Herbal Vitamin C Prevents DNA Oxidation and Modifies the Metabolomic Water Profile of Tilapia (Oreochromis spp.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Herbal Vitamin C Characterization
2.2. Experimental Site and Animals
2.3. Comet Assay
2.4. Volatile Compounds of Water Effluent
2.5. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Adesogan, A.T.; Havelaar, A.H.; McKune, S.L.; Eilittä, M.; Dahl, G.E. Animal source foods: Sustainability problem or malnutrition and sustainability solution? Perspective matters. Glob. Food Secur. 2020, 25, 100325. [Google Scholar] [CrossRef]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. The future of aquatic protein: Implications for protein sources in aquaculture diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef]
- Onusiriuka, B.C. The effect of parasitism on the protein and fatty acid content of the Nile tilapia, Oreochromis niloticus and African catfish (Claries garapinus) in river Kaduna Nigeria. J. Aquat Sci. 2002, 17, 128–130. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Noreldin, A.E.; Ali, M.M.; Sewilam, H. Menthol essential oil is a practical choice for intensifying the production of Nile tilapia (Oreochromis niloticus): Effects on the growth and health performances. Aquaculture 2021, 543, 737027. [Google Scholar] [CrossRef]
- Tacon, A.G.J. Fishmeal replacers: Review of antinutrients within oilseeds and pulses—A limiting factor for the aquafeed green revolution. In Proceedings of the Feed Ingredients Asia ’95 Conference, Singapore, 19–21 September 1995; pp. 23–48. [Google Scholar]
- Wedemeyer, G.A. Interactions with water quality conditions. In Physiology of Fish in Intensive Culture Systems; Springer: Boston, MA, USA, 1996; pp. 60–110. [Google Scholar]
- Waagbø, R.; Remø, S.C. Functional diets in fish health management. In Aquaculture Health Management; Academic Press: Cambridge, MA, USA, 2020; pp. 187–234. [Google Scholar]
- Leung, T.L.F.; Bates, A.E. More rapid and severe disease outbreaks for aquaculture at the tropics: Implications for food security. J. Appl. Ecol. 2013, 50, 215–222. [Google Scholar] [CrossRef]
- Lafferty, K.D.; Harvell, C.D.; Conrad, J.M.; Friedman, C.S.; Kent, M.L.; Kuris, A.M.; Powell, E.N.; Rondeau, D.; Saksida, S.M. Infectious diseases affect marine fisheries and aquaculture economics. Ann. Rev. Mar. Sci. 2015, 7, 471–496. [Google Scholar] [CrossRef]
- Preetham, E.; Amitha, K.; Sreeja, L.; Caterina, F.; Esteban, M.A.; Einar, R. Herbal Immunomodulators in Aquaculture. Rev. Fish. Sci. Aquac. 2021, 29, 33–57. [Google Scholar]
- Ringø, E.; Olsen, R.E.; Gifstad, T.; Dalmo, R.A.; Amlund, H.; Hemre, G.I.; Bakke, A.M. Prebiotics in aquaculture: A review. Aquacult. Nutr. 2010, 16, 117–136. [Google Scholar] [CrossRef]
- Ringø, E.; Olsen, I.; Jensen, J.; Romero, H.L.; Lauzon, H.L. Application of vaccines and dietary supplements in aquaculture: Possibilities and challenges. Rev. Fish. Biol. Fish. 2014, 24, 1005–1032. [Google Scholar] [CrossRef]
- Romero, J.; Feijoó, C.G.; Navarrete, P. Antibiotics in aquaculture—Use, abuse and alternatives. In Health and Environment in Aquaculture; Carvalho, E.D., Silva David, G., Silva, R.J., Eds.; IntechOpen: London, UK, 2012; pp. 159–198. [Google Scholar]
- Stratev, D.; Zhelyazkov, G.; Noundou, X.S.; Krause, R.W.M. Beneficial effects of medicinal plants in fish diseases. Aquacult Int. 2018, 26, 289–308. [Google Scholar] [CrossRef]
- Giannenas, I.; Triantafillou, E.; Stavrakakis, S.; Margaroni, M.; Mavridis, S.; Steiner, T.; Karagouni, E. Assessment of dietary supplementation with carvacrol or thymol containing feed additives on performance, intestinal microbiota and antioxidant status of rainbow trout (Oncorhynchus mykiss). Aquaculture 2012, 350–353, 26–32. [Google Scholar] [CrossRef]
- Rawling, M.; Merrifield, D.; Davies, S. Preliminary assessment of dietary supplementation of Sangrovit® on red tilapia (Orechromis niloticus) growth performance and health. Aquaculture 2009, 294, 118–122. [Google Scholar] [CrossRef]
- Kuebutornye, F. The contribition of medicinal plants to tilapia aquaculture: A review. Aquac Int. 2020, 28, 965–983. [Google Scholar] [CrossRef]
- Sánchez, N.; Lee-Rangel, H.A.; Martínez-Cortés, I.; Mendoza, G.D.; Hernández, P.; Espinoza, H.; Vazquez-Valladolid, A.; Flores-Ramírez, R.; Roque-Jimenez, A.; Campillo-Navarro, M.; et al. A polyherbal phytogenic additive improved growth performance, health, andimmune response in dairy calves. Food Agric. Immunol. 2021, 32, 482–498. [Google Scholar] [CrossRef]
- Lee-Rangel, H.A.; Mendoza-Martinez, G.; Martínez-García, J.A.; Espinosa-Ayala, E.; Hernández-García, P.A.; Cifuentes-López, R.O.; Vazquez-Valladolid, A.; García-López, J.C.; Lara-Bueno, A.; Roque-Jiménez, J.A. An Indian polyherbal phytogenic source improved blood serum biochemistry and immune response of dairy calves. Food Agric. Immunol. 2022, 33, 97–112. [Google Scholar] [CrossRef]
- Roque-Jiménez, J.A.; Mendoza-Martínez, G.D.; Vázquez-Valladolid, A.; Flores-Ramírez, R.; Pinos-Rodriguez, J.; Loor, J.J.; Relling, A.E.; Lee-Rangel, H.A. Supplemental Herbal Choline Increases 5-hmC DNA on Whole Blood from Pregnant Ewes and Offspring. Animals 2020, 10, 1277. [Google Scholar] [CrossRef]
- Frankič, T.; Voljč, M.; Salobir, J.; Rezar, V. Use of herbs and spices and their extracts in animal nutrition. Acta Agric. Slov. 2009, 94, 95–102. [Google Scholar]
- Sarhadi, I.; Alizadeh, E.; Ahmadifar, E.; Adineh, H.; Dawood, M.A.O. Skin mucosal, serum immunity and antioxidant capacity of common carp (Cyprinus carpio) fed artemisia (Artemisia annua). Ann. Anim. Sci. 2020, 20, 1011–1027. [Google Scholar] [CrossRef]
- Ji, R.; Li, Y.; Li, X.; Xiang, X.; Li, Y.; Zhu, S.; Yang, B.; Zhang, Y.; Mai, K.; Ai, Q. Effects of dietary tea polyphenols on growth, biochemical and antioxidant responses, fatty acid composition and expression of lipid metabolism related genes of large yellow croaker (Larimichthys crocea). Aquac. Res. 2018, 49, 1210–1218. [Google Scholar] [CrossRef]
- Zhu, F. A review on the application of herbal medicines in the disease control of aquatic animals. Aquaculture 2020, 526, 735422. [Google Scholar] [CrossRef]
- Volpe, M.G.; Costantini, S.; Coccia, E.; Parrillo, L.; Paolucci, M. Evaluation of metabolic changes induced by polyphenols in the crayfish Astacus leptodactylus by metabolomics using Fourier transformed infrared spectroscopy. J. Biosci. 2018, 43, 585–596. [Google Scholar] [CrossRef] [PubMed]
- Narra, M.R.; Rajender, K.; Reddy, R.R.; Rao, J.V.; Begum, G. The role of vitamin C as antioxidant in protection of biochemical and haematological stress induced by chlorpyrifos in freshwater fish Clarias batrachus. Chemosphere 2015, 132, 172–178. [Google Scholar] [CrossRef]
- Singh, N.P.; McCoy, M.; Tice, R.R.; Schneider, E.L. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell. Res. 1988, 175, 184–191. [Google Scholar] [CrossRef]
- González-Mille, D.J.; Espinosa-Reyes, G.; Ilizaliturri-Hernández, C.; Mejía-Saavedra, J.J.; Jasso-Pineda, Y.; Díaz-Barriga, F. Ensayo cometa en fauna terrestre. In Métodos Ecotoxicológicos Para la Evaluación de Suelos Contaminados con Hidrocarburos; Cuevas, M., Espinosa-Reyes, G., Ilizaliturri, C., Mendoza, A., Eds.; Instituto Nacional de Ecología: Mexico City, Mexico, 2012; pp. 107–125, 137. [Google Scholar]
- Ibrahem, M.D.; Fathi, M.; Mesalhy, S.; Abd El-Aty, A.M. Effect of dietary supplementation of inulin and vitamin C on the growth, hematology, innate immunity, and resistance of Nile tilapia (Oreochromis niloticus). Fish Shellfish Immunol. 2010, 29, 241–246. [Google Scholar] [CrossRef]
- Dügenci, S.K.; Arda, N.; Candan, A. Some medicinal plants as immunostimulant for fish. J. Ethnopharmacol. 2003, 88, 99–106. [Google Scholar] [CrossRef]
- Jian, J.; Wu, Z. Effects of traditional Chinese medicine on nonspecific immunity and disease resistance of large yellow croaker, Pseudosciaena crocea (Richardson). Aquaculture 2003, 218, 1–9. [Google Scholar] [CrossRef]
- Rathore, S.S.; Murthy, H.S.; Nasren, S.; Mamun, M.A.A.; Rakesh, K. The role of vitamin c as growth promoter and its effect on intestinal histology in monosexnile tilapia, Oreochromis niloticus. J. Exp. Zool. India 2019, 22, 639–644. [Google Scholar]
- Dawood, M.A.; Zommara, M.; Eweedah, N.M.; Helal, A.I.; Aboel-Darag, M.A. The potential role of nano-selenium and vitamin C on the performances of Nile tilapia (Oreochromis niloticus). Environ. Sci. Pollut. Res. 2020, 27, 9843–9852. [Google Scholar] [CrossRef]
- Pirarat, N.; Pinpimai, K.; Endo, M.; Katagiri, T.; Ponpornpisit, A.; Chansue, N.; Maita, M. Modulation of intestinal morphology and immunity in Nile tilapia (Oreochromis niloticus) by Lactobacillus rhamnosus GG. Res. Vet. Sci. 2011, 91, 92–97. [Google Scholar] [CrossRef]
- Gabriel, N.N. Review on the progress in the role of herbal extracts in tilapia culture. Cogent Food Agric. 2019, 5, 1619651. [Google Scholar] [CrossRef]
- Kumar, S.; Auroshree, P.; Mishra, J. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: A review. Bioact. Carbohydr. Diet. Fibre 2016, 7, 1–14. [Google Scholar]
- Gabriel, N.N.; Qiang, J.; Ma, X.Y.; He, J.; Xu, P.; Omoregie, E. Sex-reversal effect of dietary Aloe vera (Liliaceae) on genetically improved farmed Nile tilapia fry. N. Am. J. Aquac. 2017, 79, 100–105. [Google Scholar] [CrossRef]
- Alagawany, M.; Farag, M.R.; Salah, A.S.; Mahmoud, M.A. The role of oregano herb and its derivatives as immunomodulators in fish. Rev. Aquac. 2020, 12, 2481–2492. [Google Scholar] [CrossRef]
- Liu, H.P.; Wen, B.; Chen, Z.Z.; Gao, J.Z.; Liu, Y.; Zhang, Y.C.; Wang, Z.X.; Peng, Y. Effects of dietary vitamin C and vitamin E on the growth, antioxidant defence and digestive enzyme activities of juvenile discus fish (Symphysodon haraldi). Aquac. Nutr. 2019, 25, 176–183. [Google Scholar] [CrossRef]
- Girard-Lalancette, K.; Pichette, A.; Legault, J. Sensitive cell-based assay using DCFH oxidation for the determination of pro-and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chem. 2009, 115, 720–726. [Google Scholar] [CrossRef]
- Azqueda, A.; Shaposhnikov, S.; Collins, A.R. DNA oxidation: Investigating its key role in environmental mutagenesis with the comet assay. Mutat. Res. 2009, 674, 101–108. [Google Scholar] [CrossRef]
- Birnie-Gauvin, K.; Costantini, D.; Cooke, S.J.; Willmore, W.G. A comparative and evolutionary approach to oxidative stress in fish: A review. Fish Fish. 2017, 18, 928–942. [Google Scholar] [CrossRef]
- Lushchak, V.I. Environmentally induced oxidative stress in aquatic animals. Aquat. Toxicol. 2011, 101, 13–30. [Google Scholar] [CrossRef]
- Jiraungkoorskul, W.; Sahaphong, S.; Kangwanrangsan, N.; Zakaria, S. The protective influence of ascorbic acid against the genotoxicity of waterborne lead exposure in Nile tilapia Oreochromis niloticus (L.). J. Fish Biol. 2008, 73, 355–366. [Google Scholar] [CrossRef]
- Caritá, A.C.; Fonseca-Santos, B.; Shultz, J.D.; Michniak-Kohn, B.; Chorilli, M.; Leonardi, G.R. Vitamin C: One compound, several uses. Advances for delivery, efficiency and stability. Nanomed. Nanotechnol. Biol. Med. 2020, 24, 102117. [Google Scholar] [CrossRef]
- Reda, F.M.; El-Saadony, M.T.; Elnesr, S.S.; Alagawany, M.; Tufarelli, V. Effect of dietary supplementation of biological cur-cumin nanoparticles on growth and carcass traits, antioxidantstatus, immunity and caecal microbiota of japanese quails. Animals 2020, 10, 754. [Google Scholar] [CrossRef] [PubMed]
- Sardela, V.F.; de Souza Anselmo, S.; da Costa Nunes, I.K.; Carneiro, G.R.A.; Dos Santos, G.R.C.; de Carvalho, A.R.; de Jesus Labanca, B.; Oliveira, D.S.; Ribeiro, W.D.; de Araujo, A.L.D.; et al. Zebrafish (Danio rerio) water tank model for the investigation of drug metabolism: Progress, outlook, and challenges. Drug. Test. Anal. 2018, 10, 1657–1669. [Google Scholar] [CrossRef] [PubMed]
- National Center for Biotechnology Information. PubChem Compound Summary for CID 59801075. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/4-trimethylsilyl-N- (accessed on 9 June 2022).
- EL-Zawawy, N.A.; Mona, M.M. Antimicrobial efficacy of Egyptian Eremina desertorum and Helix aspersa snail mucus with a novel approach to their anti-inflammatory and wound healing potencies. Sci. Rep. 2021, 11, 24317. [Google Scholar] [CrossRef] [PubMed]
Item | CD | CD250 | CD500 | SEM | l | q |
---|---|---|---|---|---|---|
Initial BW, g | 162 | 181.75 | 187.75 | 9.25 | 0.12 | 0.71 |
Final BW, g | 188 | 215.5 | 217 | 7.98 | 0.05 | 0.85 |
BWG, g | 26 | 33.75 | 29.25 | 1.31 | 0.06 | 0.78 |
Initial longitude, cm | 20.15 | 21.15 | 20.95 | 2.7 | 0.25 | 0.26 |
Final longitude, cm | 22.75 | 23.55 | 23.47 | 1.99 | 0.39 | 0.68 |
Difference, cm | 2.62 | 2.45 | 2.53 | 1.83 | 0.16 | 0.13 |
Item | Period | p-Value | ||||||
---|---|---|---|---|---|---|---|---|
Week 1 | Week 2 | Week 3 | Week 4 | SEM | Time | l | q | |
Tail DNA | ||||||||
CD | 49.5 b | 48.68 b | 30.45 c | 14.14 c | 1.76 | 0.04 | 0.69 | 0.86 |
CD250 | 3.83 a | 2.8 a | 2.57 b | 5.24 b | ||||
CD500 | 3.27 a | 2.6 a | 1.45 a | 2.47 a | ||||
Olive Tail Moment | ||||||||
CD | 10.98 b | 11.89 b | 6.93 c | 2.94 c | 0.48 | 0.03 | 0.9 | 0.93 |
CD250 | 0.54 a | 0.54 a | 0.43 b | 0.9 b | ||||
CD500 | 0.56 a | 0.46 a | 0.27 a | 0.48 a | ||||
Tail Length | ||||||||
CD | 24.11 b | 29.99 b | 16.7 c | 9.07 c | 0.91 | 0.05 | 0.96 | 0.72 |
CD250 | 2.2 a | 2.6 a | 2.13 b | 4.46 b | ||||
CD500 | 2.82 a | 2.58 a | 1.52 a | 2.36 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villanueva, M.; Espinosa-Reyes, G.; Flores-Ramirez, R.; Rojas-Velazquez, A.N.; López, J.C.G.; Vazquez-Valladolid, A.; Roque-Jimenez, J.A.; Mendoza-Martinez, G.D.; Hernandez-Garcia, P.A.; Palacios-Martinez, M.; et al. Herbal Vitamin C Prevents DNA Oxidation and Modifies the Metabolomic Water Profile of Tilapia (Oreochromis spp.). Life 2022, 12, 1243. https://doi.org/10.3390/life12081243
Villanueva M, Espinosa-Reyes G, Flores-Ramirez R, Rojas-Velazquez AN, López JCG, Vazquez-Valladolid A, Roque-Jimenez JA, Mendoza-Martinez GD, Hernandez-Garcia PA, Palacios-Martinez M, et al. Herbal Vitamin C Prevents DNA Oxidation and Modifies the Metabolomic Water Profile of Tilapia (Oreochromis spp.). Life. 2022; 12(8):1243. https://doi.org/10.3390/life12081243
Chicago/Turabian StyleVillanueva, Moisés, Guillermo Espinosa-Reyes, Rogelio Flores-Ramirez, Angel Natanael Rojas-Velazquez, Juan Carlos García López, Anayeli Vazquez-Valladolid, José Alejandro Roque-Jimenez, German D. Mendoza-Martinez, Pedro A. Hernandez-Garcia, Monika Palacios-Martinez, and et al. 2022. "Herbal Vitamin C Prevents DNA Oxidation and Modifies the Metabolomic Water Profile of Tilapia (Oreochromis spp.)" Life 12, no. 8: 1243. https://doi.org/10.3390/life12081243
APA StyleVillanueva, M., Espinosa-Reyes, G., Flores-Ramirez, R., Rojas-Velazquez, A. N., López, J. C. G., Vazquez-Valladolid, A., Roque-Jimenez, J. A., Mendoza-Martinez, G. D., Hernandez-Garcia, P. A., Palacios-Martinez, M., Chay-Canul, A. J., & Lee-Rangel, H. A. (2022). Herbal Vitamin C Prevents DNA Oxidation and Modifies the Metabolomic Water Profile of Tilapia (Oreochromis spp.). Life, 12(8), 1243. https://doi.org/10.3390/life12081243