meadow. J. Jiangsu Agric. Sci. 2015, 43, 414–417. [Google Scholar]
- Yuan, Y.; Li, Z.; Zhang, W.; Niu, D.; Guo, X. Soil Nitrogen Distribution and Its Correlation with Soil Physical Properties in Different Altitude in Mountain Meadow of Wugong Mountain. J. Cent. South Univ. For. Technol. 2016, 36, 108–113. [Google Scholar]
Experimental Treatments | Elevation (m) | Slope Degree (°) | Slope Direction | Longitude (E) | Latitude (N) | Main Vegetation Type | Vegetation Coverage Rate (%) |
---|---|---|---|---|---|---|---|
CK | 1907 | 7 | NE25° | 114°10′26.09 | 27°27′16.76 | Miscanthus sinensis | 98 |
1904 | 9 | NE27° | 114°10′25.16 | 27°27′20.22 | Miscanthus sinensis | 97 | |
1903 | 6 | NE29° | 114°10′24.79 | 27°27′20.60 | Miscanthus sinensis | 100 | |
LD | 1914 | 5 | NE23° | 114°10′24.18 | 27°27′16.22 | Miscanthus sinensis | 76 |
1917 | 8 | NE27° | 114°10′23.29 | 27°27′19.03 | Miscanthus sinensis | 82 | |
1901 | 7 | NE26° | 114°10′24.36 | 27°27′20.92 | Miscanthus sinensis | 73 | |
MD | 1912 | 6 | NE24° | 114°10′25.24 | 27°27′16.24 | Miscanthus sinensis | 47 |
1910 | 8 | NE28° | 114°10′23.59 | 27°27′16.74 | Miscanthus sinensis | 55 | |
1911 | <5 | NE25° | 114°10′23.41 | 27°27′17.16 | Miscanthus sinensis | 39 | |
SD | 1912 | 7 | NE20° | 114°10′24.87 | 27°27′16.18 | Miscanthus sinensis | 21 |
1918 | 6 | NE23° | 114°10′23.04 | 27°27′17.00 | Miscanthus sinensis | 15 | |
1917 | <5 | NE25° | 114°10′21.79 | 27°27′14.76 | Miscanthus sinensis | 19 |
Index | CK | LD | MD | SD |
---|---|---|---|---|
Soil bulk density (g·cm−3) | 0.6 ± 0.03 a | 0.81 ± 0.02 b | 0.83 ± 0.05 b | 0.89 ± 0.03 b |
Average infiltration rate (mm·min−1) | 10.64 ± 8.46 a | 4 ± 0.43 ab | 4.39 ± 1.04 ab | 2.25 ± 1.59 b |
Soil pH | 4.74 ± 0.01 a | 4.67 ± 0.05 a | 4.54 ± 0.1 a | 4.47 ± 0.1 b |
Organic matter (g·kg−1) | 90.52 ± 13.15 ab | 87.96 ± 7.58 abc | 119.03 ± 19.26 bc | 115.16 ± 20.13 c |
Total N (g·kg−1) | 3.84 ± 0.22 ab | 4.24 ± 0.41 abc | 5.18 ± 0.56 c | 4.9 ± 0.64 bc |
Total P (g·kg−1) | 1.02 ± 0.11 ab | 1.01 ± 0.1 ab | 1.4 ± 0.18 ab | 1.53 ± 0.22 a |
Total K (g·kg−1) | 47.67 ± 5.85 a | 48.25 ± 1.5 a | 38.75 ± 1.53 ab | 41.42 ± 1.8 ab |
Available nitrogen (mg·kg−1) | 282.24 ± 82.13 abc | 337.92 ± 144.18 ab | 382.02 ± 93.13 a | 295.47 ± 74.19 abc |
Available phosphorus (mg·kg−1) | 27.42 ± 9.84 ab | 19.71 ± 1.18 b | 25.59 ± 4.46 ab | 39.23 ± 15.82 c |
Available potassium (mg·kg−1) | 82.67 ± 17.13 a | 89.95 ± 22.68 a | 76.06 ± 27.09 a | 70.2 ± 29.91 a |
Sucrase (mg·g−1) | 80.42 ± 4.45 a | 59.74 ± 15.43 a | 67.47 ± 22.72 a | 54.8 ± 16.54 a |
Catalase (mg·g−1) | 0.07 ± 0.01 b | 0.07 ± 00.01 b | 0.07 ± 0.01 b | 0.05 ± 0.02 a |
Urease (mg·g−1) | 0.55 ± 0.27 a | 0.37 ± 0.08 a | 0.37 ± 0.16 a | 0.41 ± 0.04 a |
Bacterial OTU number | 1635 ± 73 a | 1620 ± 37 a | 1544 ± 21 a | 1722 ± 93 b |
Fungal OTU number | 1112 ± 97 a | 1177 ± 352 a | 1174 ± 71 a | 1252 ± 118 a |
Index | Principal Component Load Matrix | Grouping | Norm Value | ||||
---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | |||
A1 | 0.652 | −0.227 | −0.135 | 0.442 | 0.345 | 1 | 1.749 |
A3 | −0.932 | −0.051 | 0.136 | −0.031 | −0.200 | 1 | 2.266 |
A4 | 0.803 | 0.134 | 0.247 | −0.426 | 0.229 | 1 | 2.060 |
A5 | 0.882 | −0.074 | 0.416 | −0.107 | 0.026 | 1 | 2.215 |
A6 | 0.874 | 0.128 | 0.133 | −0.109 | 0.067 | 1 | 2.131 |
A11 | −0.682 | 0.075 | −0.307 | −0.152 | 0.340 | 1 | 1.751 |
A12 | −0.731 | −0.168 | 0.286 | 0.076 | 0.445 | 1 | 1.889 |
A7 | −0.482 | 0.523 | 0.388 | 0.304 | −0.333 | 2 | 1.610 |
A10 | −0.160 | −0.587 | 0.400 | 0.112 | −0.490 | 2 | 1.269 |
A13 | −0.335 | 0.775 | 0.333 | 0.148 | 0.127 | 2 | 1.553 |
A14 | 0.264 | 0.747 | −0.237 | 0.418 | −0.017 | 2 | 1.469 |
A9 | 0.620 | 0.627 | −0.110 | −0.171 | −0.315 | 2 | 1.840 |
A2 | −0.493 | 0.318 | 0.587 | −0.093 | 0.330 | 3 | 1.580 |
A8 | 0.417 | −0.194 | 0.843 | 0.216 | 0.043 | 3 | 1.616 |
A15 | 0.295 | −0.192 | −0.122 | 0.811 | 0.097 | 4 | 1.268 |
Characteristic root | 5.809 | 2.474 | 2.025 | 1.474 | 1.117 | ||
Variance contribution rate (%) | 38.728 | 16.491 | 13.499 | 9.825 | 7.446 | ||
Cumulative contribution rate (%) | 38.728 | 55.218 | 68.717 | 78.542 | 85.989 |
Index | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 | A11 | A12 | A13 | A14 | A15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A1 | 1.00 | ||||||||||||||
A2 | −0.45 | 1.00 | |||||||||||||
A3 | −0.67 * | 0.49 | 1.00 | ||||||||||||
A4 | 0.37 | −0.08 | −0.72 ** | 1.00 | |||||||||||
A5 | 0.47 | −0.22 | −0.76 ** | 0.83 ** | 1.00 | ||||||||||
A6 | 0.47 | −0.22 | −0.84 ** | 0.79 ** | 0.84 ** | 1.00 | |||||||||
A7 | −0.34 | 0.39 | 0.51 | −0.45 | −0.33 | −0.36 | 1.00 | ||||||||
A8 | 0.30 | 0.17 | −0.29 | 0.42 | 0.73 ** | 0.40 | 0.09 | 1.00 | |||||||
A9 | 0.04 | −0.28 | −0.58 * | 0.53 | 0.49 | 0.70 * | 0.04 | 0.01 | 1.00 | ||||||
A10 | −0.19 | 0.07 | 0.31 | −0.26 | 0.03 | −0.03 | 0.07 | 0.33 | −0.31 | 1.00 | |||||
A11 | −0.44 | 0.34 | 0.51 | −0.49 | −0.68 * | −0.37 | 0.08 | −0.60 * | −0.28 | −0.05 | 1.00 | ||||
A12 | −0.30 | 0.53 | 0.56 | −0.52 | −0.48 | −0.54 | 0.33 | 0.02 | −0.69 * | 0.14 | 0.60 * | 1.00 | |||
A13 | −0.34 | 0.57 | 0.31 | −0.07 | −0.25 | −0.22 | 0.67 * | 0.04 | 0.17 | −0.35 | 0.18 | 0.21 | 1.00 | ||
A14 | 0.20 | 0.04 | −0.34 | 0.05 | 0.03 | 0.31 | 0.28 | −0.18 | 0.58 | −0.44 | −0.12 | −0.33 | 0.36 | 1.00 | |
A15 | 0.49 | −0.26 | −0.31 | −0.12 | 0.15 | 0.19 | −0.21 | 0.23 | −0.03 | 0.14 | −0.14 | −0.17 | −0.09 | 0.27 | 1.00 |
Index | Weight Coefficient | Subordinate Function |
---|---|---|
A2 | 0.228 | |
A3 | 0.317 | |
A8 | 0.132 | |
A9 | 0.167 | |
A15 | 0.156 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rana, S.; Xu, Z.; Jemim, R.S.; Liu, Z.; Wang, Y.; Geng, X.; Cai, Q.; Feng, J.; Zhou, H.; Zhang, T.; et al. Soil Quality Assessment in Tourism-Disturbed Subtropical Mountain Meadow Areas of Wugong Mountain, Central Southeast China. Life 2022, 12, 1136. https://doi.org/10.3390/life12081136
Rana S, Xu Z, Jemim RS, Liu Z, Wang Y, Geng X, Cai Q, Feng J, Zhou H, Zhang T, et al. Soil Quality Assessment in Tourism-Disturbed Subtropical Mountain Meadow Areas of Wugong Mountain, Central Southeast China. Life. 2022; 12(8):1136. https://doi.org/10.3390/life12081136
Chicago/Turabian StyleRana, Sohel, Ziheng Xu, Razia Sultana Jemim, Zhen Liu, Yanmei Wang, Xiaodong Geng, Qifei Cai, Jian Feng, Huina Zhou, Tao Zhang, and et al. 2022. "Soil Quality Assessment in Tourism-Disturbed Subtropical Mountain Meadow Areas of Wugong Mountain, Central Southeast China" Life 12, no. 8: 1136. https://doi.org/10.3390/life12081136
APA StyleRana, S., Xu, Z., Jemim, R. S., Liu, Z., Wang, Y., Geng, X., Cai, Q., Feng, J., Zhou, H., Zhang, T., Li, M., Guo, X., & Li, Z. (2022). Soil Quality Assessment in Tourism-Disturbed Subtropical Mountain Meadow Areas of Wugong Mountain, Central Southeast China. Life, 12(8), 1136. https://doi.org/10.3390/life12081136