Initial Testing of an Approximated, Fast Calculation Procedure for Personalized Dosimetry in Radionuclide Therapy Based on Planar Whole-Body Scan and Monte-Carlo Specific Dose Rates from the OpenDose Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. Planar Imaging and Automatic Segmentation
2.2. Bone Marrow Dose Calculation
2.3. Estimated Pharmacokinetics
2.4. Comparison with 177Lu-(DOTA-TATE) Literature Data
2.5. Preliminary Validation on 131RAI
2.6. Inclusion Criteria and Treatment Monitoring
3. Results
3.1. Comparison with 177Lu-(DOTA-TATE) Literature Data
3.2. Preliminary Validation on 131RAI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Luster, M.; Clarke, S.E.; Dietlein, M.; Lassmann, M.; Lind, P.; Oyen, W.J.G.; Tennvall, J.; Bombardieri, E. Guidelines for radioiodine therapy of differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1941–1959. [Google Scholar] [CrossRef] [PubMed]
- Nickson, J.J. Dosimetric and protective considerations for radioactive iodine. J. Clin. Endocrinol. 1948, 8, 721–731. [Google Scholar] [CrossRef]
- Marinelli, L.D.; Hill, R.F. Radiation dosimetry in the treatment of functional thyroid carcinoma with I131. Radiology 1950, 55, 494–502. [Google Scholar] [CrossRef] [PubMed]
- Rall, J.E.; Foster, C.G.; Robbins, J.; Lazerson, R.; Farr, L.E.; Rawson, R.W. Dosimetric considerations in determining hematopoietic damage from radioactive iodine. Am. J. Roent. Rad. Ther. Nuc. Med. 1953, 70, 274–282. [Google Scholar]
- Benua, R.S.; Cicale, N.R.; Sonenberg, M.; Rawson, R.W. Relation of radioiodine dosimetry to results and complications in treatment of metastatic thyroid cancer. Am. J. Roentgenol. Radium Ther. Nucl. Med. 1962, 87, 171–182. [Google Scholar]
- Benua, R.S.; Leeper, R.D. A method and rationale for treating metastatic thyroid carcinoma with the largest safe dose of I-131. In Frontiers in Thyroidology; Plenum Medical: New York, NY, USA, 1986; Volume 2, pp. 1317–1321. [Google Scholar]
- Lassmann, M.; Hänscheid, H.; Chiesa, C.; Hindorf, C.; Flux, G.; Luster, M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: Blood and bone marrow dosimetry in differentiated thyroid cancer therapy. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 1405–1412. [Google Scholar] [CrossRef]
- Maxon, H.R., 3rd; Englaro, E.E.; Thomas, S.R.; Hertzberg, V.S.; Hinnefeld, J.D.; Chen, L.S.; Smith, H.; Cummings, D.; Aden, M.D.; Aden, M.D. Radioiodine-131 therapy for well-differentiated thyroid cancer—A quantitative radiation dosimetric approach: Outcome and validation in 85 patients. J. Nucl. Med. 1992, 33, 1132–1136. [Google Scholar]
- Sgouros, G. Bone marrow dosimetry for radioimmunotherapy: Theoretical considerations. J. Nucl. Med. 1993, 34, 689–694. [Google Scholar]
- Maxon, H.R.; Thomas, S.R.; Samaratunga, R.C. Dosimetric considerations in the radioiodine treatment of macrometastases and micrometastases from differentiated thyroid cancer. Thyroid 1997, 7, 183–187. [Google Scholar] [CrossRef]
- Furhang, E.F.; Larson, S.M.; Buranapong, P.; Humm, J.L. Thyroid cancer dosimetry using clearance fitting. J. Nucl. Med. 1999, 40, 131–136. [Google Scholar]
- Van Nostrand, D.; Atkins, F.; Yeganeh, F.; Acio, E.; Bursaw, R.; Wartofsky, L. Dosimetrically determined doses of radioiodine for the treatment of metastatic thyroid carcinoma. Thyroid 2002, 12, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Sgouros, G. Blood and bone marrow dosimetry in radioiodine therapy of thyroid cancer. J. Nucl. Med. 2005, 46, 899–900. [Google Scholar] [PubMed]
- Song, H.; He, B.; Prideaux, A.; Du, Y.; Frey, E.; Kasecamp, W.; Ladenson, P.W.; Wahl, R.L.; Sgouros, G. Lung dosimetry for radioiodine treatment planning in the case of diffuse lung metastases. J. Nucl. Med. 2006, 47, 1985–1994. [Google Scholar] [PubMed]
- Rémy, H.; Borget, I.; Leboulleux, S.; Guilabert, N.; Lavielle, F.; Garsi, J.; Bournaud, C.; Gupta, S.; Schlumberger, M.; Ricard, M. Iodine 131 effective half-life and dosimetry in thyroid cancer patients. J. Nucl. Med. 2008, 49, 445–450. [Google Scholar] [CrossRef]
- Loevinger, R.; Budingeri, T.; Watson, E.E. MlRD Primer for Absorbed Dose Calculations, Revised; The Society of Nuclear Medicine: New York, NY, USA, 1991. [Google Scholar]
- Zanzonico, P.B.; Bigler, R.E.; Sgouros, G.; Strauss, A. Quantitative SPECT in radiation dosimetry. Semin. Nucl. Med. 1989, 19, 47–61. [Google Scholar] [CrossRef]
- Kolbert, K.S.; Sgouros, G.; Scott, A.M.; Bronstein, J.E.; Malane, R.A.; Zhang, J.; Kalaigian, H.; McNamara, S.; Schwartz, L.; Larson, S.M. Implementation and evaluation of patient-specific three-dimensional dosimetry. J. Nucl. Med. 1997, 38, 301–308. [Google Scholar]
- Akabani, G.; Hawkins, W.G.; Eckblade, M.B.; Leichter, P.K. Patient-specific dosimetry using quantitative SPECT imaging and three-dimensional discrete Fourier transform convolution. J. Nucl. Med. 1997, 38, 308–314. [Google Scholar]
- Rowe, S.P.; Vicente, E.; Anizan, N.; Wang, H.; Leal, J.P.; Lodge, M.A.; Frey, E.C.; Wahl, R.L. Repeatability of radiotracer uptake in normal abdominal organs with 111In-pentetreotide quantitative SPECT/CT. J. Nucl. Med. 2015, 56, 985–988. [Google Scholar] [CrossRef]
- Ljungberg, M.; Celler, A.; Konijnenberg, M.W.; Eckerman, K.F.; Dewaraja, Y.K.; Sjӧgreen-Gleisner, K. MIRD pamphlet no. 26: Joint EANM/MIRD guidelines for quantitative 177Lu SPECT applied for dosimetry of radiopharmaceutical therapy. J. Nucl. Med. 2016, 57, 151–162. [Google Scholar] [CrossRef]
- Larsson, M.; Bernhardt, P.; Svensson, J.B.; Wängberg, B.; Ahlman, H.; Forssell-Aronsson, E. Estimation of absorbed dose to the kidneys in patients after treatment with 177 Lu-octreotate: Comparison between methods based on planar scintigraphy. Eur. J. Nucl. Med. Mol. Imaging 2012, 2, 49. [Google Scholar]
- Svensson, J.; Rydén, T.; Hagmarker, L.; Hemmingsson, J.; Wängberg, B.; Bernhardt, P. A novel planar image-based method for bone marrow dosimetry in 177 Lu-DOTATATE treatment correlates with haematological toxicity. Eur. J. Nucl. Med. Mol. Imaging 2016, 3, 21. [Google Scholar]
- Hägmarker, L.; Svensson, J.; Rydén, T.; van Essen, M.; Sundlöv, A.; Gleisner, K.S.; Gjertsson, P.; Bernhardt, P. Bone marrow absorbed doses and correlations with hematologic response during 177Lu-DOTATATE treatments are influenced by image-based dosimetry method and presence of skeletal metastases. J. Nucl. Med. 2019, 60, 1406–1413. [Google Scholar] [CrossRef] [PubMed]
- Magnander, T.; Wikberg, E.; Svensson, J.; Gjertsson, P.; Wängberg, B.; Båth, M.; Bernhardt, P. A novel statistical analysis method to improve the detection of hepatic foci of 111In-octreotide in SPECT/CT imaging. Eur. J. Nucl. Med. Mol. Imaging 2016, 3, 1. [Google Scholar] [CrossRef]
- Mora-Ramirez, E.; Santoro, L.; Cassol, E.; Ocampo-Ramos, J.C.; Clayton, N.; Kayal, G.; Chouaf, S.; Trauchessec, D.; Pouget, J.P.; Kotzki, P.O.; et al. Comparison of commercial dosimetric software platforms in patients treated with 177Lu-DOTATATE for peptide receptor radionuclide therapy. Med. Phys. 2020, 47, 4602–4615. [Google Scholar] [CrossRef]
- Huizing, D.; Peters, S.; Versleijen, M.W.; Martens, E.; Verheij, M.; Sinaasappel, M.; Stokkel, M.; de Wit-van der Veen, B.J. A head-to-head comparison between two commercial software packages for hybrid dosimetry after peptide receptor radionuclide therapy. Eur. J. Nucl. Med. Mol. Imaging 2020, 7, 36. [Google Scholar] [CrossRef]
- Hänscheid, H.; Lapa, C.; Buck, A.K.; Lassmann, M.; Werner, R.A. Dose mapping after endoradiotherapy with 177Lu-DOTATATE/DOTATOC by a single measurement after 4 days. J. Nucl. Med. 2018, 59, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Chauvin, M.; Borys, D.; Botta, F.; Bzowski, P.; Dabin, J.; Denis-Bacelar, A.M.; Desbrée, A.; Falzone, N.; Lee, B.Q.; Mairani, A.; et al. OpenDose: Open-Access Resource for Nuclear Medicine Dosimetry. J. Nucl. Med. 2020, 61, 1514–1519. [Google Scholar] [CrossRef]
- Hindorf, C.; Glatting, G.; Chiesa, C.; Lindén, O.; Flux, G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur. J. Nucl. Med. Mol. Imaging 2010, 37, 1238–1250. [Google Scholar] [CrossRef]
- Clement, C.H. (Ed.) Adult Reference Computational Phantoms: ICRP Publication 110. Ann. ICRP 2009, 39, 1–170. [Google Scholar]
- Valentin, J. (Ed.) Basic anatomical and physiological data for use in radiological protection: Reference values: ICRP Publication 89. Ann. ICRP 2002, 32, 1–277. [Google Scholar]
- Klain, M.; Nappi, C.; De Risi, M.; Piscopo, L.; Volpe, F.; Manganelli, M.; Caiazzo, E.; Bianco, D.; Schlumberger, M.; Cuocolo, A. Whole-Body Radioiodine Effective Half-Life in Patients with Differentiated Thyroid Cancer. Diagnostics 2021, 11, 1740. [Google Scholar] [CrossRef] [PubMed]
- Tuttle, R.M.; Leboeuf, R.; Robbins, R.J.; Qualey, R.; Pentlow, K.; Larson, S.M.; Chan, C.Y. Empiric radioactive iodine dosing regimens frequently exceed maximum tolerated activity levels in elderly patients with thyroid cancer. J. Nucl. Med. 2006, 47, 1587–1591. [Google Scholar]
- Dorn, R.; Kopp, J.; Vogt, H.; Heidenreich, P.; Carroll, R.G.; Gulec, S.A. Dosimetry-guided radioactive iodine treatment in patients with metastatic differentiated thyroid cancer: Largest safe dose using a risk-adapted approach. J. Nucl. Med. 2003, 44, 451–456. [Google Scholar] [PubMed]
- Tofani, A.; Sciuto, R.; Cioffi, R.P.; Pasqualoni, R.; Rea, S.; Festa, A.; Gandolfo, G.M.; Arista, M.C.; Maini, C.L. Radioiodine-induced changes in lymphocyte subsets in patients with differentiated thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 1999, 26, 824–829. [Google Scholar] [CrossRef] [PubMed]
- Hartung-Knemeyer, V.; Nagarajah, J.; Jentzen, W.; Ruhlmann, M.; Freudenberg, L.S.; Stahl, A.R.; Bockisch, A.; Rosenbaum-Krumme, S.J. Pre-therapeutic blood dosimetry in patients with differentiated thyroid carcinoma using 124-iodine: Predicted blood doses correlate with changes in blood cell counts after radioiodine therapy and depend on modes of TSH stimulation and number of preceding radioiodine therapies. Ann. Nucl. Med. 2012, 26, 723–729. [Google Scholar] [PubMed]
- ICRP. Recommendations of the International Commission on radiological protection. ICRP Publication 103. Ann. ICRP 2007, 37, 1–332. [Google Scholar]
- Klain, M.; Nappi, C.; Nicolai, E.; Romeo, V.; Piscopo, L.; Giordano, A.; Gaudieri, V.; Zampella, E.; Pace, L.; Carlo, C.; et al. Comparison of simultaneous 18F-2-[18F] FDG PET/MR and PET/CT in the follow-up of patients with differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 3066–3073. [Google Scholar] [CrossRef]
Patient | Age (Years) | Sex | Administered Activity (mCi) | Histological Type of DTC | Tg Level on RAI (ng/mL) | Stage of Disease (I–IV) |
---|---|---|---|---|---|---|
1 | 77 | M | 122 | Follicular variant of papillary type | 8361.62 | IV |
2 | 41 | M | 50 | Papillary type | 2.15 | I |
3 | 47 | F | 50 | Follicular type | 0.23 | I |
4 | 40 | M | 100 | Papillary type | 0.36 | I |
5 | 61 | M | 150 | Papillary type with sclerosing aspects | 3.08 | IV |
Administered Activity (High- and Low-Uptake Compartment Activity Ratios) | 5.6 GBq/150 mCi | 6.5 GBq/175 mCi | 7.4 GBq/200 mCi | 8.3 GBq/225 mCi |
---|---|---|---|---|
57–43% | 0.158/0.185 (M/F) | 0.183/0.215 (M/F) | 0.208/0.244 (M/F) | 0.234/0.274 (M/F) |
60–40% | 0.150/0.176 (M/F) | 0.174/0.204 (M/F) | 0.198/0.232 (M/F) | 0.222/0.261 (M/F) |
63–37% | 0.142/0.167 (M/F) | 0.165/0.193 (M/F) | 0.188/0.220 (M/F) | 0.211/0.247 (M/F) |
66–34% | 0.134/0.158 (M/F) | 0.156/0.183 (M/F) | 0.178/0.208 (M/F) | 0.199/0.233 (M/F) |
69–31% | 0.127/0.148 (M/F) | 0.147/0.172 (M/F) | 0.167/0.196 (M/F) | 0.188/0.220 (M/F) |
72–28% | 0.119/0.139 (M/F) | 0.138/0.162 (M/F) | 0.157/0.184 (M/F) | 0.176/0.206 (M/F) |
Patient | Age (Years) | Sex | Administered Activity (mCi) | Benua Blood Dose | WBS Approach Blood Dose | WBS Approach Skeletal Metastases Dose | Lymphocytes (% Decrease at One Week) | Thrombocytes (% Decrease at One Month) | Leukocytes (% Decrease at One Month) |
---|---|---|---|---|---|---|---|---|---|
1 | 77 | M | 122 | 0.911 | 0.656 | 1.918 | 7.1 | 49.4 | 2.7 |
2 | 41 | M | 50 | 0.192 | 0.139 | 2.9 | 17.7 | 1.9 | |
3 | 47 | F | 50 | 0.289 | 0.236 | 1.3 | 8.3 | 0.4 | |
4 | 40 | M | 100 | 0.346 | 1.014 | 10.5 | 19.9 | 32.0 | |
5 | 61 | M | 150 | 0.459 | 1.987 | 11.4 | 35.2 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bianco, D.; Nappi, C.; Piscopo, L.; Volpe, F.; Manganelli, M.; Volpicelli, F.; Loffredo, F.; Totaro, P.; Quarto, M.; Cuocolo, A.; et al. Initial Testing of an Approximated, Fast Calculation Procedure for Personalized Dosimetry in Radionuclide Therapy Based on Planar Whole-Body Scan and Monte-Carlo Specific Dose Rates from the OpenDose Project. Life 2022, 12, 1303. https://doi.org/10.3390/life12091303
Bianco D, Nappi C, Piscopo L, Volpe F, Manganelli M, Volpicelli F, Loffredo F, Totaro P, Quarto M, Cuocolo A, et al. Initial Testing of an Approximated, Fast Calculation Procedure for Personalized Dosimetry in Radionuclide Therapy Based on Planar Whole-Body Scan and Monte-Carlo Specific Dose Rates from the OpenDose Project. Life. 2022; 12(9):1303. https://doi.org/10.3390/life12091303
Chicago/Turabian StyleBianco, Davide, Carmela Nappi, Leandra Piscopo, Fabio Volpe, Mariarosaria Manganelli, Federica Volpicelli, Filomena Loffredo, Pasquale Totaro, Maria Quarto, Alberto Cuocolo, and et al. 2022. "Initial Testing of an Approximated, Fast Calculation Procedure for Personalized Dosimetry in Radionuclide Therapy Based on Planar Whole-Body Scan and Monte-Carlo Specific Dose Rates from the OpenDose Project" Life 12, no. 9: 1303. https://doi.org/10.3390/life12091303
APA StyleBianco, D., Nappi, C., Piscopo, L., Volpe, F., Manganelli, M., Volpicelli, F., Loffredo, F., Totaro, P., Quarto, M., Cuocolo, A., & Klain, M. (2022). Initial Testing of an Approximated, Fast Calculation Procedure for Personalized Dosimetry in Radionuclide Therapy Based on Planar Whole-Body Scan and Monte-Carlo Specific Dose Rates from the OpenDose Project. Life, 12(9), 1303. https://doi.org/10.3390/life12091303