Plant Volatile Compounds of the Invasive Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb, Infested by Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Insects
2.2. Plant Treatments
2.3. Collection of Plant Volatiles
2.4. Analysis of Plant Volatiles by GC-MS/MS
2.5. Statistical Analysis
3. Results
3.1. Volatile Compounds A. philoxeroides in Leaves Infested with A. hygrophila
3.2. OPLS-DA Analysis of Volatile Components in Leaves
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Snoeren, T.A.; De Jong, P.W.; Dicke, M. Ecogenomic approach to the role of herbivore-induced plant volatiles in community ecology. J. Ecol. 2007, 95, 17–26. [Google Scholar] [CrossRef]
- Mathews, C.R.; Brown, M.W.; Bottrell, D.G. Leaf extrafloral nectaries enhance biological control of a key economic pest, Grapholita molesta (Lepidoptera: Tortricidae), in peach (Rosales: Rosaceae). Environ. Entomol. 2007, 36, 383–389. [Google Scholar] [CrossRef] [PubMed]
- Heil, M. Herbivore-Induced Plant Volatiles: Targets, Perception and Unanswered Questions. New Phytol. 2014, 204, 297–306. [Google Scholar] [CrossRef]
- Joo, Y.; Goldberg, J.K.; Chrétien, L.T.; Kim, S.G.; Baldwin, I.T.; Schuman, M.C. The circadian clock contributes to diurnal patterns of plant indirect defense in nature. J. Integr. Plant Biol. 2019, 61, 924–928. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Felton, G.W. Priming of antiherbivore defensive responses in plants. Insect Sci. 2013, 20, 273–285. [Google Scholar] [CrossRef] [PubMed]
- Ul Hassan, M.N.; Zainal, Z.; Ismail, I. Green leaf volatiles: Biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol. J. 2015, 13, 727–739. [Google Scholar] [CrossRef]
- Takabayashi, J.; Shiojiri, K. Multifunctionality of herbivory-induced plant volatiles in chemical communication in tritrophic interactions. Curr. Opin. Insect Sci. 2019, 32, 110–117. [Google Scholar] [CrossRef]
- Zhang, P.; Zhao, C.; Ye, Z.; Yu, X. Trade-off between defense priming by herbivore-induced plant volatiles and constitutive defense in tomato. Pest Manag. Sci. 2020, 76, 1893–1901. [Google Scholar] [CrossRef]
- Sugimoto, K.; Matsuia, K.; Iijimac, Y.; Akakabe, Y.; Muramoto, S.; Ozawa, R.; Uefune, M.; Sasaki, R.; Alamgir, K.; Akitake, S.; et al. Intake and transformation to a glycoside of (Z) -3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proc. Natl. Acad. Sci. USA 2014, 111, 7144–7149. [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Piesik, D.; Nowak, A.; Wawrzyniak, M. Tribolium confusum responses to blends of cereal kernels and plant volatiles. J. Appl. Entomol. 2016, 140, 558–563. [Google Scholar] [CrossRef]
- Piesik, D.; Wenda-Piesik, A. Sitophilus granarius responses to blends of five groups of cereal kernels and one group of plant volatiles. J. Stored Prod. Res. 2015, 62, 36–39. [Google Scholar] [CrossRef]
- Hare, J.D. Ecological role of volatiles produced by plants in response to damage by herbivorous insects. Annu. Rev. Entomol. 2011, 56, 161–180. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Wang, C. The ethological significance and olfactory detection of herbivore-induced plant volatiles in interactions of plants, herbivorous insects, and parasitoids. Arthropod Plant Inte. 2019, 13, 161–179. [Google Scholar] [CrossRef]
- Kanchiswamy, C.N.; Malnoy, M.; Maffei, M.E. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front. Plant Sci. 2015, 6, 151. [Google Scholar] [CrossRef]
- Fincheira, P.; Quiroz, A.; Tortella, G.; Diez, M.C.; Rubilar, O. Current advances in plant-microbe communication via volatile organic compounds as an innovative strategy to improve plant growth. Microbiol. Res. 2021, 247, 126726. [Google Scholar] [CrossRef]
- Yang, W.; Ji, Z.; An, Y.; Xie, Q.; Zhao, Y.; Shen, Y. Plant volatile organic compounds (VOCs): A review. Chin. J. Ecol. 2008, 27, 1386–1392. [Google Scholar]
- Aráoz, M.C.; Jacobi, V.G.; Fernandez, P.; Albarracin, E.L.; Virla, E.G.; Hill, J.G.; Catalan, C.A.N. Volatiles mediate host-selection in the corn hoppers Dalbulus maidis (Hemiptera: Cicadellidae) and Peregrinus maidis (Hemiptera: Delphacidae). B Entomol. Res. 2019, 109, 633–642. [Google Scholar] [CrossRef]
- Jacobi, V.G.; Fernandez, P.C.; Barriga, L.G.; Almeida-Trapp, M.; Mithöfer, A.; Zavala, J.A. Plant volatiles guide the new pest Dichelops furcatus to feed on corn seedlings. Pest Manag. Sci. 2021, 77, 2444–2453. [Google Scholar] [CrossRef]
- Su, J.; Cai, Z.; Qiao, F.; Miao, L.; Yin, S.; Zheng, P. Numbers of natural enemies of corn pests attracted by plant volatile lures. Chin. J. Appl. Entomol. 2020, 57, 196. [Google Scholar]
- Krug, P.; Sosa, A.J. Mother knows best: Plant polyploidy affects feeding and oviposition preference of the alligator weed biological control agent, Agasicles hygrophila. BioControl 2019, 64, 623–632. [Google Scholar] [CrossRef]
- Coulson, J.R. Biological Control of Alligatorweed, 1959–1972: A Review and Evaluation; United States Department of Agriculture and United States Department of the Army: Washington, DC, USA, 1977.
- Buckingham, G.R. Biological control of alligatorweed, Alternanthera philoxeroides, the world’s first aquatic weed success story. Castanea 1996, 61, 232–243. [Google Scholar]
- Wu, Z.; Cai, Y.; Guo, Z.; Wang, T. Host specific tests for Agasicles hygrophila (Coleoptera: Chrysomelidae), a biological control agent of alligatorweed. J. East China 1994, 3, 98–100. [Google Scholar]
- Howe, G.A.; Jander, G. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 2008, 59, 41–66. [Google Scholar] [CrossRef] [PubMed]
- Bruce, T.J.; Pickett, J.A. Perception of plant volatile blends by herbivorous insects–finding the right mix. Phytochemistry 2011, 72, 1605–1611. [Google Scholar] [CrossRef]
- Rasmann, S.; Agrawal, A.A. Evolution of specialization: A phylogenetic study of host range in the red milkweed beetle (Tetraopes tetraophthalmus). Am. Nat. 2011, 177, 728–737. [Google Scholar] [CrossRef]
- Loreto, F.; Dicke, M.; Schnitzler, J.P.; Turlings, T.C. Plant volatiles and the environment. Plant Cell Environ. 2014, 37, 1905–1908. [Google Scholar] [CrossRef]
- Li, N.; Li, S.; Ge, J.; Schuman, M.C.; Wei, J.N.; Ma, R.Y. Manipulating two olfactory cues causes a biological control beetle to shift to non-target plant species. J. Ecol. 2017, 105, 1534–1546. [Google Scholar] [CrossRef]
- Duan, W.; Sun, P.; Chen, L.; Gao, S.; Shao, W.; Li, J. Comparative analysis of fruit volatiles and related gene expression between the wild strawberry Fragaria pentaphylla and cultivated Fragaria×ananassa. Eur. Food Res. Technol. 2018, 244, 57–72. [Google Scholar] [CrossRef]
- Dicke, M.; Van Loon, J.J.; Soler, R. Chemical complexity of volatiles from plants induced by multiple attack. Nat. Chem. Biol. 2009, 5, 317–324. [Google Scholar] [CrossRef]
- Douma, J.C.; Ganzeveld, L.N.; Unsicker, S.B.; Boeckler, G.A.; Dicke, M. What makes a volatile organic compound a reliable indicator of insect herbivory? Plant Cell Environ. 2019, 42, 3308–3325. [Google Scholar] [CrossRef]
- Sun, H.; Zhang, F.; Chen, S.; Guan, Z.; Jiang, J.; Fang, W.; Chen, F. Effects of aphid herbivory on volatile organic compounds of Artemisia annua and Chrysanthemum morifolium. Biochem. Syst. Ecol. 2015, 60, 225–233. [Google Scholar] [CrossRef]
- Cui, S.; Ma, C.; Zhang, Y.; Bai, Q.; Chen, H.; Zang, L.; Zhou, Z. Effects of herbivory by the leaf beetle Ophraella communa on volatile compounds of the invasive common ragweed Ambrosia artemisiifolia. J. Environ. Entomol. 2021, 43, 1023–1033. [Google Scholar]
- Silva, D.B.; Weldegergis, B.T.; Van Loon, J.J.; Bueno, V.H. Qualitative and quantitative differences in herbivore-induced plant volatile blends from tomato plants infested by either Tuta absoluta or Bemisia tabaci. J. Chem. Ecol. 2017, 43, 53–65. [Google Scholar] [CrossRef] [PubMed]
- McCormick, A.C.; Unsicker, S.B.; Gershenzon, J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci. 2012, 17, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Gasmi, L.; Martínez-Solís, M.; Frattini, A.; Ye, M.; Collado, M.C.; Turlings, T.C.; Erb, M.; Herrero, S. Can herbivore-induced volatiles protect plants by increasing the herbivores’ susceptibility to natural pathogens? Appl. Environ. Microb. 2019, 85, e01468-18. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, T.; Xia, S.; Xiao, H.; Lu, Y. Cotton plant volatiles induced by larval feeding of Agrotis segetum (Lepidoptera: Noctuidae) deter oviposition of conspecific females. Acta Entomol. Sinica 2022, 65, 304–311. [Google Scholar]
- Shivaramu, S.; Jayanthi, P.D.K.; Kempraj, V.; Anjinappa, R.; Nandagopal, B.; Chakravarty, A.K. What signals do herbivore-induced plant volatiles provide conspecific herbivores? Arthropod Plant Interact. 2017, 11, 815–823. [Google Scholar] [CrossRef]
- Kong, W.; Wang, Y.; Guo, Y.; Chai, X.; Li, J.; Ma, R. Behavioral effects of different attractants on adult male and female oriental fruit moths, Grapholita molesta. Pest Manag. Sci. 2020, 76, 3225–3235. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, Q.; Erb, M.; Turlings, T.C.; Ge, L.; Hu, L.; Li, J.; Han, X.; Zhang, T.; Lu, J. Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol. Lett. 2012, 15, 1130–1139. [Google Scholar] [CrossRef]
- Ulhoa, L.A.; Barrigossi, J.A.F.; Borges, M.; Laumann, R.A.; Blassioli-Moraes, M.C. Differential induction of volatiles in rice plants by two stink bug species influence behaviour of conspecifics and their natural enemy Telenomus podisi. Entomol. Exp. Appl. 2020, 168, 76–90. [Google Scholar] [CrossRef]
- Pérez-Hedo, M.; Urbaneja-Bernat, P.; Jaques, J.A.; Flors, V.; Urbaneja, A. Defensive plant responses induced by Nesidiocoris tenuis (Hemiptera: Miridae) on tomato plants. J. Pest Sci. 2015, 88, 543–554. [Google Scholar] [CrossRef]
NO. | Compound | RI | CAS | Relative Content (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
CK | MD | 1L | 2L | 3L | Female | Male | ||||
1 | (+)-Longifolene | 1497 | 61262-67-7 | - | - | 0.22 ± 0.07 | - | - | - | - |
2 | (1R,2S,6S,7S,8S)-8-Isopropyl-1-methyl-3-methylenetricyclo [4.4.0.02,7]decane-rel- | 1431 | 18252-44-3 | - | - | - | 0.10 ± 0.03 | 0.07 ± 0.02 | - | - |
3 | (3E,7E)-4,8,12-Trimethyltrideca-1,3,7,11-tetraene (E, E-TMTT) | 1573 | 62235-6-7 | - | - | 1.34 ± 0.50 | 0.38 ± 0.12 | 2.89 ± 1.38 | 2.68 ± 1.50 | 0.89 ± 0.55 |
4 | (4S,4aR,6R)-4,4a-Dimethyl-6-(prop-1-en-2-yl)-1,2,3,4,4a,5,6,7-octahydronaphthalene | 1472 | 54868-40-5 | - | - | - | 0.75 ± 0.50 | 0.71 ± 0.32 | - | - |
5 | (E)-1-Methyl-4-(6-methylhept-5-en-2-ylidene) cyclohex-1-ene | 1596 | 53585-13-0 | - | - | 0.22 ± 0.77 | 0.12 ± 0.08 | 0.37 ± 0.05 | 0.19 ± 0.06 | 0.18 ± 0.06 |
6 | (E)-4,8-Dimethylnona-1,3,7-triene (DMNT) | 1106 | 19945-61-0 | - | - | - | - | 0.10 ± 0.05 | - | - |
7 | α-Farnesene | 1504 | 502-61-4 | 20.32 ± 2.27 | - | 78.64 ± 1.93 | 1.32 ± 0.42 | 34.34 ± 5.74 | 39.88 ± 3.67 | 65.80 ± 10.09 |
8 | α-Guaiene | 1497 | 3691-12-1 | - | - | - | - | 0.09 ± 0.04 | - | - |
9 | β-Ocimene | 1034 | 13877-91-3 | - | - | - | 0.31 ± 0.27 | - | - | 0.10 ± 0.09 |
10 | 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester | 1861 | 84-69-5 | - | - | - | 0.28 ± 0.25 | - | - | 1.09 ± 0.96 |
11 | 1,2-Benzenedicarboxylic acid, butyl 2-ethylhexyl ester | 1956 | 85-69-8 | 0.99 ± 0.86 | - | 0.30 ± 0.07 | 0.75 ± 0.30 | 0.34 ± 0.11 | - | 0.13 ± 0.11 |
12 | 1,3,6-Octatriene, 3,7-dimethyl-, (Z)- | 1034 | 3338-55-4 | - | - | - | - | - | 0.09 ± 0.03 | - |
13 | 1,3-Cyclopentadiene, 5,5-dimethyl-2-propyl- | 1170 | 878270-08-7 | - | 0.62 ± 0.21 | - | - | - | - | - |
14 | 1,4-Dimethyl-7-(prop-1-en-2-yl) decahydroazulen-4-ol | 1497 | 21698-41-9 | - | - | - | 0.96 ± 0.22 | 1.48 ± 0.49 | 2.84 ± 0.50 | 0.35 ± 0.12 |
15 | trans-Nerolidol | 1561 | 40716-66-3 | - | - | - | 0.13 ± 0.12 | 0.17 ± 0.06 | - | - |
16 | 11-Methyltricosane | 1749 | 27538-41-6 | - | - | 0.13 ± 0.12 | - | - | - | - |
17 | β-Cedrene | 1425 | 546-28-1 | - | - | 2.35 ± 0.70 | 0.31 ± 0.27 | 1.80 ± 1.20 | 3.22 ± 0.94 | 1.56 ± 0.94 |
18 | 1H-Cyclopropa[a]naphthalene, decahydro-1,1,3a-trimethyl-7-methylene-, [1aS-(1aα,3aα,7aβ,7bα)]- | 1497 | 20071-49-2 | 1.86 ± 0.27 | - | - | - | 3.20 ± 1.58 | 0.87 ± 0.29 | - |
19 | 1-Tridecene | 1083 | 2437-56-1 | 7.11 ± 2.25 | 7.81 ± 0.55 | 0.93 ± 0.17 | 0.65 ± 0.07 | 2.08 ± 0.58 | 1.43 ± 0.69 | 2.72 ± 1.65 |
20 | 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate | 1586 | 6846-50-0 | 1.81 ± 0.60 | - | 0.16 ± 0.05 | 0.16 ± 0.01 | 0.60 ± 1.79 | 0.43 ± 0.25 | 0.62 ± 0.31 |
21 | 2,6,10-Trimethyltridecane | 1704 | 3891-99-4 | - | - | 0.15 ± 0.13 | - | 0.51 ± 0.17 | - | 0.34 ± 0.11 |
22 | 2,6-Dimethyl-1,3,5,7-octatetraene, E,E- | 1124 | 460-1-5 | - | - | - | - | - | 4.29 ± 1.77 | - |
23 | 2-Hexadecanol | 1473 | 14852-31-4 | - | - | 0.47 ± 0.02 | - | - | - | - |
24 | 2-Isopropenyl-4a,8-dimethyl-1,2,3,4,4a,5,6,8a-octahydronaphthalene | 1497 | 207297-57-2 | - | 3.72 ± 1.03 | 0.17 ± 0.08 | - | - | 0.57 ± 0.23 | 0.17 ± 0.06 |
25 | 2-Isopropyl-5-methyl-1-heptanol | 1316 | 91337-7-4 | - | - | - | - | 0.18 ± 0.04 | - | - |
26 | 2-Nonadecanone | 1464 | 629-66-3 | - | - | - | - | - | 0.50 ± 0.17 | - |
27 | 2-Pentadecanone, 6,10,14-trimethyl- | 1845 | 502-69-2 | - | - | - | - | 0.17 ± 0.06 | - | - |
28 | 2-Undecanone, 6,10-dimethyl- | 1464 | 1604-34-8 | - | - | - | - | - | 0.16 ± 0.07 | - |
29 | 3,7-Nonadien-2-ol, 4,8-dimethyl- | 1084 | 67845-50-5 | - | - | - | - | - | 0.06 ± 0.05 | 0.39 ± 0.26 |
30 | 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- | 1478 | 14901-7-6 | - | - | - | - | 0.39 ± 0.46 | - | - |
31 | 3-Ethyl-3-methylheptane | 1043 | 17302-1-1 | - | - | - | - | - | 1.28 ± 0.38 | 0.12 ± 0.04 |
32 | cis-3-hexenyl benzoate | 1571 | 25152-85-6 | - | - | - | - | 0.72 ± 0.24 | - | 1.42 ± 0.47 |
33 | 3-Tetradecen-5-yne, (E)- | 1215 | 74744-44-8 | - | - | 0.37 ± 0.03 | 0.27 ± 0.17 | 0.77 ± 0.12 | - | 0.27 ± 0.09 |
34 | 3-Tetradecene, (E)- | 1083 | 41446-68-8 | - | - | 0.15 ± 0.05 | - | - | 1.22 ± 1.08 | - |
35 | Azulene | 1180 | 275-51-4 | - | - | - | - | - | 3.50 ± 1.95 | - |
36 | Benzene, 1,3-bis(1-methylethyl)- | 1641 | 99-62-7 | - | - | - | 0.51 ± 0.33 | - | - | - |
37 | Benzene, 1-ethyl-3,5-dimethyl- | 1144 | 934-74-7 | - | - | - | - | - | - | 2.55 ± 0.25 |
38 | Benzene, 2-ethyl-1,4-dimethyl- | 1144 | 1758-88-9 | - | - | - | - | 0.09 ± 0.02 | - | 0.21 ± 0.18 |
39 | Bicyclo [3.1.1]hept-2-en-6-one, 2,7,7-trimethyl- | 1170 | 473-6-3 | - | - | - | - | - | 0.30 ± 0.10 | - |
40 | Bicyclo [5.2.0]nonane, 2-methylene-4,8,8-trimethyl-4-vinyl- | 1490 | 242794-76-9 | - | - | - | - | - | - | 0.61 ± 0.20 |
41 | (-)-Isocaryophyllene | 1599 | 118-65-0 | - | - | 0.18 ± 0.06 | - | - | - | - |
42 | β-Bisabolene | 1508 | 495-61-4 | - | - | - | - | - | - | 0.15 ± 0.14 |
43 | Caryophyllene | 1421 | 87-44-5 | - | - | - | - | 0.71 ± 0.34 | - | - |
44 | α-Cedrene | 1417 | 469-61-4 | - | - | - | - | 0.10 ± 0.06 | - | - |
45 | Cedrol | 1611 | 77-53-2 | - | - | - | 0.21 ± 0.12 | 0.18 ± 0.09 | - | 0.29 ± 0.08 |
46 | β-Chamigrene | 1421 | 18431-82-9 | - | - | - | 0.24 ± 0.13 | 0.31 ± 0.16 | - | - |
47 | cis-α-Bergamotene | 1434 | 18252-46-5 | 1.72 ± 0.53 | - | - | - | - | 0.95 ± 0.20 | - |
48 | Copaene | 1376 | 3856-25-5 | - | - | - | - | 0.32 ± 0.11 | 0.15 ± 0.13 | 0.09 ± 0.08 |
49 | Cycloheptane, 4-methylene-1-methyl-2-(2-methyl-1-propen-1-yl)-1-vinyl- | 1497 | 826337-63-7 | 3.60 ± 2.62 | 3.28 ± 2.89 | - | - | 1.12 ± 0.1 | 7.25 ± 4.42 | 0.22 ± 0.02 |
50 | Cyclohexane, 1,1-dimethyl-2-propyl- | 1084 | 81983-71-3 | - | - | 0.32 ± 0.29 | 0.93 ± 0.13 | 0.45 ± 0.72 | - | 0.9 ± 0.43 |
51 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1α,2β,4β)]- | 1390 | 515-13-9 | - | - | - | 0.12 ± 0.04 | - | - | - |
52 | Cyclohexane, 2-ethenyl-1,1-dimethyl-3-methylene- | 1084 | 95452-8-7 | - | - | - | - | 2.07 ± 0.69 | 1.48 ± 1.31 | - |
53 | Cyclosativene | 1369 | 22469-52-9 | - | - | - | 0.10 ± 0.05 | 0.34 ± 0.11 | - | - |
54 | Decane, 1-iodo- | 1694 | 2050-77-3 | - | - | 2.57 ± 0.83 | 77.41 ± 7.02 | 22.79 ± 7.34 | - | 0.94 ± 0.83 |
55 | Decane, 3,7-dimethyl- | 1091 | 17312-54-8 | - | 2.23 ± 1.14 | - | - | - | 0.15 ± 0.05 | - |
56 | Dibutyl phthalate | 1956 | 84-74-2 | - | - | - | - | - | 0.12 ± 0.01 | - |
57 | Diethyl Phthalate | 1585 | 84-66-2 | 6.17 ± 0.52 | 3.20 ± 0.78 | 0.29 ± 0.09 | - | 0.27 ± 2.02 | 2.11 ± 0.38 | 0.83 ± 0.56 |
58 | Docosane | 1703 | 629-97-0 | - | - | - | - | - | 0.95 ± 0.21 | - |
59 | Dodecane, 2,6,11-trimethyl- | 1092 | 31295-56-4 | 1.44 ± 0.30 | 3.10 ± 0.68 | 0.34 ± 0.1 | - | - | 0.54 ± 0.16 | 0.31 ± 0.28 |
60 | Dodecane, 4,6-dimethyl- | 1320 | 61141-72-8 | - | 1.86 ± 1.09 | - | - | - | 0.78 ± 0.24 | - |
61 | Dodecane, 4-methyl- | 1092 | 6117-97-1 | 6.93 ± 0.63 | 6.03 ± 0.47 | 0.36 ± 0.11 | 0.16 ± 0.03 | 0.28 ± 0.23 | 1.63 ± 0.48 | 0.67 ± 0.48 |
62 | Eicosane | 1698 | 112-95-8 | - | - | 0.47 ± 0.13 | - | - | - | - |
63 | Ether, 2-ethylhexyl tert-butyl | 1027 | 83704-3-4 | 8.71 ± 0.51 | 8.81 ± 4.31 | 0.75 ± 0.09 | 0.09 ± 0.08 | 0.80 ± 0.27 | 1.25 ± 0.20 | 1.25 ± 0.10 |
64 | (E)-β-Farnesene | 1452 | 18794-84-8 | 6.55 ± 4.11 | 7.2 ± 2.4 | 3.21 ± 0.86 | 1.16 ± 0.17 | 2.42 ± 0.74 | 10.01 ± 2.31 | 0.19 ± 0.17 |
65 | cis,cis-Farnesol | 1555 | 16106-95-9 | - | - | 0.08 ± 0.01 | - | - | - | - |
66 | Furan, 3-(4,8-dimethyl-3,7-nonadienyl)-, (E)- | 1573 | 23262-34-2 | - | - | - | 7.04 ± 2.77 | 9.33 ± 4.97 | - | 2.52 ± 0.84 |
67 | α-Gurjunene | 1500 | 489-40-7 | - | - | - | 0.08 ± 0.02 | - | - | - |
68 | Heneicosane | 1626 | 629-94-7 | 11.57 ± 0.81 | 14.06 ± 2.07 | 0.24 ± 0.06 | 0.14 ± 0.07 | 0.38 ± 0.07 | 1.25 ± 0.38 | 0.54 ± 0.04 |
69 | Heptadecane | 1320 | 629-78-7 | - | 1.66 ± 1.46 | 0.18 ± 0.04 | - | 0.29 ± 0.35 | 0.83 ± 0.27 | 0.15 ± 0.05 |
70 | Hexadecane, 2,6,10,14-tetramethyl- | 1807 | 638-36-8 | 0.42 ± 0.06 | 2.62 ± 0.54 | - | - | 0.07 ± 0.04 | 1.16 ± 0.27 | 0.16 ± 0.05 |
71 | Hexadecane, 2,6,11,15-tetramethyl- | 1534 | 504-44-9 | - | 1.43 ± 1.26 | 0.16 ± 0.05 | - | - | - | - |
72 | Hexatriacontane | 1839 | 630-6-8 | - | 0.53 ± 0.07 | - | - | - | 0.56 ± 0.17 | - |
73 | α-Himachalene | 1420 | 3853-83-6 | - | - | - | - | - | - | 0.14 ± 0.05 |
74 | α-Humulene | 1457 | 6753-98-6 | - | - | - | - | 0.08 ± 0.04 | - | - |
75 | isoledene | 1499 | 95910-36-4 | - | - | 0.11 ± 0.01 | 0.27 ± 0.08 | 0.20 ± 0.07 | - | - |
76 | Naphthalene | 1179 | 91-20-3 | 9.24 ± 1.97 | - | - | - | - | - | - |
77 | Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-4a,8-dimethyl-2-(1-methylethenyl)-, [2R-(2α,4aα,8aβ)]- | 1497 | 473-13-2 | - | - | - | - | 0.2 ± 0.17 | - | - |
78 | Naphthalene, 1,2,3,4,4a,5,6,8a-octahydro-7-methyl-4-methylene-1-(1-methylethyl)-, (1α,4aβ,8aα)- | 1476 | 39029-41-9 | - | - | - | 0.32 ± 0.22 | - | - | - |
79 | Naphthalene, 1,2,3,5,6,7,8,8a-octahydro-1,8a-dimethyl-7-(1-methylethenyl)-, [1R-(1α,7β,8aα)]- | 1494 | 4630-7-3 | - | - | - | - | 0.08 ± 0.04 | - | - |
80 | Nerolidol | 1561 | 7212-44-4 | - | - | 0.34 ± 0.12 | 0.70 ± 0.45 | 1.12 ± 0.34 | - | 1.17 ± 0.45 |
81 | Nonadecane | 1534 | 629-92-5 | - | 0.56 ± 0.19 | 2.37 ± 0.79 | 3.91 ± 0.48 | - | 0.52 ± 0.06 | 3.26 ± 1.09 |
82 | Nonane, 5-methyl-5-propyl- | 1274 | 17312-75-3 | 0.94 ± 0.81 | 2.50 ± 1.11 | - | - | - | 1.78 ± 0.71 | - |
83 | (E)-β-Ocimene | 1034 | 3779-61-1 | - | 2.36 ± 2.08 | - | - | - | - | - |
84 | Octadecane | 1281 | 593-45-3 | - | - | - | - | 3.46 ± 1.13 | - | - |
85 | Pentacosane | 1911 | 629-99-2 | - | - | 0.20 ± 0.02 | - | - | 0.11 ± 0.04 | - |
86 | Pentadecane, 8-hexyl- | 1749 | 13475-75-7 | 0.38 ± 0.08 | 7.24 ± 1.42 | - | 0.11 ± 0.03 | 0.47 ± 0.05 | 0.87 ± 0.38 | 1.57 ± 0.33 |
87 | β-Selinene | 1490 | 17066-67-0 | 0.58 ± 0.42 | 1.43 ± 1.26 | - | - | - | 0.21 ± 0.06 | - |
88 | 7-epi-Sesquithujene | 1434 | 159407-35-9 | - | 1.65 ± 0.52 | - | - | - | - | - |
89 | Tetracontane | 1807 | 4181-95-7 | - | - | - | - | - | 1.59 ± 0.26 | - |
90 | Tetracosane | 1749 | 646-31-1 | - | 10.5 ± 1.92 | - | - | 0.11 ± 0.45 | - | - |
91 | Tetradecane, 4-methyl- | 1321 | 25117-24-2 | - | 2.21 ± 0.74 | - | - | - | - | - |
92 | Tetratetracontane | 1910 | 7098-22-8 | - | 2.69 ± 0.22 | - | - | - | - | - |
93 | Tetratriacontyl heptafluorobutyrate | 1299 | 84461-48-3 | - | 0.70 ± 0.23 | - | - | - | - | - |
94 | trans-α-Bergamotene | 1433 | 13474-59-4 | 9.66 ± 2.14 | - | 1.64 ± 0.52 | - | 0.13 ± 0.04 | - | 4.56 ± 0.96 |
95 | trans-β-Ionone | 1478 | 79-77-6 | - | - | - | - | - | - | 0.52 ± 0.06 |
96 | Tricyclo [3.1.0.0(2,4)]hexane, 3,6-diethyl-3,6-dimethyl-, trans- | 1170 | 58987-01-2 | - | - | - | - | 0.36 ± 0.12 | - | - |
97 | Z,Z,Z-4,6,9-Nonadecatriene | 1287 | 89353-62-8 | - | - | - | - | 0.56 ± 0.17 | - | - |
NO. | Compounds | VIP |
---|---|---|
20 | 2,2,4-Trimethyl-1,3-pentanediol diisobutyrate | 1.99458 |
89 | Tetracontane | 1.38855 |
65 | cis,cis-Farnesol | 1.38627 |
57 | Diethyl Phthalate | 1.36926 |
26 | 2-Nonadecanone | 1.33858 |
52 | Cyclohexane, 2-ethenyl-1,1-dimethyl-3-methylene- | 1.32584 |
6 | (E)-4,8-Dimethylnona-1,3,7-triene | 1.31482 |
66 | Furan, 3-(4,8-dimethyl-3,7-nonadienyl)-, (E)- | 1.24214 |
94 | trans-α-Bergamotene | 1.19307 |
45 | Cedrol | 1.19001 |
17 | β-Cedrene | 1.14817 |
63 | Ether, 2-ethylhexyl tert-butyl | 1.13473 |
51 | Cyclohexane, 1-ethenyl-1-methyl-2,4-bis(1-methylethenyl)-, [1S-(1α,2β,4β)]- | 1.10913 |
42 | β-Bisabolene | 1.10461 |
30 | 3-Buten-2-one, 4-(2,6,6-trimethyl-1-cyclohexen-1-yl)- | 1.07133 |
92 | Tetratetracontane | 1.05905 |
15 | 1,6,10-Dodecatrien-3-ol, 3,7,11-trimethyl-, (E)- | 1.05126 |
48 | Copaene | 1.02700 |
43 | Caryophyllene | 1.01986 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, M.-Z.; Li, J.-Y.; Chen, Y.-T.; Fang, L.; Wei, H.; Fu, J.-W. Plant Volatile Compounds of the Invasive Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb, Infested by Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae). Life 2022, 12, 1257. https://doi.org/10.3390/life12081257
Shi M-Z, Li J-Y, Chen Y-T, Fang L, Wei H, Fu J-W. Plant Volatile Compounds of the Invasive Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb, Infested by Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae). Life. 2022; 12(8):1257. https://doi.org/10.3390/life12081257
Chicago/Turabian StyleShi, Meng-Zhu, Jian-Yu Li, Yan-Ting Chen, Ling Fang, Hang Wei, and Jian-Wei Fu. 2022. "Plant Volatile Compounds of the Invasive Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb, Infested by Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae)" Life 12, no. 8: 1257. https://doi.org/10.3390/life12081257
APA StyleShi, M. -Z., Li, J. -Y., Chen, Y. -T., Fang, L., Wei, H., & Fu, J. -W. (2022). Plant Volatile Compounds of the Invasive Alligatorweed, Alternanthera philoxeroides (Mart.) Griseb, Infested by Agasicles hygrophila Selman and Vogt (Coleoptera: Chrysomelidae). Life, 12(8), 1257. https://doi.org/10.3390/life12081257