Controllable and Uncontrollable Stress Differentially Impact Fear Conditioned Alterations in Sleep and Neuroimmune Signaling in Mice
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Surgery
2.3. Training Procedures
2.4. Data Recording and Determination of Sleep State
2.5. Determination of Freezing
2.6. RNA Extraction
3. Results
3.1. REM Sleep
3.2. NREM Sleep
3.3. Freezing and Body Temperature
3.4. Neuroinflammation
3.5. Neuroinflammation Related to Neurodegeneration
3.6. Regional Pathway Regulation
4. Discussion
4.1. Stress, Fear Memory, and Sleep
4.2. Stress and Neuroinflammation
4.3. Clinical Implications
4.4. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Izquierdo, I.; Furini, C.R.G.; Myskiw, J.C. Fear Memory. Physiol. Rev. 2016, 96, 695–750. [Google Scholar] [CrossRef] [PubMed]
- Fanselow, M.S.; Gale, G.D. The Amygdala, Fear, and Memory. In The Amygdala in Brain Function: Basic and Clinical Approaches; Wiley: New York, NY, USA, 2003; pp. 125–134. [Google Scholar]
- Orsini, C.A.; Maren, S. Neural and Cellular Mechanisms of Fear and Extinction Memory Formation. Neurosci. Biobehav. Rev. 2012, 36, 1773–1802. [Google Scholar] [CrossRef] [PubMed]
- Bouton, M.E. Context and Behavioral Process in Extinction. Learn. Mem. 2004, 11, 485–494. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.; Herman, J.P.; Horn, P.S.; Sallee, F.R.; Sah, R. Enhanced fear recall and emotional arousal in rats recovering from chronic variable stress. Physiol. Behav. 2010, 101, 474–482. [Google Scholar] [CrossRef]
- Grillon, C. Startle Reactivity and Anxiety Disorders: Aversive Conditioning, Context, and Neurobiology. Soc. Biol. Psychiatry 2002, 52, 958–975. [Google Scholar] [CrossRef]
- Adolphs, R. The Biology of Fear. Curr. Biol. 2013, 23, 79–93. [Google Scholar] [CrossRef]
- Davis, M. The Role of the Amygdala in Fear and Anxiety. Annu. Rev. Neurosci. 1992, 15, 353–375. [Google Scholar] [CrossRef]
- Giustino, T.F.; Maren, S. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Front. Behav. Neurosci. 2015, 9, 298. [Google Scholar] [CrossRef]
- Greco, J.A.; Liberzon, I. Neuroimaging and Fear-Associated Learning. Neuropsychopharmacology 2016, 41, 320–334. [Google Scholar] [CrossRef]
- Lonsdorf, T.B.; Haaker, J.; Kalisch, R. Long-term expression of human contextual fear and extinction memories involves amygdala, hippocampus and ventromedial prefrontal cortex: A reinstatement study in two independent samples. Soc. Cogn. Affect. Neurosci. 2014, 9, 1973–1983. [Google Scholar] [CrossRef] [Green Version]
- Furini, C.; Myskiw, J.; Izquierdo, I. The Learning of Fear Extinction. Neurosci. Biobehav. Rev. 2014, 47, 670–683. [Google Scholar] [CrossRef] [PubMed]
- Maren, S.; Holmes, A. Stress and Fear Extinction. Neuropsychopharmacology 2016, 41, 58–79. [Google Scholar] [CrossRef] [PubMed]
- Hefner, K.; Whittle, N.; Juhasz, J.; Norcross, M.; Karlsson, R.-M.; Saksida, L.; Bussey, T.; Singewald, N.; Holmes, A. Impaired Fear Extinction Learning and Cortico-Amygdala Circuit Abnormalities in a Common Genetic Mouse Strain. J. Neurosci. 2008, 28, 8074–8085. [Google Scholar] [CrossRef] [PubMed]
- Myers, K.M.; Davis, M. Mechanisms of Fear Extinction. Mol. Psychiatry 2007, 12, 120–150. [Google Scholar] [CrossRef]
- Orem, T.; Wheelock, M.; Goodman, A. Amygdala and Prefrontal Cortex Activity Varies with Individual Differences in the Emotional Response to Psychological Stress. Am. Psychol. Assoc. Neurosci. 2019, 133, 203–211. [Google Scholar]
- Calcia, M.A.; Bonsall, D.R.; Bloomfield, P.S.; Selvaraj, S.; Barichello, T.; Howes, O.D. Stress and neuroinflammation: A systematic review of the effects of stress on microglia and the implications for mental illness. Psychopharmacology 2016, 233, 1637–1650. [Google Scholar] [CrossRef]
- Kim, Y.-K.; Won, E. The influence of stress on neuroinflammation and alterations in brain structure and function in major depressive disorder. Behav. Brain Res. 2017, 329, 6–11. [Google Scholar] [CrossRef]
- Muhie, S.; Gautam, A.; Chakraborty, N.; Hoke, A.; Meyerhoff, J.; Hammamieh, R.; Jett, M. Molecular indicators of stress-induced neuroinflammation in a mouse model simulating features of post-traumatic stress disorder. Transl. Psychiatry 2017, 7, e1135. [Google Scholar] [CrossRef]
- Grippo, A.J.; Scotti, M.-A.L. Stress and Neuroinflammation. Mod. Trends Pharm. 2013, 28, 20–32. [Google Scholar]
- Bryant, R.A.; Creamer, M.; O’Donnell, M.; Silove, D.; McFarlane, A.C. Sleep disturbance immediately prior to trauma predicts subsequent psychiatric disorder. Sleep 2010, 33, 69–74. [Google Scholar] [CrossRef]
- Lavie, P. Sleep disturbances in the wake of traumatic events. N. Engl. J. Med. 2001, 345, 1825–1832. [Google Scholar] [CrossRef] [PubMed]
- Vanderheyden, W.M.; George, S.A.; Urpa, L.; Kehoe, M.; Liberzon, I.; Poe, G.R. Sleep Alterations Following Exposure to Stress Predict Fear-Associated Memory Impairments in a Rodent Model of PTSD. Exp. Brain Res. 2015, 233, 2335–2346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hegde, P.; Singh, K.; Chaplot, S.; Rao, B.S.; Chattarji, S.; Kutty, B.; Laxmi, T.R. Stress-induced Changes in Sleep and Associated Neuronal Activity in Rat Hippocampus and Amygdala. Neuroscience. 2008, 153, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Sanford, L.D.; Yang, L.; Wellman, L.L.; Liu, X.; Tang, X. Differential Effects of Controllable and Uncontrollable Footshock Stress on Sleep in Mice. Sleep 2010, 33, 621–630. [Google Scholar] [CrossRef]
- Sanford, L.D. Limbic Function and Emotional Stress: Implications for Sleep. SRS Bull. 2002, 8, 5–9. [Google Scholar]
- Sinha, S. Trauma-induced insomnia: A novel model for trauma and sleep research. Sleep Med. Rev. 2016, 25, 74–83. [Google Scholar] [CrossRef]
- Spoormaker, V.I.; Montgomery, P. Disturbed sleep in post-traumatic stress disorder: Secondary symptom or core feature? Sleep Med. Rev. 2008, 12, 169–184. [Google Scholar] [CrossRef]
- Germain, A.; Buysse, D.J.; Nofzinger, E. Sleep-specific mechanisms underlying posttraumatic stress disorder: Integrative review and neurobiological hypotheses. Sleep Med. Rev. 2008, 12, 185–195. [Google Scholar] [CrossRef]
- Pace-Schott, E.F.; Germain, A.; Milad, M.R. Sleep and REM sleep disturbance in the pathophysiology of PTSD: The role of extinction memory. Biol. Mood Anxiety Disord. 2015, 5, 3. [Google Scholar] [CrossRef]
- Stickgold, R. Sleep-dependent memory consolidation. Nature 2005, 437, 1272–1278. [Google Scholar] [CrossRef]
- Mednick, S.C.; McDevitt, E.A.; Walsh, J.K.; Wamsley, E.; Paulus, M.; Kanady, J.C.; Drummond, S.P. The critical role of sleep spindles in hippocampal-dependent memory: A pharmacology study. J. Neurosci. 2013, 33, 4494–4504. [Google Scholar] [CrossRef] [PubMed]
- Rasch, B.; Born, J. About Sleep’s Role in Memory. Physiol. Rev. 2013, 93, 681–766. [Google Scholar] [CrossRef] [PubMed]
- Genzel, L.; Spoormaker, V.I.; Konrad, B.N.; Dresler, M. The role of rapid eye movement sleep for amygdala-related memory processing. Neurobiol. Learn. Mem. 2015, 122, 110–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maquet, P. Understanding non rapid eye movement sleep through neuroimaging. World J. Biol. Psychiatry 2010, 11, 9–15. [Google Scholar] [CrossRef] [PubMed]
- Crupi, D.; Hulse, B.K.; Peterson, M.J.; Huber, R.; Ansari, H.; Coen, M.; Cirelli, C.; Benca, R.M.; Ghilardi, M.F.; Tononi, G. Sleep-dependent improvement in visuomotor learning: A causal role for slow waves. Sleep 2009, 32, 1273–1284. [Google Scholar] [CrossRef] [PubMed]
- Tempesta, D.; Socci, V.; Gennaro LDe Ferrara, M. Sleep and Emotional Processing. Sleep Med. Rev. 2018, 40, 183–195. [Google Scholar] [CrossRef] [PubMed]
- Van der Helm, E.; Walker, M.P. Overnight Therapy? The Role of Sleep in Emotional Brain Processing. Psychol. Bull. 2009, 135, 731–748. [Google Scholar]
- Lucey, B.P.; McCullough, A.; Landsness, E.C.; Toedebusch, C.D.; McLeland, J.S.; Zaza, A.M.; Fagan, A.M.; McCue, L.; Xiong, C.; Morris, J.C.; et al. Reduced non-rapid eye movement sleep is associated with tau pathology in early Alzheimer’s disease. Sci. Transl. Med. 2019, 11, eaau6550. [Google Scholar] [CrossRef]
- Schwarz, P.; Graham, W.; Li, F.; Locke, M.; Peever, J. Sleep deprivation impairs functional muscle recovery following injury. Sleep Med. 2013, 14, e262. [Google Scholar] [CrossRef]
- Wright, K.P., Jr.; Drake, A.L.; Frey, D.J.; Fleshner, M.; Desouza, C.A.; Gronfier, C.; Czeisler, C.A. Influence of sleep deprivation and circadian misalignment on cortisol, inflammatory markers, and cytokine balance. Brain Behav. Immun. 2015, 47, 24–34. [Google Scholar] [CrossRef]
- Green, T.R.F.; Ortiz, J.B.; Wonnacott, S.; Williams, R.J.; Rowe, R.K. The Bidirectional Relationship Between Sleep and Inflammation Links Traumatic Brain Injury and Alzheimer’s Disease. Front. Neurosci. 2020, 14, 894. [Google Scholar] [CrossRef] [PubMed]
- Hurtado-Alvarado, G.; Pavón, L.; Castillo-García, S.A.; Hernández, M.E.; Domínguez-Salazar, E.; Velázquez-Moctezuma, J.; Gómez-González, B. Sleep Loss as a Factor to Induce Cellular and Molecular Inflammatory Variations. Clin. Dev. Immunol. 2013, 2013, 801341. [Google Scholar] [CrossRef] [PubMed]
- Zielinski, M.R.; Krueger, J.M. Sleep and innate immunity. Front. Biosci (Schol Ed) 2011, 3, 632–642. [Google Scholar]
- Irwin, M.R.; Wang, M.; Ribeiro, D.; Cho, H.J.; Olmstead, R.; Breen, E.C.; Martinez-Maza, O.; Cole, S. Sleep Loss Activates Cellular Inflamatory Signaling. Biol. Psychiatry 2008, 64, 538–540. [Google Scholar] [CrossRef] [PubMed]
- Ditmer, M.; Gabryelska, A.; Turkiewicz, S.; Białasiewicz, P.; Małecka-Wojciesko, E.; Sochal, M. Sleep Problems in Chronic Inflammatory Diseases: Prevalence, Treatment, and New Perspectives: A Narrative Review. J Clin Med. 2021, 11, 67. [Google Scholar] [CrossRef]
- Zhu, B.; Dong, Y.; Xu, Z.; Gompf, H.S.; Ward, S.A.; Xue, Z.; Miao, C.; Zhang, Y.; Chamberlin, N.L.; Xie, Z. Sleep disturbance induces neuroinflammation and impairment of learning and memory. Neurobiol. Dis. 2012, 48, 348–355. [Google Scholar] [CrossRef] [PubMed]
- Amat, J.; Paul, E.; Zarza, C.; Watkins, L.R.; Maier, S.F. Previous Experience with Behavioral Control over Stress Blocks the Behavioral and Dorsal Raphe Nucelus Activating Effects of Later Uncontrollable Stress: Role of Ventral Medial Prefrontal Cortex. J. Neurosci. 2006, 26, 13264–13272. [Google Scholar] [CrossRef] [PubMed]
- Korte, S.M.; De Boer, S.F.; Bohus, B. Fear-potentiation in the elevated plus-maze test depends on stressor controllability and fear conditioning. Stress 1999, 3, 27–40. [Google Scholar] [CrossRef]
- Maier, S.F.; Amat, J.; Baratta, M.V.; Paul, E.; Watkins, L.R. Behavioral control, the medial prefrontal cortex, and resilience. Dialogues Clin. Neurosci. 2006, 8, 397–416. [Google Scholar] [CrossRef]
- Drugan, R.C.; Basile, A.S.; Ha, J.-H.; Ferlan, R.J. The protective effects of stress control may be mediated by increased brain levels of benzodiazepine receptor agonists. Brain Res. 1994, 661, 127–136. [Google Scholar] [CrossRef]
- Pare, W.P. Enhanced Retrieval of Unpleasant Memories Influenced by Shock Controlability, Shock Sequence, and Rat Strain. Biol.Psychiatry. 1996, 39, 808–813. [Google Scholar] [CrossRef]
- Ciavarra, R.P.; Machida, M.; Lundberg, P.S.; Gauronskas, P.; Wellman, L.L.; Steel, C.; Aflatooni, J.O.; Sanford, L.D. Controllable and uncontrollable stress differentially impact pathogenicity and survival in a mouse model of viral encephalitis. J. Neuroimmunol. 2018, 319, 130–141. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wellman, L.L.; Ambrozewicz, M.; Sanford, L.D. Effects of Stressor Controllability on Sleep, Temperature, and Fear Behavior in Mice. Sleep 2011, 34, 759–771. [Google Scholar] [CrossRef] [PubMed]
- Wellman, L.L.; Fitzpatrick, M.E.; Machida, M.; Sanford, L.D. The Basolateral Amygdala Determines the Effects of Fear Memory on Sleep in an Animal Model of PTSD. Exp Brain Res. 2014, 232, 1555–1565. [Google Scholar] [CrossRef]
- Blanchard, R.; Blanchard, D. Crouching as an index of fear. J. Comp. Physiol. Psychol. 1969, 67, 370–375. [Google Scholar] [CrossRef]
- Blanchard, R.; Blanchard, D. Passive and active reactions to fear-eliciting stimuli. J. Comp. Physiol. Psychol. 1969, 68, 129–135. [Google Scholar] [CrossRef]
- Pawlyk, A.C.; Morrison, A.R.; Ross, R.J.; Brennan, F.X. Stress-induced changes in sleep in rodents: Models and mechanisms. Neurosci. Biobehav. Rev. 2008, 32, 99–117. [Google Scholar] [CrossRef]
- Manchanda, S.; Singh, H.; Kaur, T.; Kaur, G. Low-grade neuroinflammation due to chronic sleep deprivation results in anxiety and learning and memory impairments. Mol. Cell Biochem. 2018, 449, 63–72. [Google Scholar] [CrossRef]
- Majde, J.A.; Krueger, J.M. Links between the innate immune system and sleep. J Allergy Clin Immunol. 2005, 116, 1188–1198. [Google Scholar] [CrossRef]
- Shors, T.; Servatius, R. The Contribution of Stressor Intensity, Duration, and Context to the Stress-Induced Facilitation of Associative Learning. Neurobiol. Learn. Mem. 1997, 68, 92–96. [Google Scholar] [CrossRef]
- Michopoulos, V.; Powers, A.; Gillespie, C.F.; Ressler, K.J.; Jovanovic, T. Inflammation in Fear- and Anxiety-Based Disorders: PTSD, GAD, and Beyond. Neuropsychopharmacology 2017, 42, 254–270. [Google Scholar] [CrossRef] [PubMed]
- Felger, J.; Haroon, E.; Miller, A. Inflammation and Immune Function in PTSD: Mechanisms, Consequences, and Translational Implications. Neurobiology of PTSD: From Brain to Mind; Oxford University Press: New York, NY, USA, 2016; pp. 239–263. [Google Scholar]
- Najjar, S.; Pearlman, D.M.; Alper, K.; Najjar, A.; Devinsky, O. Neuroinflammation and psychiatric illness. J. Neuroinflamm. 2013, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s Diseases. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
- Krystal, A.D. Psychiatric Disorders and Sleep. Neurol. Clin. 2012, 30, 1389–1413. [Google Scholar] [CrossRef]
- Papadimitiou, G.N.; Linkowski, P. Sleep disturbance in anxiety disorders. Int. Rev. Psychiatry 2005, 17, 229–236. [Google Scholar] [CrossRef]
- Felix-Ortiz, A.C.; Tye, K.M. Amygdala Inputs to the Ventral Hippocampus Bidirectionally Modulate Social Behavior. J. Neurosci. 2014, 34, 586–595. [Google Scholar] [CrossRef]
- LeDoux, J. The Emotional Brain, Fear, and the Amydala. Cell Mol. Neurobiol. 2003, 23, 727–738. [Google Scholar] [CrossRef]
- Sengupta, A.; Yau, J.O.; Jean-Richard-Dit-Bressel, P.; Liu, Y.; Millan, Z.; Power, J.M.; McNally, G.P. Basolateral Amygdala Neurons Maintain Aversive Emotional Salience. J. Neurosci. 2018, 38, 3001–3012. [Google Scholar] [CrossRef]
- McEwen, B.; Nasca, C.; Gray, J. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 2016, 41, 3–23. [Google Scholar] [CrossRef]
- Adhikari, A.; Topiwala, M.A.; Gordon, J.A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 2010, 65, 257–270. [Google Scholar] [CrossRef]
- Moser, M.-B.; Moser, E.I. Functional Differentiation in the Hippocampus. Hippocampus 1998, 8, 608–619. [Google Scholar] [CrossRef]
- Besnard, A.; Sahay, A. Adult Hippocampal Neurogenesis, Fear Generalization, and Stress. Neuropsychopharmacology 2016, 41, 24–44. [Google Scholar] [CrossRef] [PubMed]
- Rudy, J.W.; Matus-Amat, P. The Ventral Hippocampus Supports a Memory Representation of Context or Contextual Fear Conditioning: Implications for a Unitary Function of the Hippocampus. Behav. Neurosci. 2005, 119, 154–163. [Google Scholar] [CrossRef] [PubMed]
- McNish, K.A.; Gewirtz, J.C.; Davis, M. Evidence of Contextual Fear after Lesions of the Hippocampus: A disruption of Freezing but not Fear-Potentiated Startle. J. Neurosci. 1997, 17, 9353–9360. [Google Scholar] [CrossRef] [PubMed]
- Chen, V.M.; Foilb, A.R.; Christianson, J.P. Inactivation of ventral hippocampus interfered with cued-fear acquisition but did not influence later recall or discrimination. Behav. Brain Res. 2016, 296, 249–253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson, L.; Sapolsky, R. The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocr. Rev. 1991, 12, 118–134. [Google Scholar] [CrossRef]
- Kim, M.J.; Loucks, R.A.; Palmer, A.L.; Brown, A.C.; Solomon, K.M.; Marchante, A.N.; Whalen, P.J. The Structural and Functional Connectivity of the Amygdala: From Normal Emotion to Pathological Anxiety. Behav. Brain Res. 2011, 223, 403–410. [Google Scholar] [CrossRef]
- Duvarci, S.; Pare, D. Amygdala Microcircuits Controlling Learned Fear. Neuron 2014, 82, 966–980. [Google Scholar] [CrossRef]
- Seidenbecher, T.; Laxmi, T.R.; Stork, O.; Pape, H.-C. Amygdalar and Hippocampal Theta Rhythm Synchronization During Fear Memory Retrieval. Science 2003, 301, 846–850. [Google Scholar] [CrossRef]
- Lega, B.C. Human hippocampal theta oscillations and the formation of episodic memories. Hippocampus 2012, 22, 748–761. [Google Scholar] [CrossRef]
- Jacinto, L.R.; Reis, J.S.; Dias, N.S.; Cerqueira, J.J.; Correia, J.H.; Sousa, N. Stress affects theta activity in limbic networks and impairs novelty-induced exploration and familiarization. Front. Behav. Neurosci. 2013, 7, 127. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Liang, K. The hippocampus integrates context and shock into a configural memory in contextual fear conditioning. Hippocampus 2017, 27, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Wolansky, T.; Clement, E.A.; Peters, S.R.; Palczak, M.A.; Dicckson, C.T. Hippocampal Slow Oscillation: A Novel EEG State and Its Coordination with Ongoing Neocortical Activity. J. Neurosci. 2006, 26, 6213–6229. [Google Scholar] [CrossRef] [PubMed]
- Koyanagi, I.; Akers, K.G.; Vergara, P.; Srinivasan, S.; Sakurai, T.; Sakaguchi, M. Memory consolidation during sleep and adult hippocampal neurogenesis. Neural Regen. Res. 2019, 1, 20–23. [Google Scholar]
- Werner, G.G.; Schabus, M.; Blechert, J.; Wilhelm, F.H. Differential Effects of REM Sleep on Emotional Processing: Initial Evidence for Increased Short-term Emotional Responses and Reduced Long-term Intrusive Memories. Behav. Sleep Med. 2020, 19, 83–98. [Google Scholar] [CrossRef]
- Sweeten, B.L.W.; Adkins, A.M.; Wellman, L.L.; Sanford, L.D. Group II metabotropic glutamate receptor activation in the basolateral amygdala mediates individual differences in stress-induced changes in rapid eye movement sleep. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2020, 104, 110014. [Google Scholar] [CrossRef]
- Sweeten, B.L.W.; Sutton, A.M.; Wellman, L.L.; Sanford, L.D. Predicting stress resilience and vulnerability: Brain-derived neurotrophic factor and rapid eye movement sleep as potential biomarkers of individual stress responses. Sleep 2020, 43, zsz199. [Google Scholar] [CrossRef]
- Machida, M.; Wellman, L.L.; Bs, M.E.F.; Bs, O.H.; Bs, A.M.S.; Lonart, G.; Sanford, L.D.; Fitzpatrick, B.M.E.; Hallum, B.O.; Sutton, B.A.M. Effects of Optogenetic inhibition of BLA on Sleep Brief Optogenetic Inhibition of the Basolateral Amygdala in Mice Alters Effects of Stressful Experiences on Rapid Eye Movement Sleep. Sleep 2017, 40, zsx020. [Google Scholar] [CrossRef]
- Patel, A.K.; Araujo, J.F. Physiology, Sleep Stages; Statpearls: Tampa, FL, USA, 2018. [Google Scholar]
- Besedovsky, L.; Lange, T.; Haack, M. The Sleep-Immune Crosstalk in Health and Diseases. Physiol. Rev. 2019, 99, 1325–1380. [Google Scholar] [CrossRef]
- Haspel, J.A.; Anafi, R.; Brown, M.K.; Cermakian, N.; Depner, C.; Desplats, P.; Gelman, A.E.; Haack, M.; Jelic, S.; Kim, B.S. Perfect timing: Circadian rhythms, sleep, and immunity—An NIH workshop summary. JCI Insight 2020, 5, e131487. [Google Scholar] [CrossRef]
- National Sleep Foundation. Normal Sleep. In The Physiology of Sleep—The Immune System & Sleep; National Sleep Foundation: Washington, DC, USA.
- Orozco-Solis, R.; Aguilar-Arnal, L. Circadian Regulation of Immunity Through Epigenetic Mechanisms. Front. Cell Infect. Microbiol. 2020, 10, 96. [Google Scholar] [CrossRef] [PubMed]
- Meerlo, P.; Easton, A.; Bergmann, B.M.; Turek, F.W. Restraint increases prolactin and REM sleep in C57BL/6J mice but not in BALB/cJ mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001, 281, 846–854. [Google Scholar] [CrossRef] [PubMed]
- Sanford, L.D.; Yang, L.; Tang, X. Influence of contextual fear on sleep in mice: A strain comparison. Sleep 2003, 26, 527–540. [Google Scholar] [CrossRef] [PubMed]
- Aarli, J.A. The Immune System and the Nervous System. J. Neurol. 1983, 229, 137–154. [Google Scholar] [CrossRef] [PubMed]
- Morimoto, K.; Nakajima, K. Role of the Immune System in the Development of the Central Nervous System. Front. Neurosci. 2019, 13, 916. [Google Scholar] [CrossRef]
- Peruzzotti-Jametti, L.; Donegá, M.; Giusto, E.; Mallucci, G.; Marchetti, B.; Pluchino, S. The role of the immune system in central nervous system plasticity after acute injury. Neuroscience 2014, 283, 210–221. [Google Scholar] [CrossRef] [Green Version]
- Reiche, E.M.V.; Nunes, S.O.V.; Morimoto, H.K. Stress, depression, the immune system, and cancer. Lancet Oncol. 2004, 5, 617–625. [Google Scholar] [CrossRef]
- Munhoz, C.D.; García-Bueno, B.; Madrigal, J.L.M.; Lepsch, L.B.; Scavone, C.; Leza, J.C. Stress-induced neuroinflammation: Mechanisms and new pharmacological targets. Braz. J. Med. Biol. Res. 2008, 41, 1037–1046. [Google Scholar] [CrossRef]
- Stephens, M.A.C. Stress and the HPA Axis. Alcohol Res. 2012, 34, 468–483. [Google Scholar]
- Whirledge, S.; Cidlowski, J.A. Glucocorticoids, Stress, and Fertility. Minerva Endocrinol. 2010, 35, 109–125. [Google Scholar]
- Smith, S.M. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin. Neurosci. 2006, 8, 383–395. [Google Scholar] [CrossRef] [PubMed]
- Lurie, D.I. An integrative approach to neuroinflammation in psychiatric disorders and neuropathic pain. J. Exp. Neurosci. 2018, 12, 1–11. [Google Scholar] [CrossRef] [PubMed]
- De Felice, F.G.; Lourenco, M.V. Brain metabolic stress and neuroinflammation at the basis of cognitive impairment in Alzheimer’s disease. Front. Agining Neurosci. 2015, 7, 94. [Google Scholar]
- Bennett, F.C.; Molofsky, A.V. The immune system and psychiatric disease: A basic science perspective. Clin. Exp. Immunol. 2019, 197, 276–277. [Google Scholar] [CrossRef] [PubMed]
- Mullington, J.M.; Simpson, N.S.; Meier-Ewert, H.K.; Haack, M. Sleep loss and inflammation. Best Pract. Res. Clin. Endocrinol. Metab. 2010, 24, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, S.; Aich, P. Effects of Psychological Stress on Innate Immunity and Metabolism in Humans: A Systematic Analysis. PLoS ONE 2012, 7, e43232. [Google Scholar]
- Shin, L.M.; Rauch, S.L.; Pitman, R.K. Amygdala, Medial Prefrontal Cortex, and Hippocampal Function in PTSD. Ann. N. Y. Acad. Sci. 2006, 1071, 67–79. [Google Scholar] [CrossRef]
- Rasmussen, H.; Rosness, E.T.; Bosnes, O.; Salvesen, Ø.; Knutli, M.; Stordal, E. Anxiety and Depression as Risk Factors in Frontotemporal Dementia and Alzheimer’s Disease: The HUNT Study. Dement. Geriatr. Cogn. Disord Extra 2018, 8, 414–425. [Google Scholar] [CrossRef]
- Mossop, B. Neurostress: How Stress May Fuel Neurodegenerative Diseases. Scientific American 2011. [Google Scholar]
- Gárate, I.; Bueno, B.G.; Madrigal, J.; Caso, J.; Alou, L.; Gomez-Lus, M.L.; Micó, J.A.; Leza, J.C. Stress-Induced Neuroinflammation: Role of the Toll-Like Receptor-4 Pathway. Biol. Psychiatry 2013, 73, 32–43. [Google Scholar] [CrossRef]
- Jyonouchi, H. Innate Immunity and Neuroinflammation in Neuropsychiatric Conditions Including Autism Spectrum Disorders: Role of Innate Immune Memory. In Cytokines; IntechOpen: London, UK, 2019. [Google Scholar]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement. Transl. Res. Clin. Interv. 2018, 4, 575–590. [Google Scholar] [CrossRef] [PubMed]
- Shastri, A.; Bonifati, D.M.; Kishore, U. Innate Immunity and Neuroinflammation. Mediat. Inflamm. 2013, 2013, 342931. [Google Scholar] [CrossRef] [PubMed]
- Hernangómez, M.; JCarrillo-Salinas, F.; Mecha, M.; Correa, F.; Mestre, L.; Loría, F.; Feliú, A.; Docagne, F.; Guaza, C. Brain Innate Immunity in the Regulation of Neuroinflammation: Therapeutic Strategies by Modulating CD200-CD200R Interaction Involve the Cannabinoid System. Curr. Pharm. Des. 2014, 20, 4707–4722. [Google Scholar] [CrossRef]
- Poulin, S.P.; Dautoff, R.; Morris, J.C.; Barrett, L.F.; Dickerson, B.C. Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Res. 2011, 194, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Stenroos, P.; Pirttimäki, T.; Paasonen, J.; Paasonen, E.; Salo, R.A.; Koivisto, H.; Natunen, T.; Mäkinen, P.; Kuulasmaa, T.; Hiltunen, M.; et al. Isoflurane affects brain functional connectivity in rats 1 month after exposure. NueroImage 2021, 234, 117987. [Google Scholar] [CrossRef] [PubMed]
- Upton, D.H.; Popovic, K.; Fulton, R.; Kassiou, M. Anaesthetic-dependent changes in gene expression following acute and chronic exposure in the rodent brain. Sci. Rep. 2020, 10, 9366. [Google Scholar] [CrossRef]
- Bunting, K.M.; Nalloor, R.I.; Vazdarjanova, A. Influence of Isoflurane on Immediate-Early Gene Expression. Front. Behav. Neurosci. Behav. Neurosci. 2016, 9, 363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
HC | MT | ES | IS | |
---|---|---|---|---|
Base (20 h) | 46.8 ± 6.7 | 40.2 ± 7.6 | 45.1 ± 7.0 | 48.7 ± 5.9 |
ST1 (20 h) | 42.9 ± 3.8 ^ | 45.3 ± 7.5 + | 54 ± 6.9 * | 30.2 ± 10.7 |
ST2 (20 h) | 44.6 ± 15.6 ^ | 45.9 ± 3.5 + | 58.8 ± 7.9 * | 30.8 ± 9.3 |
CTX (2 h) | 11.0 ± 0.9 ^ | 6.4 ± 1.4 + | 5.6 ± 0.5 * | 4.8 ± 0.7 |
HC | MT | ES | IS | |
---|---|---|---|---|
Base (20 h) | 506.8 ± 14.5 | 526.8 ± 6.7 | 535.6 ± 21.9 | 512.8 ± 21.3 |
ST1 (20 h) | 533.9 ± 24.5 | 532.0 ± 15.3 | 600.5 ± 31.5 * | 524.3 ± 11.9 |
ST2 (20 h) | 538.3 ± 18.4 | 549.6 ± 30.5 | 570.3 ± 23.5 * | 522.5 ± 23.7 |
CTX (2 h) | 76.5 ± 5.9 | 79.5 ± 3.9 | 61.9 ± 3.3 | 70.4 ± 4.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adkins, A.M.; Wellman, L.L.; Sanford, L.D. Controllable and Uncontrollable Stress Differentially Impact Fear Conditioned Alterations in Sleep and Neuroimmune Signaling in Mice. Life 2022, 12, 1320. https://doi.org/10.3390/life12091320
Adkins AM, Wellman LL, Sanford LD. Controllable and Uncontrollable Stress Differentially Impact Fear Conditioned Alterations in Sleep and Neuroimmune Signaling in Mice. Life. 2022; 12(9):1320. https://doi.org/10.3390/life12091320
Chicago/Turabian StyleAdkins, Austin M., Laurie L. Wellman, and Larry D. Sanford. 2022. "Controllable and Uncontrollable Stress Differentially Impact Fear Conditioned Alterations in Sleep and Neuroimmune Signaling in Mice" Life 12, no. 9: 1320. https://doi.org/10.3390/life12091320
APA StyleAdkins, A. M., Wellman, L. L., & Sanford, L. D. (2022). Controllable and Uncontrollable Stress Differentially Impact Fear Conditioned Alterations in Sleep and Neuroimmune Signaling in Mice. Life, 12(9), 1320. https://doi.org/10.3390/life12091320