COVID-19 Infection and Response to Vaccination in Chronic Kidney Disease and Renal Transplantation: A Brief Presentation
Abstract
:1. COVID-19 Infection in CKD and RT Patients
2. Understanding mRNA Vaccine-Induced Immune Response
3. Brief Presentation of Anti-SARS-CoV-2 mRNA Vaccines
3.1. BNT162b2
3.2. mRNA-1273 Vaccine
4. Synopsis of Alternative Vaccine Platforms Used against COVID-19
4.1. Viral Vector-Based Vaccines
4.2. Inactivated Virus Vaccines
4.3. Recombinant Protein-Based Vaccines
5. CKD-Associated Immunological Aging
5.1. Alterations in T-Lymphocytes
5.2. Alterations in B-lymphocytes
6. Characteristics of SARS-CoV-2 Infection and Anti-SARS-CoV-2 Vaccination in CKD Patients
6.1. Impact of CKD-Associated Immunological Changes to COVID-19 Manifestations
6.2. CKD-Associated Immune Changes and Response to Vaccination against COVID-19
7. Can Successful Renal Transplantation Reinstate the Immune Profile?
8. COVID-19 Infection in Renal Transplant Recipients
9. Modifications of the Vaccination Schedules in Renal Transplant Recipients
10. Response of Renal Transplant Patients to COVID-19 Vaccination
11. Proposed Strategies to Improve COVID-19 Outcome in CKD and RTR
- Precautionary actions to reduce the risk of exposure to SARS-CoV-2;
- Close monitoring of the CKD or RT patients suspected to have COVID-19;
- Nutritional support;
- Modification of immunosuppression;
- Booster vaccination doses;
- Prophylactic use of mAbs in patients with poor response to vaccination.
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Gansevoort, R.T.; Hilbrands, L.B. CKD is a key risk factor for COVID-19 mortality. Nat. Rev. Nephrol. 2020, 16, 705–706. [Google Scholar] [CrossRef] [PubMed]
- Puchalska-Reglińska, E.; Dębska-Ślizień, A.; Biedunkiewicz, B.; Tylicki, P.; Polewska, K.; Jagodziński, P.; Rutkowski, B.; Gellert, R.; Tylicki, L. Extremely high mortality in COVID-19 hemodialyzed patients in before anty-SARS-CoV-2 vaccination era. The first large database from Poland. Pol. Arch. Intern. Med. 2021, 131, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Council, E.-E.; Ortiz, A.; Cozzolino, M.; Fliser, D.; Fouque, D.; Goumenos, D.; Massy, Z.A.; Rosenkranz, A.R.; Rychlık, I.; Soler, M.J.; et al. Chronic kidney disease is a key risk factor for severe COVID-19: A call to action by the ERA-EDTA. Nephrol. Dial. Transplant. 2021, 36, 87–94. [Google Scholar] [CrossRef] [PubMed]
- Pollard, A.J.; Bijker, E.M. A guide to vaccinology: From basic principles to new developments. Nat. Rev. Immunol. 2020, 21, 83–100. [Google Scholar] [CrossRef]
- Qin, F.; Xia, F.; Chen, H.; Cui, B.; Feng, Y.; Zhang, P.; Chen, J.; Luo, M. A Guide to Nucleic Acid Vaccines in the Prevention and Treatment of Infectious Diseases and Cancers: From Basic Principles to Current Applications. Front. Cell Dev. Biol. 2021, 9, 830. [Google Scholar] [CrossRef]
- Rapaka, R.; Cross, A.; McArthur, M. Using Adjuvants to Drive T Cell Responses for Next-Generation Infectious Disease Vaccines. Vaccines 2021, 9, 820. [Google Scholar] [CrossRef]
- Pardi, N.; Hogan, M.; Porter, F.; Weissman, D. mRNA vaccines—A new era in vaccinology. Nat. Rev. Drug Discov. 2018, 17, 261–279. [Google Scholar] [CrossRef]
- Teo, S.P. Review of COVID-19 mRNA Vaccines: BNT162b2 and mRNA-1273. J. Pharm. Pract. 2021, 4, 08971900211009650. [Google Scholar] [CrossRef]
- Bloom, K.; van den Berg, F.; Arbuthnot, P. Self-amplifying RNA vaccines for infectious diseases. Gene Ther. 2020, 28, 117–129. [Google Scholar] [CrossRef]
- Blakney, A. The next generation of RNA vaccines: Self-amplifying RNA. Biochemist 2021, 43, 14–17. [Google Scholar] [CrossRef]
- Lamb, Y.N. BNT162b2 mRNA COVID-19 Vaccine: First Approval. Drugs 2021, 81, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Savina, K.; Sreekumar, R.; Soonu, V.K.; Variyar, E.J. Various vaccine platforms in the field of COVID-19. Beni-Suef Univ. J. Basic Appl. Sci. 2022, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Gazit, S.; Saciuk, Y.; Perez, G.; Peretz, A.; Pitzer, V.; Patalon, T. Relative Effectiveness of Four Doses Compared to Three Dose of the BNT162b2 Vaccine in Israel. medRxiv 2022. [Google Scholar] [CrossRef]
- Magen, O.; Waxman, J.G.; Makov-Assif, M.; Vered, R.; Dicker, D.; Hernán, M.A.; Lipsitch, M.; Reis, B.Y.; Balicer, R.D.; Dagan, N. Fourth Dose of BNT162b2 mRNA COVID-19 Vaccine in a Nationwide Setting. N. Engl. J. Med. 2022, 386, 1603–1614. [Google Scholar] [CrossRef] [PubMed]
- Baden, L.; El Sahly, H.; Essink, B.; Kotloff, K.; Frey, S.; Novak, R.; Diemert, D.; Spector, S.A.; Rouphael, N.; Creech, C.B.; et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N. Engl. J. Med. 2021, 384, 403–416. [Google Scholar] [CrossRef]
- Francis, A.I.; Ghany, S.; Gilkes, T.; Umakanthan, S. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad. Med. J. 2021, 98, 389–394. [Google Scholar] [CrossRef]
- Pawlowski, C.; Lenehan, P.; Puranik, A.; Agarwal, V.; Venkatakrishnan, A.; Niesen, M.J.; O’Horo, J.C.; Virk, A.; Swift, M.D.; Badley, A.D.; et al. FDA-authorized mRNA COVID-19 vaccines are effective per real-world evidence synthesized across a multi-state health system. Med 2021, 2, 979–992.e8. [Google Scholar] [CrossRef]
- Corbett, K.S.; Edwards, D.K.; Leist, S.R.; Abiona, O.M.; Boyoglu-Barnum, S.; Gillespie, R.A.; Himansu, S.; Schäfer, A.; Ziwawo, C.T.; DiPiazza, A.T.; et al. SARS-CoV-2 mRNA vaccine design enabled by prototype pathogen preparedness. Nature 2020, 586, 567–571. [Google Scholar] [CrossRef]
- Huang, Y.; Yang, C.; Xu, X.; Xu, W.; Liu, S. Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacol. Sinica 2020, 41, 1141–1149. [Google Scholar] [CrossRef]
- Khandker, S.S.; Godman, B.; Jawad, I.; Meghla, B.A.; Tisha, T.A.; Khondoker, M.U.; Haq, A.; Charan, J.; Talukder, A.A.; Azmuda, N.; et al. A Systematic Review on COVID-19 Vaccine Strategies, Their Effectiveness, and Issues. Vaccines 2021, 9, 1387. [Google Scholar] [CrossRef]
- Luxi, N.; Giovanazzi, A.; Capuano, A.; Crisafulli, S.; Cutroneo, P.M.; Fantini, M.P.; Ferrajolo, C.; Moretti, U.; Poluzzi, E.; Raschi, E.; et al. COVID-19 Vaccination in Pregnancy, Paediatrics, Immunocompromised Patients, and Persons with History of Allergy or Prior SARS-CoV-2 Infection: Overview of Current Recommendations and Pre- and Post-Marketing Evidence for Vaccine Efficacy and Safety. Drug Saf. 2021, 44, 1247–1269. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, Q.; Chang, H. Vaccines for COVID-19: A Systematic Review of Immunogenicity, Current Development, and Future Prospects. Front. Immunol. 2022, 13, 843928. [Google Scholar] [CrossRef]
- Nagy, A.; Alhatlani, B. An overview of current COVID-19 vaccine platforms. Comput. Struct. Biotechnol. J. 2021, 19, 2508–2517. [Google Scholar] [CrossRef]
- Khoshnood, S.; Arshadi, M.; Akrami, S.; Koupaei, M.; Ghahramanpour, H.; Shariati, A.; Sadeghifard, N.; Heidary, M. An overview on inactivated and live-attenuated SARS-CoV-2 vaccines. J. Clin. Lab. Anal. 2022, 36, e24418. [Google Scholar] [CrossRef]
- Hotez, P.J.; Bottazzi, M.E. Whole Inactivated Virus and Protein-Based COVID-19 Vaccines. Annu. Rev. Med. 2022, 73, 55–64. [Google Scholar] [CrossRef]
- Levey, A.S.; Eckardt, K.-U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; Zeeuw, D.D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef]
- Figuer, A.; Bodega, G.; Tato, P.; Valera, G.; Serroukh, N.; Ceprian, N.; de Sequera, P.; Morales, E.; Carracedo, J.; Ramírez, R.; et al. Premature Aging in Chronic Kidney Disease: The Outcome of Persistent Inflammation beyond the Bounds. Int. J. Environ. Res. Public Health 2021, 18, 8044. [Google Scholar] [CrossRef]
- Sampani, E.; Vagiotas, L.; Daikidou, D.; Nikolaidou, V.; Xochelli, A.; Kasimatis, E.; Lioulios, G.; Dimitriadis, C.; Fylaktou, A.; Papagianni, A.; et al. End stage renal disease has an early and continuous detrimental effect on regulatory T cells. Nephrology 2022, 27, 281–287. [Google Scholar] [CrossRef]
- Sampani, E.; Daikidou, D.-V.; Lioulios, G.; Xochelli, A.; Mitsoglou, Z.; Nikolaidou, V.; Dimitriadis, C.; Fylaktou, A.; Papagianni, A.; Stangou, M. CD28null and Regulatory T Cells Are Substantially Disrupted in Patients with End-Stage Renal Disease Due to Diabetes Mellitus. Int. J. Mol. Sci. 2021, 22, 2975. [Google Scholar] [CrossRef]
- Sampani, E.; Stangou, M.; Daikidou, D.; Nikolaidou, V.; Asouchidou, D.; Dimitriadis, C.; Lioulios, G.; Xochelli, A.; Fylaktou, A.; Papagianni, A. Influence of end stage renal disease on CD28 expression and T-cell immunity. Nephrology 2021, 26, 185–196. [Google Scholar] [CrossRef]
- Lioulios, G.; Fylaktou, A.; Papagianni, A.; Stangou, M. T cell markers recount the course of immunosenescence in healthy individuals and chronic kidney disease. Clin. Immunol. 2021, 225, 108685. [Google Scholar] [CrossRef]
- Lioulios, G.; Fylaktou, A.; Xochelli, A.; Sampani, E.; Tsouchnikas, I.; Giamalis, P.; Daikidou, D.-V.; Nikolaidou, V.; Papagianni, A.; Theodorou, I.; et al. Clustering of End Stage Renal Disease Patients by Dimensionality Reduction Algorithms According to Lymphocyte Senescence Markers. Front. Immunol. 2022, 13, 841031. [Google Scholar] [CrossRef]
- Betjes, M.G.H. Uremia-Associated Immunological Aging and Severity of COVID-19 Infection. Front. Med. 2021, 8, 675573. [Google Scholar] [CrossRef]
- Lin, J.; Tang, W.; Liu, W.; Yu, F.; Wu, Y.; Fang, X.; Zhou, M.; Hao, W.; Hu, W. Decreased B1 and B2 Lymphocytes Are Associated With Mortality in Elderly Patients With Chronic Kidney Diseases. Front. Med. 2020, 7, 75. [Google Scholar] [CrossRef]
- Espi, M.; Koppe, L.; Fouque, D.; Thaunat, O. Chronic Kidney Disease-Associated Immune Dysfunctions: Impact of Protein-Bound Uremic Retention Solutes on Immune Cells. Toxins 2020, 12, 300. [Google Scholar] [CrossRef]
- Vaidyanathan, B.; Chaudhry, A.; Yewdell, W.T.; Angeletti, D.; Yen, W.-F.; Wheatley, A.; Bradfield, C.A.; McDermott, A.B.; Yewdell, J.W.; Rudensky, A.Y.; et al. The aryl hydrocarbon receptor controls cell-fate decisions in B cells. J. Exp. Med. 2016, 214, 197–208. [Google Scholar] [CrossRef]
- Haddiya, I. Current Knowledge of Vaccinations in Chronic Kidney Disease Patients. Int. J. Nephrol. Renov. Dis. 2020, 13, 179–185. [Google Scholar] [CrossRef]
- Schroth, J.; Thiemermann, C.; Henson, S.M. Senescence and the Aging Immune System as Major Drivers of Chronic Kidney Disease. Front. Cell Dev. Biol. 2020, 8, 564461. [Google Scholar] [CrossRef]
- Alberici, F.; Delbarba, E.; Manenti, C.; Econimo, L.; Valerio, F.; Pola, A.; Maffei, C.; Possenti, S.; Lucca, B.; Cortinovis, R.; et al. A report from the Brescia Renal COVID Task Force on the clinical characteristics and short-term outcome of hemodialysis patients with SARS-CoV-2 infection. Kidney Int. 2020, 98, 20–26. [Google Scholar] [CrossRef]
- Tylicki, P.; Polewska, K.; Och, A.; Susmarska, A.; Puchalska-Reglińska, E.; Parczewska, A.; Biedunkiewicz, B.; Szabat, K.; Renke, M.; Tylicki, L.; et al. Angiotensin Converting Enzyme Inhibitors May Increase While Active Vitamin D May Decrease the Risk of Severe Pneumonia in SARS-CoV-2 Infected Patients with Chronic Kidney Disease on Maintenance Hemodialysis. Viruses 2022, 14, 451. [Google Scholar] [CrossRef]
- Yang, X.; Yu, Y.; Xu, J.; Shu, H.; Xia, J.; Liu, H.; Wu, Y.; Zhang, L.; Yu, Z.; Fang, M.; et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir. Med. 2020, 8, 475–481. [Google Scholar] [CrossRef]
- Fitzgerald-Bocarsly, P.; Dai, J.; Singh, S. Plasmacytoid dendritic cells and type I IFN: 50 years of convergent history. Cytokine Growth Factor Rev. 2008, 19, 3–19. [Google Scholar] [CrossRef] [PubMed]
- Windpessl, M.; Bruchfeld, A.; Anders, H.; Kramer, H.; Waldman, M.; Renia, L.; Ng, L.F.; Xing, Z.; Kronbichler, A. COVID-19 vaccines and kidney disease. Nat. Rev. Nephrol. 2021, 17, 291–293. [Google Scholar] [CrossRef]
- Jeyanathan, M.; Afkhami, S.; Smaill, F.; Miller, M.S.; Lichty, B.D.; Xing, Z. Immunological considerations for COVID-19 vaccine strategies. Nat. Rev. Immunol. 2020, 20, 615–632. [Google Scholar] [CrossRef] [PubMed]
- Polack, F.P.; Thomas, S.J.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Perez, J.L.; Pérez Marc, G.; Moreira, E.D.; Zerbini, C.; et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 2020, 383, 2603–2615. [Google Scholar] [CrossRef] [PubMed]
- Voysey, M.; Clemens, S.; Madhi, S.; Weckx, L.; Folegatti, P.; Aley, P.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: An interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Carr, E.; Kronbichler, A.; Graham-Brown, M.; Abra, G.; Argyropoulos, C.; Harper, L.; Lerma, E.V.; Suri, R.S.; Topf, J.; Willicombe, M.; et al. Review of Early Immune Response to SARS-CoV-2 Vaccination Among Patients With CKD. Kidney Int. Rep. 2021, 6, 2292–2304. [Google Scholar] [CrossRef]
- Ma, B.M.; Tam, A.R.; Chan, K.W.; Ma, M.K.M.; Hung, I.F.N.; Yap, D.Y.H.; Chan, T.M. Immunogenicity and Safety of COVID-19 Vaccines in Patients Receiving Renal Replacement Therapy: A Systematic Review and Meta-Analysis. Front. Med. 2022, 9, 827859. [Google Scholar] [CrossRef]
- Patecki, M.; Merscher, S.; Dumann, H.; Bernhardt, W.; Dopfer-Jablonka, A.; Cossmann, A.; Stankov, M.V.; Einecke, G.; Haller, H.; Schlieper, G.; et al. Similar humoral immune responses in peritoneal dialysis and haemodialysis patients after two doses of the SARS-CoV-2 vaccine BNT162b2. Perit. Dial. Int. J. Int. Soc. Perit. Dial. 2021, 42, 100–101. [Google Scholar] [CrossRef]
- Bertrand, D.; Hamzaoui, M.; Lemée, V.; Lamulle, J.; Hanoy, M.; Laurent, C.; Lebourg, L.; Etienne, I.; Lemoine, M.; Le Roy, F.; et al. Antibody and T Cell Response to SARS-CoV-2 Messenger RNA BNT162b2 Vaccine in Kidney Transplant Recipients and Hemodialysis Patients. J. Am. Soc. Nephrol. 2021, 32, 2147–2152. [Google Scholar] [CrossRef]
- Sattler, A.; Schrezenmeier, E.; Weber, U.; Potekhin, A.; Bachmann, F.; Straub-Hohenbleicher, H.; Budde, K.; Storz, E.; Proß, V.; Bergmann, Y.; et al. Impaired humoral and cellular immunity after SARS-CoV-2 BNT162b2 (tozinameran) prime-boost vaccination in kidney transplant recipients. J. Clin. Investig. 2021, 131, e150175. [Google Scholar] [CrossRef] [PubMed]
- Van Praet, J.; Reynders, M.; De Bacquer, D.; Viaene, L.; Schoutteten, M.; Caluwé, R.; Doubel, P.; Heylen, L.; De Bel, A.V.; Van Vlem, B.; et al. Predictors and Dynamics of the Humoral and Cellular Immune Response to SARS-CoV-2 mRNA Vaccines in Hemodialysis Patients: A Multicenter Observational Study. J. Am. Soc. Nephrol. 2021, 32, 3208–3220. [Google Scholar] [CrossRef]
- Strengert, M.; Becker, M.; Ramos, G.; Dulovic, A.; Gruber, J.; Juengling, J.; Lürken, K.; Beigel, A.; Wrenger, E.; Lonnemann, G.; et al. Cellular and humoral immunogenicity of a SARS-CoV-2 mRNA vaccine in patients on haemodialysis. EBioMedicine 2021, 70, 103524. [Google Scholar] [CrossRef] [PubMed]
- Torres, R.; Toro, L.; Sanhueza, M.; Lorca, E.; Ortiz, M.; Pefaur, J.; Clavero, R.; Machuca, E.; Gonzalez, F.; Herrera, P.; et al. Clinical Efficacy of SARS-CoV-2 Vaccination in Hemodialysis Patients. Kidney Int. Rep. 2022. [Google Scholar] [CrossRef] [PubMed]
- Meijers, R.W.J.; Litjens, N.H.R.; de Wit, E.A.; Langerak, A.W.; Baan, C.C.; Betjes, M.G.H. Uremia-associated immunological aging is stably imprinted in the T-cell system and not reversed by kidney transplantation. Transpl. Int. 2014, 27, 1272–1284. [Google Scholar] [CrossRef]
- Kwok, J.S.Y.; Cheung, S.K.F.; Ho, J.C.Y.; Tang, I.W.H.; Chu, P.W.K.; Leung, E.Y.S.; Lee, P.P.W.; Cheuk, D.K.L.; Lee, V.; Ip, P.; et al. Establishing Simultaneous T Cell Receptor Excision Circles (TREC) and K-Deleting Recombination Excision Circles (KREC) Quantification Assays and Laboratory Reference Intervals in Healthy Individuals of Different Age Groups in Hong Kong. Front. Immunol. 2020, 11, 1411. [Google Scholar] [CrossRef]
- Vagiotas, L.; Stangou, M.; Kasimatis, E. The effect of Panel Reactive Antibodies on T cell immunity reinstatement following renal transplantation. World J. Transpl. 2022; in press. [Google Scholar]
- Zhang, Q.-Q.; Xie, Y.-L.; Zhang, W.-J.; Wang, F.; Luo, Y.; Chen, S.; Chang, S. Lymphocyte function based on IFN-γ secretion assay may be a promising indicator for assessing different immune status in renal transplant recipients. Clin. Chim. Acta 2021, 523, 247–259. [Google Scholar] [CrossRef]
- Elgueta, S.; Fuentes, C.; López, M.; Hernández, J.; Arenas, A.; Jiménez, M.; Gajardo, J.; Rodríguez, H.; Labraña, C. Effect of Implementing Anti-HLA Antibody Detection by Luminex in the Kidney Transplant Program in Chile. Transplant. Proc. 2011, 43, 3324–3326. [Google Scholar] [CrossRef]
- Guichard-Romero, A.; Marino-Vazquez, L.A.; Castelán, N.; López, M.; González-Tableros, N.; Arvizu, A.; De Santiago, A.; Alberú, J.; Morales-Buenrostro, L.E. Impact of pretransplant exposure to allosensitization factors generating HLA antibodies in the Luminex era. Transpl. Immunol. 2016, 38, 33–39. [Google Scholar] [CrossRef]
- Alelign, T.; Ahmed, M.M.; Bobosha, K.; Tadesse, Y.; Howe, R.; Petros, B. Kidney Transplantation: The Challenge of Human Leukocyte Antigen and Its Therapeutic Strategies. J. Immunol. Res. 2018, 2018, 5986740. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Loon, E.; Lamarthée, B.; Barba, T.; Claes, S.; Coemans, M.; de Loor, H.; Emonds, M.P.; Koshy, P.; Kuypers, D.; Proost, P.; et al. Circulating Donor-Specific Anti-HLA Antibodies Associate With Immune Activation Independent of Kidney Transplant Histopathological Findings. Front. Immunol. 2022, 13, 117. [Google Scholar] [CrossRef] [PubMed]
- Velioğlu, A.; Aksu, B.; Asicioglu, E.; Arıkan, H.; Tinay, I.; Yardimci, S.; Yegen, C.; Tuğlular, S.; Özener, C.; Arikan, H. Association of BK Virus Titers With Lymphocyte Count in Renal Transplant Patients. Transplant. Proc. 2015, 47, 1421–1424. [Google Scholar] [CrossRef] [PubMed]
- Hoff, U.; Markmann, D.; Thurn-Valassina, D.; Nieminen-Kelhä, M.; Erlangga, Z.; Schmitz, J.; Bräsen, J.H.; Budde, K.; Melk, A.; Hegner, B. The mTOR inhibitor Rapamycin protects from premature cellular senescence early after experimental kidney transplantation. PLoS ONE 2022, 17, e0266319. [Google Scholar] [CrossRef]
- Akalin, E.; Azzi, Y.; Bartash, R.; Seethamraju, H.; Parides, M.; Hemmige, V.; Ross, M.; Forest, S.; Goldstein, Y.D.; Ajaimy, M.; et al. COVID-19 and Kidney Transplantation. N. Engl. J. Med. 2020, 382, 2475–2477. [Google Scholar] [CrossRef]
- Elias, M.; Pievani, D.; Randoux, C.; Louis, K.; Denis, B.; DeLion, A.; Le Goff, O.; Antoine, C.; Greze, C.; Pillebout, E.; et al. COVID-19 Infection in Kidney Transplant Recipients: Disease Incidence and Clinical Outcomes. J. Am. Soc. Nephrol. 2020, 31, 2413–2423. [Google Scholar] [CrossRef]
- Kremer, D.; Pieters, T.T.; Verhaar, M.C.; Berger, S.P.; Bakker, S.J.L.; van Zuilen, A.D.; Joles, J.A.; Vernooij, R.W.M.; Balkom, B.W.M. A systematic review and meta-analysis of COVID-19 in kidney transplant recipients: Lessons to be learned. Am. J. Transplant. 2021, 21, 3936–3945. [Google Scholar] [CrossRef]
- Mahalingasivam, V.; Craik, A.; Tomlinson, L.A.; Ge, L.; Hou, L.; Wang, Q.; Yang, K.; Fogarty, D.G.; Keenan, C. A Systematic Review of COVID-19 and Kidney Transplantation. Kidney Int. Rep. 2020, 6, 24–45. [Google Scholar] [CrossRef]
- Stangou, M.J.; Fylaktou, A.; Ivanova-Shivarova, M.I.; Theodorou, I. Editorial: Immunosenescence and Immunoexhaustion in Chronic Kidney Disease and Renal Transplantation. Front. Med. 2022, 9, 874581. [Google Scholar] [CrossRef]
- Imam, A.; Abukhalaf, S.A.; Imam, R.; Abu-Gazala, S.; Merhav, H.; Khalaileh, A. Kidney Transplantation in the Times of COVID-19—A Literature Review. Ann. Transplant. 2020, 25, e925755-1–e925755-16. [Google Scholar] [CrossRef]
- Dębska-Ślizień, A.; Ślizień, Z.; Muchlado, M.; Kubanek, A.; Piotrowska, M.; Dąbrowska, M.; Tarasewicz, A.; Chamienia, A.; Biedunkiewicz, B.; Renke, M.; et al. Predictors of Humoral Response to mRNA COVID19 Vaccines in Kidney Transplant Recipients: A Longitudinal Study—The COViNEPH Project. Vaccines 2021, 9, 1165. [Google Scholar] [CrossRef] [PubMed]
- Alejo, J.L.; Mitchell, J.; Chiang, T.P.-Y.; Abedon, A.T.; Boyarsky, B.J.; Avery, R.K.; Tobian, A.A.; Levan, M.L.; Massie, A.B.; Garonzik-Wang, J.M.; et al. Antibody Response to a Fourth Dose of a SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series. Transplantation 2021, 105, e280–e281. [Google Scholar] [CrossRef] [PubMed]
- Abedon, A.T.; Teles, M.S.; Alejo, J.L.; Kim, J.D.; Mitchell, J.; Chiang, T.P.Y.; Avery, R.K.; Tobian, A.A.R.; Levan, M.L.; Warren, D.S.; et al. Improved Antibody Response After a Fifth Dose of a SARS-CoV-2 Vaccine in Solid Organ Transplant Recipients: A Case Series. Transplantation 2022, 106, e262–e263. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Kipp, G.; Bhanot, N.; Sureshkumar, K.K. Vaccinations in kidney transplant recipients: Clearing the muddy waters. World J. Transplant. 2019, 9, 1–13. [Google Scholar] [CrossRef]
- Moran, J.; Dean, J.; De Oliveira, A.; O’Connell, M.; Riordan, M.; Connell, J.; Awan, A.; Hall, W.W.; Hassan, J. Increased levels of PD-1 expression on CD8 T cells in patients post-renal transplant irrespective of chronic high EBV viral load. Pediatr. Transplant. 2013, 17, 806–814. [Google Scholar] [CrossRef]
- Guidelines for Vaccinating Kidney Dialysis Patients and Patients with Chronic Kidney Disease Summarized from Recommendations of the Advisory Committee on Immunization Practices (ACIP). 2012. Available online: https://www.cdc.gov/vaccines/pubs/dialysis-guide-2012.pdf (accessed on 20 August 2022).
- Kotton, C.N. Immunization after kidney transplantation—what is necessary and what is safe? Nat. Rev. Nephrol. 2014, 10, 555–562. [Google Scholar] [CrossRef]
- Gopal, B. Guidelines for vaccination in kidney transplant recipients. Indian J. Nephrol. 2016, 26, S19–S25. [Google Scholar]
- Wang, L.; Verschuuren, E.; van Leer-Buter, C.; Bakker, S.; de Joode, A.; Westra, J.; Bos, N.A. Herpes Zoster and Immunogenicity and Safety of Zoster Vaccines in Transplant Patients: A Narrative Review of the Literature. Front. Immunol. 2018, 9, 1632. [Google Scholar] [CrossRef]
- Caillard, S.; Thaunat, O. COVID-19 vaccination in kidney transplant recipients. Nat. Rev. Nephrol. 2021, 17, 785–787. [Google Scholar] [CrossRef]
- Demir, E.; Dheir, H.; Safak, S.; Artan, A.S.; Sipahi, S.; Turkmen, A. Differences in clinical outcomes of COVID-19 among vaccinated and unvaccinated kidney transplant recipients. Vaccine 2022, 40, 3313–3319. [Google Scholar] [CrossRef]
- Bertrand, D.; Laurent, C.; Lemée, V.; Lebourg, L.; Hanoy, M.; Le Roy, F.; Nezam, D.; Pruteanu, D.; Grange, S.; de Nattes, T.; et al. Efficacy of anti–SARS-CoV-2 monoclonal antibody prophylaxis and vaccination on the Omicron variant of COVID-19 in kidney transplant recipients. Kidney Int. 2022, 102, 440–442. [Google Scholar] [CrossRef] [PubMed]
- Askari, H.; Sanadgol, N.; Azarnezhad, A.; Tajbakhsh, A.; Rafiei, H.; Safarpour, A.R.; Gheibihayat, S.M.; Raeis-Abdollahi, E.; Savardashtaki, A.; Ghanbariasad, A.; et al. Kidney diseases and COVID-19 infection: Causes and effect, supportive therapeutics and nutritional perspectives. Heliyon 2021, 7, e06008. [Google Scholar] [CrossRef] [PubMed]
ESKD | Renal Transplantation | ||
---|---|---|---|
Early Post RT * | Late Post RT | ||
CD4+ cells | ↑ ** | ||
Naive lymphocytes | |||
CD4+CD31+ | ↑ | ||
CD4+CD45RA+CCR7+ | ↑ | ||
Memory lymphocytes | |||
CD4+CD45RA-CCR7+ (CM) | |||
CD4+CD45RA-CCR7- (EM) | ↑ | ↑ | |
Aged lymphocytes | |||
CD4+CD45RA+CCR7- | |||
CD4+CD28- | ↑ | ↑ | ↑↑ |
Exhausted lymphocytes | |||
CD4+PD1+ | |||
CD8+ cells | |||
Naive lymphocytes | |||
CD8+CD31+ | ↑ | ||
CD8+CD45RA+CCR7+ | ↑ | ||
Memory lymphocytes | |||
CD8+CD45RA-CCR7+ (CM) | |||
CD8+CD45RA-CCR7- (EM) | |||
Aged lymphocytes | |||
CD8+CD45RA+CCR7- | ↑ | ||
CD8+CD28- | ↑ | ↑ | |
Exhausted lymphocytes | |||
CD8+PD1+ | ↑ | ↑ | |
Natural killer cells | ↑ | ||
Regulatory T-lymphocytes | ↑ |
Vaccine | CKD | RTRs |
---|---|---|
HBV recombinant | CKD stages 3–4: • Recombivax 10 μg/mL: 3 doses (mo: 0, 1, 6) • Engerix-B 20 μg/mL: 4 doses (mo: 0, 1, 2, 6) HD and other immunocompromised pts ≥ 20 y/o: • Recombivax 40 μg/mL: 3 doses (mo: 0, 1, 6) • Engerix-B 20 μg/mL: 4 doses (DOUBLE amount in each, mo: 0, 1, 2, 6) Serologic testing 1–2 mo after last dose of vaccine series -> if anti-HBs < 10 mIU/mL: perform a 2nd vaccination series → if again anti-HBs < 10 mIU/mL → test for HBsAg • If HBsAg (+): HBV treatment and management • If HBsAg (−): susceptible to HBV—HBIG postexposure profylaxis In HD pts test annually for anti-HBs: if anti-HBs < 10 mIU/mL → administer booster dose | • Vaccinate if anti-HBs < 10 mIU/mL—preferably > 3 mo post KTx (↓ IST dosage) • Test every 6–12 mo for anti-HBs: if anti-HBs < 10 mIU/mL or expected to be < 10 mIU/mL within the next 3–6 mo → administer booster dose |
TIV (inactivated) | Routine annual vaccination—ideally before influenza season onset | • Routine annual vaccination • Use of adjuvated vaccines not advised (causes ↑ anti-HLA Abs) |
Pneumococcal vaccines | • CKD pts considered at high risk for IPD—combination of PCV13 and PPSV23 administration advised • Pts naïve to pneumococcal immunization: 1 dose of PVC13, 1 dose of PPSV23 ≥ 8 wks later, 2nd dose (booster) of PPSV23 ≥ 5 yrs after the 1st PPSV23 dose • Variations in guidelines for previously immunized individuals | • Both PCV13 and PPSV23 considered safe • Same schedule as for general adults • Pts naïve to pneumococcal immunization: 1st immunization with PCV13 followed by PPSV23 ≥ 8 wks later |
HAV inactivated | • Not universally recommended- consider in CKD pts who travel in endemic areas, with CLD, HCV and/or HIV infection history, IV drug users, etc. • 2 doses (mo: 0, 6–12) | Can be administered to high risk pts |
TdaP and Td | Pts naïve to immunization: 3 doses (mo: 0, 1, 6–12) including 1 dose of TdaP—booster with Td every 10 yrs | Pts naïve to immunization: 3 doses (mo: 0, 1, 6–12) including 1 dose of TdaP—booster with Td every 10 yrs |
VAR | Pts naïve to immunization: 2 doses with an interval of 4–8 wks | Contraindicated |
RZV | • Not universally recommended for CKD pts • Pts > 50 yrs (regardless of past herpes zoster infection or ZVL administration): 2 doses with an interval of 2–6 mo—more efficient than ZVL | RZV possibly safe—ZVL contraindicated |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stai, S.; Lioulios, G.; Christodoulou, M.; Kasimatis, E.; Fylaktou, A.; Stangou, M. COVID-19 Infection and Response to Vaccination in Chronic Kidney Disease and Renal Transplantation: A Brief Presentation. Life 2022, 12, 1358. https://doi.org/10.3390/life12091358
Stai S, Lioulios G, Christodoulou M, Kasimatis E, Fylaktou A, Stangou M. COVID-19 Infection and Response to Vaccination in Chronic Kidney Disease and Renal Transplantation: A Brief Presentation. Life. 2022; 12(9):1358. https://doi.org/10.3390/life12091358
Chicago/Turabian StyleStai, Stamatia, Georgios Lioulios, Michalis Christodoulou, Efstratios Kasimatis, Asimina Fylaktou, and Maria Stangou. 2022. "COVID-19 Infection and Response to Vaccination in Chronic Kidney Disease and Renal Transplantation: A Brief Presentation" Life 12, no. 9: 1358. https://doi.org/10.3390/life12091358
APA StyleStai, S., Lioulios, G., Christodoulou, M., Kasimatis, E., Fylaktou, A., & Stangou, M. (2022). COVID-19 Infection and Response to Vaccination in Chronic Kidney Disease and Renal Transplantation: A Brief Presentation. Life, 12(9), 1358. https://doi.org/10.3390/life12091358