The Impact of Digital Contact Tracing Apps Overuse on Prevention of COVID-19: A Normative Activation Model Perspective
Abstract
:1. Introduction
2. Theoretical Background
3. Research Model and Hypothesis Development
4. Method
4.1. Questionnaire Design and Survey
4.2. Structural Equation Model
5. Results
5.1. Demographics and Bias Test Results
5.2. Measurement Model Results
5.3. Structural Model Results
5.4. Moderating Effect Results
6. Discussion and Conclusions
6.1. Key Findings
6.2. Theoretical Contributions
6.3. Practical Contributions
6.4. Limitations and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Scale
Construct | No. | Item | References |
---|---|---|---|
Contact Tracing App Overuse (CTO) | CTO 1 | I must use a DCTA to enter any place. | Lee, Kim, Fava, Mischoulon, Park, Shim, Lee, Lee, and Jeon [28] |
CTO 2 | Even though using a DCTA to enter some sites caused queues, I had to use it. | ||
CTO 3 | I have to use a DCTA every time I travel. | ||
CTO 4 | Many places force me to use a DCTA. | ||
Awareness of Consequences (ACS) | ACS1 | The overuse of DCTAs allowed me to understand the consequences of COVID-19 proliferation. | Sang, Yao, Zhang, Wang, Wang, and Liu [36] Kim, Woo, and Nam [38] |
ACS2 | The overuse of DCTAs did not raise my awareness of preventing COVID-19 (Reverse). | ||
ACS3 | The overuse of DCTAs reminds me to avoid risky behaviors as much as possible. | ||
Ascription of Responsibility (ARE) | ARE1 | The overuse of DCTAs has taught me that negative behaviors resulting in the spread of COVID-19 will be precisely pursued. | Kim, Woo, and Nam [38] |
ARE2 | The overuse of DCTAs reminds me of my responsibility to cooperate in the prevention of COVID-19. | ||
ARE3 | The overuse of DCTAs makes me think that everyone must take responsibility for slowing the spread of COVID-19. | ||
Personal Norms (PNO) | PNO1 | The overuse of DCTAs makes me feel obliged to cooperate in the prevention of COVID-19. | Kim, Woo, and Nam [38] Sang, Yao, Zhang, Wang, Wang, and Liu [36] |
PNO2 | The overuse of DCTAs has forced me to cooperate in the prevention of COVID-19. | ||
PNO3 | The overuse of DCTAs makes me think it is morally responsible to cooperate in the prevention of COVID-19. | ||
Perceived Life Inconvenience (PLI) | PIC1 | The overuse of DCTAs has caused inconvenience to my travel. | Seiders, Voss, Godfrey, and Grewal [51] |
PIC2 | The overuse of DCTAs makes it inconvenient for me to get in and out of some places. | ||
PIC3 | The overuse of a DCTA adds inconveniences to my life, such as concerns about privacy leaks and being misplaced. | ||
PIC4 | The overuse of a DCTA forces me to spend a lot of time planning my life. | ||
Continuous Cooperation Against COVID-19 Intention (CAI) | CAI1 | I intend to continue working with the relevant departments to prevent COIVD-19. | Kim, Woo, and Nam [38] He and Zhan [34] |
CAI2 | I am willing to follow the guidance of the relevant department to continuously prevent COVID-19. | ||
CAI3 | Even if it costs me time and money, I am willing to keep working with the relevant departments to prevent COVID-19. | ||
CAI4 | I look forward to continuing to work with the relevant authorities to prevent COVID-19. |
References
- Cao, J.; Zhang, G.; Liu, D. The Impact of Using mHealth Apps on Improving Public Health Satisfaction during the COVID-19 Pandemic: A Digital Content Value Chain Perspective. Healthcare 2022, 10, 479. [Google Scholar] [CrossRef]
- Ish, P.; Agrawal, S.; Goel, A.D.; Gupta, N. Contact tracing: Unearthing key epidemiological features of COVID-19. SAGE Open Med. Case Rep. 2020, 8, 2050313X–2093348X. [Google Scholar] [CrossRef]
- Kawakami, N.; Sasaki, N.; Kuroda, R.; Tsuno, K.; Imamura, K. The Effects of Downloading a Government-Issued COVID-19 Contact Tracing App on Psychological Distress During the Pandemic Among Employed Adults: Prospective Study. JMIR Ment. Health 2021, 8, e23699. [Google Scholar] [CrossRef]
- Scholl, A.; Sassenberg, K. How Identification with the Social Environment and With the Government Guide the Use of the Official COVID-19 Contact Tracing App: Three Quantitative Survey Studies. Jmir. Mhealth Uhealth 2021, 9, e28146. [Google Scholar] [CrossRef]
- Montagni, I.; Roussel, N.; Thiébaut, R.; Tzourio, C. Health Care Students’ Knowledge of and Attitudes, Beliefs, and Practices Toward the French COVID-19 App: Cross-sectional Questionnaire Study. J. Med. Internet Res. 2021, 23, e26399. [Google Scholar] [CrossRef]
- Grill, E.; Eitze, S.; De Bock, F.; Dragano, N.; Huebl, L.; Schmich, P.; Wieler, L.H.; Betsch, C. Sociodemographic characteristics determine download and use of a Corona contact tracing app in Germany—Results of the COSMO surveys. PLoS ONE 2021, 16, e256660. [Google Scholar] [CrossRef]
- Ishimaru, T.; Ibayashi, K.; Nagata, M.; Hino, A.; Tateishi, S.; Tsuji, M.; Ogami, A.; Matsuda, S.; Fujino, Y.; Fujino, Y.; et al. Industry and workplace characteristics associated with the downloading of a COVID-19 contact tracing app in Japan: A nation-wide cross-sectional study. Environ. Health Prev. 2021, 26, 94. [Google Scholar] [CrossRef]
- Joo, J.; Shin, M.M. Resolving the tension between full utilization of contact tracing app services and user stress as an effort to control the COVID-19 pandemic. Serv. Bus. 2020, 14, 461–478. [Google Scholar] [CrossRef]
- Xiong, B.; Lin, F. How to Balance Governance Efficiency and Privacy Protection? A Textual Analysis of the Privacy Policies of the COVID-19 Contact-Tracing App in China and Singapore. Int. J. Chin. Comp. Philos. Med. 2020, 18, 113–143. [Google Scholar] [CrossRef]
- Bianconi, A.; Marcelli, A.; Campi, G.; Perali, A. Efficiency of COVID-19 mobile contact tracing containment by measuring time-dependent doubling time. Phys. Biol. 2020, 17, 65006. [Google Scholar] [CrossRef]
- Samuel, G.; Sims, R. The UK COVID-19 contact tracing app as both an emerging technology and public health intervention: The need to consider promissory discourses. Health: Interdiscip. J. Soc. Study Health Illn. Med. 2021, 107, 2411–2502. [Google Scholar] [CrossRef]
- Ferrari, A.; Santus, E.; Cirillo, D.; Ponce-de-Leon, M.; Marino, N.; Ferretti, M.T.; Santuccione Chadha, A.; Mavridis, N.; Valencia, A. Simulating SARS-CoV-2 epidemics by region-specific variables and modeling contact tracing app containment. npj Digit. Med. 2021, 4, 9. [Google Scholar] [CrossRef]
- Blom, A.G.; Wenz, A.; Cornesse, C.; Rettig, T.; Fikel, M.; Friedel, S.; Möhring, K.; Naumann, E.; Reifenscheid, M.; Krieger, U. Barriers to the Large-Scale Adoption of a COVID-19 Contact Tracing App in Germany: Survey Study. J. Med. Internet Res. 2021, 23, e23362. [Google Scholar] [CrossRef]
- Maccari, L.; Cagno, V. Do we need a contact tracing app? Comput Commun. 2021, 166, 9–18. [Google Scholar] [CrossRef]
- Gasteiger, N.; Gasteiger, C.; Vedhara, K.; Broadbent, E. The more the merrier! Barriers and facilitators to the general public’s use of a COVID-19 contact tracing app in New Zealand. Inform. Health Soc. Care 2021, 47, 132–143. [Google Scholar] [CrossRef]
- O’Callaghan, M.E.; Buckley, J.; Fitzgerald, B.; Johnson, K.; Laffey, J.; McNicholas, B.; Nuseibeh, B.; O’Keeffe, D.; O’Keeffe, I.; Razzaq, A.; et al. A national survey of attitudes to COVID-19 digital contact tracing in the Republic of Ireland. Ir. J. Med. Sci. 2020, 190, 863–887. [Google Scholar] [CrossRef]
- Geber, S.; Ho, S.S. Examining the cultural dimension of contact-tracing app adoption during the COVID-19 pandemic: A cross-country study in Singapore and Switzerland. Inf. Commun. Soc. 2022, 1–21. [Google Scholar] [CrossRef]
- Williams, S.N.; Armitage, C.J.; Tampe, T.; Dienes, K. Public attitudes towards COVID-19 contact tracing apps: A UK-based focus group study. Health Expect. 2021, 24, 377–385. [Google Scholar] [CrossRef]
- O’Callaghan, M.E.; Abbas, M.; Buckley, J.; Fitzgerald, B.; Johnson, K.; Laffey, J.; McNicholas, B.; Nuseibeh, B.; O’Keeffe, D.; Beecham, S.; et al. Public opinion of the Irish “COVID Tracker” digital contact tracing App: A national survey. Digit. Health 2022, 8, 2012837342. [Google Scholar] [CrossRef]
- Albertus, R.W.; Makoza, F. An analysis of the COVID-19 contact tracing App in South Africa: Challenges experienced by users. Afr. J. Sci. Technol. Innov. Dev. 2022; in press. [Google Scholar] [CrossRef]
- Schultz, É.; Touzani, R.; Mancini, J.; Ward, J.K. From contact tracing to COVID-19 pass holder; the tortured journey of the French TousAntiCovid contact tracing app. Public Health 2022, 206, 5–7. [Google Scholar] [CrossRef]
- Al-Kuwari, M.G.; Ali Al Nuaimi, A.; Semaan, S.; Gibb, J.M.; AbdulMajeed, J.; Al Romaihi, H.E. Effectiveness of Ehteraz digital contact tracing app versus conventional contact tracing in managing the outbreak of COVID-19 in the State of Qatar. BMJ Innov. 2022, 2021. [Google Scholar] [CrossRef]
- Giansanti, D.; Veltro, G. The Digital Divide in the Era of COVID-19: An Investigation into an Important Obstacle to the Access to the mHealth by the Citizen. Healthcare 2021, 9, 371. [Google Scholar] [CrossRef] [PubMed]
- Jonker, M.; de Bekker-Grob, E.; Veldwijk, J.; Goossens, L.; Bour, S.; Rutten-Van Mölken, M. COVID-19 Contact Tracing Apps: Predicted Uptake in the Netherlands Based on a Discrete Choice Experiment. Jmir. Mhealth Uhealth 2020, 8, e20741. [Google Scholar] [CrossRef] [PubMed]
- Dowthwaite, L.; Fischer, J.; Perez Vallejos, E.; Portillo, V.; Nichele, E.; Goulden, M.; McAuley, D. Public Adoption of and Trust in the NHS COVID-19 Contact Tracing App in the United Kingdom: Quantitative Online Survey Study. J. Med. Internet Res. 2021, 23, e29085. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Tran Hoang, M.T.; Phung, M.T. “To our health!” Perceived benefits offset privacy concerns in using national contact-tracing apps. Libr. Hi Tech. 2022; ahead-of-print. [Google Scholar] [CrossRef]
- Isonne, C.; De Blasiis, M.R.; Turatto, F.; Mazzalai, E.; Marzuillo, C.; De Vito, C.; Villari, P.; Baccolini, V. What Went Wrong with the IMMUNI Contact-Tracing App in Italy? A Cross-Sectional Survey on the Attitudes and Experiences among Healthcare University Students. Life 2022, 12, 871. [Google Scholar] [CrossRef]
- Lee, H.; Kim, J.; Fava, M.; Mischoulon, D.; Park, J.; Shim, E.; Lee, E.; Lee, J.H.; Jeon, H.J. Development and validation study of the Smartphone Overuse Screening Questionnaire. Psychiat Res. 2017, 257, 352–357. [Google Scholar] [CrossRef]
- Burki, T. China’s successful control of COVID-19. Lancet Infect. Dis. 2020, 20, 1240–1241. [Google Scholar] [CrossRef]
- Radic, A.; Koo, B.; Gil-Cordero, E.; Cabrera-Sánchez, J.P.; Han, H. Intention to Take COVID-19 Vaccine as a Precondition for International Travel: Application of Extended Norm-Activation Model. Int. J. Environ. Res. Public Health 2021, 18, 3104. [Google Scholar] [CrossRef]
- Si, H.; Shen, L.; Liu, W.; Wu, G. Uncovering people’s mask-saving intentions and behaviors in the post-COVID-19 period: Evidence from China. Sustain. Cities Soc. 2021, 65, 102626. [Google Scholar] [CrossRef]
- Schwartz, S.H. Normative explanations of helping behavior: A critique, proposal, and empirical test. J. Exp. Soc. Psychol. 1973, 9, 349–364. [Google Scholar] [CrossRef]
- Song, Y.; Zhao, C.; Zhang, M. Does haze pollution promote the consumption of energy-saving appliances in China? An empirical study based on norm activation model. Resour. Conserv. Recycl. 2019, 145, 220–229. [Google Scholar] [CrossRef]
- He, X.; Zhan, W. How to activate moral norm to adopt electric vehicles in China? An empirical study based on extended norm activation theory. J. Clean Prod. 2018, 172, 3546–3556. [Google Scholar] [CrossRef]
- Ashraf Javid, M.; Ali, N.; Abdullah, M.; Campisi, T.; Shah, S.A.H. Travelers’ Adoption Behavior towards Electric Vehicles in Lahore, Pakistan: An Extension of Norm Activation Model (NAM) Theory. J. Adv. Transp. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Sang, P.; Yao, H.; Zhang, L.; Wang, S.; Wang, Y.; Liu, J. Influencing factors of consumers’ willingness to purchase green housing: A survey from Shandong Province, China. Environ. Dev. Sustain. 2019, 22, 4267–4287. [Google Scholar] [CrossRef]
- Ataei, P.; Karimi, H.; Moradhaseli, S.; Babaei, M.H. Analysis of farmers’ environmental sustainability behavior: The use of norm activation theory (a sample from Iran). Arab. J. Geosci. 2022, 15, 8396. [Google Scholar] [CrossRef]
- Kim, Y.G.; Woo, E.; Nam, J. Sharing economy perspective on an integrative framework of the NAM and TPB. Int. J. Hosp. Manag. 2018, 72, 109–117. [Google Scholar] [CrossRef]
- Hay, D.F. Prosocial Development. J. Child. Psychol Psyc. 1994, 35, 29–71. [Google Scholar] [CrossRef]
- De Groot, J.I.M.; Steg, L. Morality and Prosocial Behavior: The Role of Awareness, Responsibility, and Norms in the Norm Activation Model. J. Soc. Psychol. 2009, 149, 425–449. [Google Scholar] [CrossRef]
- Schwartz, S.H. Normative Influences on Altruism. Adv. Exp. Soc. Psychol. 1977, 10, 221–279. [Google Scholar] [CrossRef]
- Wang, S.; Wang, J.; Zhao, S.; Yang, S. Information publicity and resident’s waste separation behavior: An empirical study based on the norm activation model. Waste Manag. 2019, 87, 33–42. [Google Scholar] [CrossRef]
- Richards, C.S.; McReynolds, W.T.; Holt, S.; Sexton, T. Effects of information feedback and self-administered consequences on self-monitoring study behavior. J. Couns Psychol. 1976, 23, 316–321. [Google Scholar] [CrossRef]
- Van Quaquebeke, N. Paranoia as an Antecedent and Consequence of Getting Ahead in Organizations: Time-Lagged Effects Between Paranoid Cognitions, Self-Monitoring, and Changes in Span of Control. Front. Psychol. 2016, 7, 1446. [Google Scholar] [CrossRef] [PubMed]
- Spencer, M.B.; Dupree, D.; Swanson, D.P. Parental Monitoring and Adolescents’ Sense of Responsibility for Their Own Learning: An Examination of Sex Differences. J. Negro Educ. 1996, 65, 30. [Google Scholar] [CrossRef]
- Valentine, S.R. Men and Women Supervisors’ Job Responsibility, Job Satisfaction, and Employee Monitoring. Sex. Roles. 2001, 45, 179–197. [Google Scholar] [CrossRef]
- Chi, X.; Cai, G.; Han, H. Festival travellers’ pro-social and protective behaviours against COVID-19 in the time of pandemic. Curr Issues Tour. 2021, 24, 3256–3270. [Google Scholar] [CrossRef]
- Arkorful, V.E.; Lugu, B.K.; Shuliang, Z. Unearthing mask waste separation behavior in COVID-19 pandemic period: An empirical evidence from Ghana using an integrated theory of planned behavior and norm activation model. Curr. Psychol. 2021; Online ahead of print. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect Theory: An Analysis of Decision under Risk. Econometrica 1979, 47, 263. [Google Scholar] [CrossRef]
- Tran, C.D.; Nguyen, T.T. Health vs. privacy? The risk-risk tradeoff in using COVID-19 contact-tracing apps. Technol. Soc. 2021, 67, 101755. [Google Scholar] [CrossRef]
- Seiders, K.; Voss, G.B.; Godfrey, A.L.; Grewal, D. SERVCON: Development and validation of a multidimensional service convenience scale. J. Acad Market. Sci. 2007, 35, 144–156. [Google Scholar] [CrossRef]
- PudongReleases. Shanghai Fully Implement the “Place Code” “Digital Sentry” Service. 2022. Available online: https://www.pudong.gov.cn/006012/20220404/672292.html (accessed on 28 June 2022).
- Hair, J.; Hollingsworth, C.L.; Randolph, A.B.; Chong, A.Y.L. An updated and expanded assessment of PLS-SEM in information systems research. Ind. Manag. Data Syst. 2017, 117, 442–458. [Google Scholar] [CrossRef]
- Sharma, A.; Dwivedi, Y.K.; Arya, V.; Siddiqui, M.Q. Does SMS advertising still have relevance to increase consumer purchase intention? A hybrid PLS-SEM-neural network modelling approach. Comput Hum. Behav. 2021, 124, 106919. [Google Scholar] [CrossRef]
- Cao, J.; Liu, F.; Shang, M.; Zhou, X. Toward street vending in post COVID-19 China: Social networking services information overload and switching intention. Technol. Soc. 2021, 66, 101669. [Google Scholar] [CrossRef] [PubMed]
- Salehan, M.; Kim, D.; Kim, C. Use of Online Social Networking Services from a Theoretical Perspective of the Motivation-Participation-Performance Framework. J. Assoc. Inf. Syst. 2017, 18, 141–172. [Google Scholar] [CrossRef]
- Podsakoff, P.M.; MacKenzie, S.B.; Lee, J.; Podsakoff, N.P. Common method biases in behavioral research: A critical review of the literature and recommended remedies. J. Appl. Psychol. 2003, 88, 879–903. [Google Scholar] [CrossRef] [PubMed]
- Kock, N. Common Method Bias in PLS-SEM. Int. J. E-Collab. 2015, 11, 1–10. [Google Scholar] [CrossRef]
- Benitez, J.; Henseler, J.; Castillo, A.; Schuberth, F. How to perform and report an impactful analysis using partial least squares: Guidelines for confirmatory and explanatory IS research. Inf. Manag.-Amster. 2020, 57, 103168. [Google Scholar] [CrossRef]
- Chin, W.W.; Marcolin, B.L.; Newsted, P.R. A Partial Least Squares Latent Variable Modeling Approach for Measuring Interaction Effects: Results from a Monte Carlo Simulation Study and an Electronic-Mail Emotion/Adoption Study. Inform. Syst Res. 2003, 14, 189–217. [Google Scholar] [CrossRef] [Green Version]
Latent Variable | Item | Loading | Mean (SD) | Cronbach’s α | CR | AVE | R2 |
---|---|---|---|---|---|---|---|
CTO | CTO1 | 0.841 | 3.143 (0.804) | 0.819 | 0.866 | 0.618 | - |
CTO2 | 0.821 | ||||||
CTO3 | 0.754 | ||||||
CTO4 | 0.731 | ||||||
ACS | ACS1 | 0.851 | 3.028 (1.074) | 0.839 | 0.903 | 0.757 | 0.111 |
ACS2 | 0.915 | ||||||
ACS3 | 0.843 | ||||||
ARE | ARE1 | 0.864 | 3.439 (0.653) | 0.715 | 0.841 | 0.639 | 0.063 |
ARE2 | 0.750 | ||||||
ARE3 | 0.780 | ||||||
PLI | PLI1 | 0.923 | 3.149 (1.131) | 0.898 | 0.93 | 0.769 | 0.020 |
PLI2 | 0.758 | ||||||
PLI3 | 0.927 | ||||||
PLI4 | 0.889 | ||||||
PNO | PNO1 | 0.883 | 3.544 (0.860) | 0.818 | 0.888 | 0.727 | 0.125 |
PNO2 | 0.894 | ||||||
PNO3 | 0.775 | ||||||
CRC | CRC1 | 0.783 | 3.132 (0.714) | 0.855 | 0.898 | 0.689 | 0.024 |
CRC2 | 0.840 | ||||||
CRC3 | 0.781 | ||||||
CRC4 | 0.910 |
Fornell–Larcker Criterion | ||||||
---|---|---|---|---|---|---|
ARE | ACS | PLI | PNO | CRC | CTO | |
ARE | 0.799 | |||||
ACS | 0.186 | 0.870 | ||||
PLI | 0.114 | −0.024 | 0.877 | |||
PNO | 0.247 | 0.294 | 0.253 | 0.852 | ||
CRC | 0.537 | 0.058 | 0.099 | 0.154 | 0.830 | |
CTO | 0.222 | 0.333 | 0.447 | 0.266 | 0.174 | 0.786 |
Heterotrait–Monotrait Ratio | ||||||
ARE | ACS | PLI | PNO | CRC | CTO | |
ARE | ||||||
ACS | 0.236 | |||||
PLI | 0.141 | 0.055 | ||||
PNO | 0.304 | 0.332 | 0.294 | |||
CRC | 0.636 | 0.103 | 0.114 | 0.173 | ||
CTO | 0.224 | 0.338 | 0.443 | 0.301 | 0.151 |
Hypothesis | β | STDEV | T-Statistic | p-Value | Result |
---|---|---|---|---|---|
H1a: CTO -> ACS | 0.333 | 0.334 | 6.755 | 0.000 | Support |
H1b: CTO -> ARE | 0.18 | 0.181 | 3.190 | 0.001 | Support |
H1c: CTO -> PLI | 0.447 | 0.45 | 11.93 | 0.000 | Support |
H2a: ACS -> ARE | 0.126 | 0.13 | 1.974 | 0.048 | Support |
H2b: ACS -> PNO | 0.257 | 0.259 | 4.901 | 0.000 | Support |
H2c: ARE -> PNO | 0.199 | 0.204 | 3.711 | 0.000 | Support |
H2d: PNO -> CRC | 0.157 | 0.161 | 2.651 | 0.008 | Support |
Edu -> CRC | −0.016 | −0.013 | 0.257 | 0.797 | |
Gender -> CRC | 0.039 | 0.046 | 0.301 | 0.763 | |
Income -> CRC | 0.035 | 0.032 | 0.505 | 0.613 | |
Age -> CRC | −0.039 | −0.04 | 0.709 | 0.478 |
Hypothesis | R2 Main Effects Model | R2 Interaction Model | F2 | β | T-Statistic | p-Value | Result |
---|---|---|---|---|---|---|---|
H3a: PLI*ACS -> ARE | 0.063 | 0.091 | 0.023 | −0.158 | 2.796 | 0.005 | Support |
H3b: PLI*ACS -> PNO | 0.125 | 0.215 | - | −0.078 | 1.467 | 0.142 | Reject |
H3c: PLI*ARE -> PNO | 0.125 | 0.215 | 0.072 | −0.158 | 2.645 | 0.008 | Support |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Liu, D.; Zhang, G.; Shang, M. The Impact of Digital Contact Tracing Apps Overuse on Prevention of COVID-19: A Normative Activation Model Perspective. Life 2022, 12, 1371. https://doi.org/10.3390/life12091371
Cao J, Liu D, Zhang G, Shang M. The Impact of Digital Contact Tracing Apps Overuse on Prevention of COVID-19: A Normative Activation Model Perspective. Life. 2022; 12(9):1371. https://doi.org/10.3390/life12091371
Chicago/Turabian StyleCao, Junwei, Dong Liu, Guihua Zhang, and Meng Shang. 2022. "The Impact of Digital Contact Tracing Apps Overuse on Prevention of COVID-19: A Normative Activation Model Perspective" Life 12, no. 9: 1371. https://doi.org/10.3390/life12091371
APA StyleCao, J., Liu, D., Zhang, G., & Shang, M. (2022). The Impact of Digital Contact Tracing Apps Overuse on Prevention of COVID-19: A Normative Activation Model Perspective. Life, 12(9), 1371. https://doi.org/10.3390/life12091371