Artificial Intelligence in Biological Sciences
Abstract
:1. Introduction
2. AI in Medical Science
3. AI in Agricultural Biotechnology
4. AI and Industrial Biotechnology
5. Challenges and limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chowdhary, K.R. Fundamentals of Artificial Intelligence; Springer: Delhi, India, 2020; ISBN 9788132239727. [Google Scholar]
- Xu, Y.; Liu, X.; Cao, X.; Huang, C.; Liu, E.; Qian, S.; Liu, X.; Wu, Y.; Dong, F.; Qiu, C.W.; et al. Artificial Intelligence: A Powerful Paradigm for Scientific Research. Innovation 2021, 2, 100179. [Google Scholar] [CrossRef]
- Turing, A.M.I. —Computing Machinery and Intelligence. Mind 1950, 59, 433–460. [Google Scholar] [CrossRef]
- Buchanan, B.G. A (Very) Brief History of Artificial Intelligence. AI Mag. 2005, 26, 53. [Google Scholar] [CrossRef]
- Akman, V.; Blackburn, P. Editorial: Alan Turing and Artificial Intelligence. J. Logic Lang. Inf. 2000, 9, 391–395. [Google Scholar] [CrossRef]
- Collins, C.; Dennehy, D.; Conboy, K.; Mikalef, P. Artificial Intelligence in Information Systems Research: A Systematic Literature Review and Research Agenda. Int. J. Inf. Manag. 2021, 60, 102383. [Google Scholar] [CrossRef]
- Holland, J.H. Adaptation in Natural and Artificial Systems; The MIT Press: Cambridge, MA, USA, 1992; ISBN 9780262275552. [Google Scholar]
- McCorduck, P. Machines Who Think: A Personal Inquiry into the History and Prospects of Artificial Intelligence, 2nd ed.; Peters, A.K., Ed.; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9781568812052. [Google Scholar]
- Sarker, I.H. AI-Based Modeling: Techniques, Applications and Research Issues Towards Automation, Intelligent and Smart Systems. SN Comput. Sci. 2022, 3, 1–20. [Google Scholar] [CrossRef]
- Fjelland, R. Why General Artificial Intelligence Will Not Be Realized. Humanit. Soc. Sci. Commun. 2020, 7, 10. [Google Scholar] [CrossRef]
- Chakriswaran, P.; Vincent, D.R.; Srinivasan, K.; Sharma, V.; Chang, C.Y.; Reina, D.G. Emotion AI-Driven Sentiment Analysis: A Survey, Future Research Directions, and Open Issues. Appl. Sci. 2019, 9, 5462. [Google Scholar] [CrossRef]
- Zhai, X.; Chu, X.; Chai, C.S.; Jong, M.S.Y.; Istenic, A.; Spector, M.; Liu, J.-B.; Yuan, J.; Li, Y. A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity 2021, 2021, 8812542. [Google Scholar] [CrossRef]
- Butz, M.V. Towards Strong AI. KI-Kunstl. Intelligenz 2021, 35, 91–101. [Google Scholar] [CrossRef]
- Bakr, M.H.; Negm, M.H. Modeling and Design of High-Frequency Structures Using Artificial Neural Networks and Space Mapping. Adv. Imaging Electron. Phys. 2012, 174, 223–260. [Google Scholar] [CrossRef]
- Borrego-Díaz, J.; Galán Páez, J. Knowledge Representation for Explainable Artificial Intelligence. Complex Intell. Syst. 2022, 8, 1579–1601. [Google Scholar] [CrossRef]
- Sah, S. Machine Learning: A Review of Learning Types. Preprints 2020, 2020070230. [Google Scholar] [CrossRef]
- Tanaka, I.; Furukawa, T.; Morise, M. The Current Issues and Future Perspective of Artificial Intelligence for Developing New Treatment Strategy in Non-Small Cell Lung Cancer: Harmonization of Molecular Cancer Biology and Artificial Intelligence. Cancer Cell Int. 2021, 21, 454. [Google Scholar] [CrossRef]
- Han, H.; Liu, W. The Coming Era of Artificial Intelligence in Biological Data Science. BMC Bioinform. 2019, 20, 712. [Google Scholar] [CrossRef]
- Oliveira, A.L. Biotechnology, Big Data and Artificial Intelligence. Biotechnol. J. 2019, 14, 1800613. [Google Scholar] [CrossRef]
- Car, J.; Sheikh, A.; Wicks, P.; Williams, M.S. Beyond the Hype of Big Data and Artificial Intelligence: Building Foundations for Knowledge and Wisdom. BMC Med. 2019, 17, 1–5. [Google Scholar] [CrossRef]
- Costa, F.F. Big Data in Biomedicine. Drug Discov. Today 2014, 19, 433–440. [Google Scholar] [CrossRef]
- Pettersson, E.; Lundeberg, J.; Ahmadian, A. Generations of Sequencing Technologies. Genomics 2009, 93, 105–111. [Google Scholar] [CrossRef]
- Williams, A.M.; Liu, Y.; Regner, K.R.; Jotterand, F.; Liu, P.; Liang, M. Artificial Intelligence, Physiological Genomics, and Precision Medicine. Physiol. Genom. 2018, 50, 237–243. [Google Scholar] [CrossRef] [Green Version]
- Sellwood, M.A.; Ahmed, M.; Segler, M.H.S.; Brown, N. Artificial Intelligence in Drug Discovery. Future Med. Chem. 2018, 10, 2025–2028. [Google Scholar] [CrossRef]
- Emmert-Streib, F. From the Digital Data Revolution toward a Digital Society: Pervasiveness of Artificial Intelligence. Mach. Learn. Knowl. Extr. 2021, 3, 284–298. [Google Scholar] [CrossRef]
- Schwab, K. The Fourth Industrial Revolution; Crown Business: New York, 2017; ISBN 9781524758868. [Google Scholar]
- Kulkov, I. Next-Generation Business Models for Artificial Intelligence Start-Ups in the Healthcare Industry. Int. J. Entrep. Behav. Res. 2021. ahead-of-print. [Google Scholar] [CrossRef]
- Dara, S.; Dhamercherla, S.; Jadav, S.S.; Babu, C.M.; Ahsan, M.J. Machine Learning in Drug Discovery: A Review. Artif. Intell. Rev. 2022, 55, 1947–1999. [Google Scholar] [CrossRef]
- Chakraborty, I.; Choudhury, A. Artificial Intelligence in Biological Data. J. Inf. Technol. Softw. Eng. 2017, 7, 207. [Google Scholar] [CrossRef]
- Álvarez-Machancoses, Ó.; Galiana, E.J.D.; Cernea, A.; de la Viña, J.F.; Fernández-Martínez, J.L. On the Role of Artificial Intelligence in Genomics to Enhance Precision Medicine. Pharmgenomics. Pers. Med. 2020, 13, 105. [Google Scholar] [CrossRef]
- Tong, H.; Nikoloski, Z. Machine Learning Approaches for Crop Improvement: Leveraging Phenotypic and Genotypic Big Data. J. Plant Physiol. 2021, 257, 153354. [Google Scholar] [CrossRef]
- Paul, D.; Sanap, G.; Shenoy, S.; Kalyane, D.; Kalia, K.; Tekade, R.K. Artificial Intelligence in Drug Discovery and Development. Drug Discov. Today 2021, 26, 80–93. [Google Scholar] [CrossRef]
- Carpenter, K.A.; Huang, X. Machine Learning-Based Virtual Screening and Its Applications to Alzheimer’s Drug Discovery: A Review. Curr. Pharm. Des. 2018, 24, 3347–3358. [Google Scholar] [CrossRef]
- Liu, X.; Faes, L.; Kale, A.U.; Wagner, S.K.; Fu, D.J.; Bruynseels, A.; Mahendiran, T.; Moraes, G.; Shamdas, M.; Kern, C.; et al. A Comparison of Deep Learning Performance against Health-Care Professionals in Detecting Diseases from Medical Imaging: A Systematic Review and Meta-Analysis. Lancet Digit. Health 2019, 1, e271–e297. [Google Scholar] [CrossRef]
- Kumar, Y.; Koul, A.; Singla, R.; Ijaz, M.F. Artificial Intelligence in Disease Diagnosis: A Systematic Literature Review, Synthesizing Framework and Future Research Agenda. J. Ambient Intell. Humaniz. Comput. 2022, 1, 1–28. [Google Scholar] [CrossRef]
- Jiang, F.; Jiang, Y.; Zhi, H.; Dong, Y.; Li, H.; Ma, S.; Wang, Y.; Dong, Q.; Shen, H.; Wang, Y. Artificial Intelligence in Healthcare: Past, Present and Future. Stroke Vasc. Neurol. 2017, 2, 230–243. [Google Scholar] [CrossRef]
- Ezanno, P.; Picault, S.; Beaunée, G.; Bailly, X.; Muñoz, F.; Duboz, R.; Monod, H.; Guégan, J.F. Research Perspectives on Animal Health in the Era of Artificial Intelligence. Vet. Res. 2021, 52, 1–15. [Google Scholar] [CrossRef]
- Zhang, W.; Chien, J.; Yong, J.; Kuang, R. Network-Based Machine Learning and Graph Theory Algorithms for Precision Oncology. NPJ Precis. Oncol. 2017, 1, 1–15. [Google Scholar] [CrossRef]
- Lancellotti, C.; Cancian, P.; Savevski, V.; Kotha, S.R.R.; Fraggetta, F.; Graziano, P.; Tommaso, L. Di Artificial Intelligence & Tissue Biomarkers: Advantages, Risks and Perspectives for Pathology. Cells 2021, 10, 787. [Google Scholar] [CrossRef]
- Bedi, G.; Carrillo, F.; Cecchi, G.A.; Slezak, D.F.; Sigman, M.; Mota, N.B.; Ribeiro, S.; Javitt, D.C.; Copelli, M.; Corcoran, C.M. Automated Analysis of Free Speech Predicts Psychosis Onset in High-Risk Youths. NPJ Schizophr. 2015, 1, 15030. [Google Scholar] [CrossRef]
- Pinaire, J.; Azé, J.; Bringay, S.; Landais, P. Patient Healthcare Trajectory. An Essential Monitoring Tool: A Systematic Review. Health Inf. Sci. Syst. 2017, 5, 1. [Google Scholar] [CrossRef]
- Vrakas, D.; Vlahavas, I.P.L. Artificial Intelligence for Advanced Problem Solving Techniques; IGI Global: Hershey, PA, USA, 2008; ISBN 9781599047058. [Google Scholar]
- Osareh, A.; Shadgar, B. Machine Learning Techniques to Diagnose Breast Cancer. In Proceedings of the 2010 5th International Symposium on Health Informatics and Bioinformatics, Antalya, Turkey, 20–22 April 2010; pp. 114–120. [Google Scholar]
- Mesko, B. The Role of Artificial Intelligence in Precision Medicine. Expert Rev. Precis. Med. Drug Dev. 2017, 2, 239–241. [Google Scholar] [CrossRef]
- Mathur, S.; Sutton, J. Personalized Medicine Could Transform Healthcare (Review). Biomed. Rep. 2017, 7, 3–5. [Google Scholar] [CrossRef]
- Azofeifa, J.G.; Dowell, R.D. A Generative Model for the Behavior of RNA Polymerase. Bioinformatics 2017, 33, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Azofeifa, J.G.; Allen, M.A.; Hendrix, J.R.; Read, T.; Rubin, J.D.; Dowell, R.D. Enhancer RNA Profiling Predicts Transcription Factor Activity. Genome Res. 2018, 28, 334–344. [Google Scholar] [CrossRef]
- Aggarwal, M.; Madhukar, M. IBM’s Watson Analytics for Health Care: A Miracle Made True. In Cloud Computing Systems and Applications in Healthcare; IGI Global: Hershey, PA, USA, 2016; pp. 117–134. ISBN 9781522510031. [Google Scholar]
- Maceachern, S.J.; Forkert, N.D. Machine Learning for Precision Medicine. Genome 2021, 64, 416–425. [Google Scholar]
- Brogi, S.; Calderone, V. Artificial Intelligence in Translational Medicine. Int. J. Transl. Med. 2021, 1, 223–285. [Google Scholar] [CrossRef]
- Milano, C.E.; Hardman, J.A.; Plesiu, A.; Rdesinski, R.E.; Biagioli, F.E. Simulated Electronic Health Record (Sim-EHR) Curriculum: Teaching EHR Skills and Use of the EHR for Disease Management and Prevention. Acad. Med. 2014, 89, 399–403. [Google Scholar] [CrossRef]
- Gómez-González, E.; Gomez, E.; Márquez-Rivas, J.; Guerrero-Claro, M.; Fernández-Lizaranzu, I.; Relimpio-López, M.I.; Dorado, M.E.; Mayorga-Buiza, M.J.; Izquierdo-Ayuso, G.; Capitán-Morales, L. Artificial Intelligence in Medicine and Healthcare: A Review and Classification of Current and near-Future Applications and Their Ethical and Social Impact. arXiv 2020. [Google Scholar] [CrossRef]
- Hee Lee, D.; Yoon, S.N. Application of Artificial Intelligence-Based Technologies in the Healthcare Industry: Opportunities and Challenges. Int. J. Environ. Res. Public Health 2021, 18, 271. [Google Scholar] [CrossRef]
- Zhang, C.; Zhao, J.; Zhu, Z.; Li, Y.; Li, K.; Wang, Y.; Zheng, Y. Applications of Artificial Intelligence in Myopia: Current and Future Directions. Front. Med. 2022, 9, 840498. [Google Scholar] [CrossRef]
- Luo, G.; Sun, G.; Wang, K.; Dong, S.; Zhang, H. A Novel Left Ventricular Volumes Prediction Method Based on Deep Learning Network in Cardiac MRI. In Proceedings of the Computing in Cardiology, Vancouver, BC, Canada, 11–14 September 2016; Volume 43, pp. 89–92. [Google Scholar]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-Level Classification of Skin Cancer with Deep Neural Networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef]
- Lundervold, A.S.; Lundervold, A. An Overview of Deep Learning in Medical Imaging Focusing on MRI. Z. Med. Phys. 2019, 29, 102–127. [Google Scholar]
- Wang, S.; Su, Z.; Ying, L.; Peng, X.; Zhu, S.; Liang, F.; Feng, D.; Liang, D. Accelerating Magnetic Resonance Imaging via Deep Learning. Proc. Int. Symp. Biomed. Imaging 2016, 2016, 514–517. [Google Scholar] [CrossRef]
- Zhang, J.; Han, R.; Shao, G.; Lv, B.; Sun, K. Artificial Intelligence in Cardiovascular Atherosclerosis Imaging. J. Pers. Med. 2022, 12, 420. [Google Scholar] [CrossRef]
- Fanelli, U.; Pappalardo, M.; Chinè, V.; Gismondi, P.; Neglia, C.; Argentiero, A.; Calderaro, A.; Prati, A.; Esposito, S. Role of Artificial Intelligence in Fighting Antimicrobial Resistance in Pediatrics. Antibiotics 2020, 9, 767. [Google Scholar] [CrossRef]
- Schmidt-Erfurth, U.; Waldstein, S.M.; Klimscha, S.; Sadeghipour, A.; Hu, X.; Gerendas, B.S.; Osborne, A.; Bogunović, H. Prediction of Individual Disease Conversion in Early AMD Using Artificial Intelligence. Invest. Ophthalmol. Vis. Sci. 2018, 59, 3199–3208. [Google Scholar] [CrossRef]
- El-Sappagh, S.; Alonso, J.M.; Islam, S.M.R.; Sultan, A.M.; Kwak, K.S. A Multilayer Multimodal Detection and Prediction Model Based on Explainable Artificial Intelligence for Alzheimer’s Disease. Sci. Rep. 2021, 11, 2660. [Google Scholar] [CrossRef]
- Jiang, X.; Coffee, M.; Bari, A.; Wang, J.; Jiang, X.; Huang, J.; Shi, J.; Dai, J.; Cai, J.; Zhang, T.; et al. Towards an Artificial Intelligence Framework for Data-Driven Prediction of Coronavirus Clinical Severity. Comput. Mater. Contin. 2020, 63, 537–551. [Google Scholar] [CrossRef]
- Enshaei, A.; Robson, C.N.; Edmondson, R.J. Artificial Intelligence Systems as Prognostic and Predictive Tools in Ovarian Cancer. Ann. Surg. Oncol. 2015, 22, 3970–3975. [Google Scholar] [CrossRef]
- Baldwin, D.R.; Gustafson, J.; Pickup, L.; Arteta, C.; Novotny, P.; Declerck, J.; Kadir, T.; Figueiras, C.; Sterba, A.; Exell, A.; et al. External Validation of a Convolutional Neural Network Artificial Intelligence Tool to Predict Malignancy in Pulmonary Nodules. Thorax 2020, 75, 306–312. [Google Scholar] [CrossRef]
- Hu, H.; Wang, H.; Wang, F.; Langley, D.; Avram, A.; Liu, M. Prediction of Influenza-like Illness Based on the Improved Artificial Tree Algorithm and Artificial Neural Network. Sci. Rep. 2018, 8, 4895. [Google Scholar] [CrossRef]
- Koscielny, G.; An, P.; Carvalho-Silva, D.; Cham, J.A.; Fumis, L.; Gasparyan, R.; Hasan, S.; Karamanis, N.; Maguire, M.; Papa, E.; et al. Open Targets: A Platform for Therapeutic Target Identification and Validation. Nucleic Acids Res. 2017, 45, D985. [Google Scholar] [CrossRef]
- Pineda, S.S.; Undheim, E.A.B.; Rupasinghe, D.B.; Ikonomopoulou, M.P.; King, G.F. Spider Venomics: Implications for Drug Discovery. Future Med. Chem. 2014, 6, 1699–1714. [Google Scholar] [CrossRef]
- Li, M.; Zhang, H.; Chen, B.; Wu, Y.; Guan, L. Prediction of PKa Values for Neutral and Basic Drugs Based on Hybrid Artificial Intelligence Methods. Sci. Rep. 2018, 8, 3991. [Google Scholar] [CrossRef]
- Zou, K.H.; Li, J.Z.; Imperato, J.; Potkar, C.N.; Sethi, N.; Edwards, J.; Ray, A. Harnessing Real-World Data for Regulatory Use and Applying Innovative Applications. J. Multidiscip. Healthc. 2020, 13, 671. [Google Scholar] [CrossRef]
- Leite, M.L.; de Loiola Costa, L.S.; Cunha, V.A.; Kreniski, V.; de Oliveira Braga Filho, M.; da Cunha, N.B.; Costa, F.F. Artificial Intelligence and the Future of Life Sciences. Drug Discov. Today 2021, 26, 2515–2526. [Google Scholar] [CrossRef]
- Nayor, J.; Borges, L.F.; Goryachev, S.; Gainer, V.S.; Saltzman, J.R. Natural Language Processing Accurately Calculates Adenoma and Sessile Serrated Polyp Detection Rates. Dig. Dis. Sci. 2018, 63, 1794–1800. [Google Scholar] [CrossRef]
- Hill, N.R.; Ayoubkhani, D.; McEwan, P.; Sugrue, D.M.; Farooqui, U.; Lister, S.; Lumley, M.; Bakhai, A.; Cohen, A.T.; O’Neill, M.; et al. Predicting Atrial Fibrillation in Primary Care Using Machine Learning. PLoS ONE 2019, 14, e0224582. [Google Scholar] [CrossRef]
- Enshaeifar, S.; Zoha, A.; Skillman, S.; Markides, A.; Acton, S.T.; Elsaleh, T.; Kenny, M.; Rostill, H.; Nilforooshan, R.; Barnaghi, P. Machine Learning Methods for Detecting Urinary Tract Infection and Analysing Daily Living Activities in People with Dementia. PLoS ONE 2019, 14, e0209909. [Google Scholar] [CrossRef]
- Gultepe, E.; Green, J.P.; Nguyen, H.; Adams, J.; Albertson, T.; Tagkopoulos, I. From Vital Signs to Clinical Outcomes for Patients with Sepsis: A Machine Learning Basis for a Clinical Decision Support System. J. Am. Med. Inform. Assoc. 2014, 21, 315. [Google Scholar] [CrossRef]
- Thompson, W.R.; Reinisch, A.J.; Unterberger, M.J.; Schriefl, A.J. Artificial Intelligence-Assisted Auscultation of Heart Murmurs: Validation by Virtual Clinical Trial. Pediatr. Cardiol. 2019, 40, 623–629. [Google Scholar] [CrossRef]
- Benjamens, S.; Dhunnoo, P.; Meskó, B. The State of Artificial Intelligence-Based FDA-Approved Medical Devices and Algorithms: An Online Database. NPJ Digit. Med. 2020, 3, 118. [Google Scholar] [CrossRef]
- Abràmoff, M.D.; Lavin, P.T.; Birch, M.; Shah, N.; Folk, J.C. Pivotal Trial of an Autonomous AI-Based Diagnostic System for Detection of Diabetic Retinopathy in Primary Care Offices. NPJ Digit. Med. 2018, 1, 39. [Google Scholar] [CrossRef]
- Wang, P.; Liu, X.; Berzin, T.M.; Glissen Brown, J.R.; Liu, P.; Zhou, C.; Lei, L.; Li, L.; Guo, Z.; Lei, S.; et al. Effect of a Deep-Learning Computer-Aided Detection System on Adenoma Detection during Colonoscopy (CADe-DB Trial): A Double-Blind Randomised Study. Lancet Gastroenterol. Hepatol. 2020, 5, 343–351. [Google Scholar] [CrossRef]
- Voermans, A.M.; Mewes, J.C.; Broyles, M.R.; Steuten, L.M.G. Cost-Effectiveness Analysis of a Procalcitonin-Guided Decision Algorithm for Antibiotic Stewardship Using Real-World U.S. Hospital Data. Omi. A J. Integr. Biol. 2019, 23, 508–515. [Google Scholar] [CrossRef]
- Bhatnagar, N. Role of Robotic Process Automation in Pharmaceutical Industries. Adv. Intell. Syst. Comput. 2020, 921, 497–504. [Google Scholar] [CrossRef]
- Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review. Comput. Intell. Neurosci. 2018, 2018, 7068349. [Google Scholar]
- Paeng, K.; Hwang, S.; Park, S.; Kim, M. A Unified Framework for Tumor Proliferation Score Prediction in Breast Histopathology. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer: Cham, Switzerland, 2017; Volume 10553 LNCS, pp. 231–239. ISBN 9783319675572. [Google Scholar]
- Wu, Y.; Schuster, M.; Chen, Z.; Le, Q.V.; Norouzi, M.; Macherey, W.; Krikun, M.; Cao, Y.; Gao, Q.; Macherey, K.; et al. Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation. arXiv 2016. [Google Scholar] [CrossRef]
- FAO How to Feed the World in 2050: Global Agriculture Towards 2050. Available online: https://www.fao.org/fileadmin/templates/wsfs/docs/Issues_papers/HLEF2050_Global_Agriculture.pdf (accessed on 21 July 2022).
- Clara Eli-Chukwu, N. Applications of Artificial Intelligence in Agriculture: A Review. Eng. Technol. Appl. Sci. Res. 2019, 9, 4377–4383. [Google Scholar] [CrossRef]
- Mogili, U.R.; Deepak, B.B.V.L. Review on Application of Drone Systems in Precision Agriculture. Procedia Comput. Sci. 2018, 133, 502–509. [Google Scholar] [CrossRef]
- Shah, G.; Shah, A.; Shah, M. Panacea of Challenges in Real-World Application of Big Data Analytics in Healthcare Sector. J. Data, Inf. Manag. 2019, 1, 107–116. [Google Scholar] [CrossRef]
- Talaviya, T.; Shah, D.; Patel, N.; Yagnik, H.; Shah, M. Implementation of Artificial Intelligence in Agriculture for Optimisation of Irrigation and Application of Pesticides and Herbicides. Artif. Intell. Agric. 2020, 4, 58–73. [Google Scholar] [CrossRef]
- Klyushin, D.; Tymoshenko, A. Optimization of Drip Irrigation Systems Using Artificial Intelligence Methods for Sustainable Agriculture and Environment. Stud. Comput. Intell. 2021, 912, 3–17. [Google Scholar] [CrossRef]
- Aggarwal, N.; Singh, D. Technology Assisted Farming: Implications of IoT and AI. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1022, 012080. [Google Scholar] [CrossRef]
- Liakos, K.G.; Busato, P.; Moshou, D.; Pearson, S.; Bochtis, D. Machine Learning in Agriculture: A Review. Sensors 2018, 18, 2674. [Google Scholar] [CrossRef]
- Linaza, M.T.; Posada, J.; Bund, J.; Eisert, P.; Quartulli, M.; Döllner, J.; Pagani, A.; Olaizola, I.G.; Barriguinha, A.; Moysiadis, T.; et al. Data-Driven Artificial Intelligence Applications for Sustainable Precision Agriculture. Agronomy 2021, 11, 1227. [Google Scholar] [CrossRef]
- Ben Ayed, R.; Hanana, M. Artificial Intelligence to Improve the Food and Agriculture Sector. J. Food Qual. 2021, 2021, 5584754. [Google Scholar] [CrossRef]
- Dutta Majumder, D.; Ulrichs, C.; Majumder, D.; Mewis, I.; Thakur, A.R.; Brahmachary, R.L.; Banerjee, R.; Rahman, A.; Debnath, N.; Seth, D.; et al. Current Status and Future Trends of Nanoscale Technology and Its Impact on Modern Computing, Biology, Medicine and Agricultural Biotechnology. In Proceedings of the International Conference on Computing: Theory and Applications, ICCTA 2007, Kolkata, India, 5–7 March 2007; pp. 563–572. [Google Scholar]
- Kim, M.; Gilley, J.E. Artificial Neural Network Estimation of Soil Erosion and Nutrient Concentrations in Runoff from Land Application Areas. Comput. Electron. Agric. 2008, 64, 268–275. [Google Scholar] [CrossRef]
- Matias, F.I.; Caraza-Harter, M.V.; Endelman, J.B. FIELDimageR: An R Package to Analyze Orthomosaic Images from Agricultural Field Trials. Plant Phenome J. 2020, 3, e20005. [Google Scholar] [CrossRef]
- Spanaki, K.; Karafili, E.; Sivarajah, U.; Despoudi, S.; Irani, Z. Artificial Intelligence and Food Security: Swarm Intelligence of AgriTech Drones for Smart AgriFood Operations. Prod. Plan. Control 2021, 1–19. [Google Scholar] [CrossRef]
- Mahto, A.K.; Alam, M.A.; Biswas, R.; Ahmad, J.; Alam, S.I. Short-Term Forecasting of Agriculture Commodities in Context of Indian Market for Sustainable Agriculture by Using the Artificial Neural Network. J. Food Qual. 2021, 2021, 9939906. [Google Scholar] [CrossRef]
- Pazouki, E. A Practical Surface Irrigation Design Based on Fuzzy Logic and Meta-Heuristic Algorithms. Agric. Water Manag. 2021, 256, 107069. [Google Scholar] [CrossRef]
- Jha, K.; Doshi, A.; Patel, P.; Shah, M. A Comprehensive Review on Automation in Agriculture Using Artificial Intelligence. Artif. Intell. Agric. 2019, 2, 1–12. [Google Scholar] [CrossRef]
- Ju, S.; Lim, H.; Heo, J. Machine Learning Approaches for Crop Yield Prediction with MODIS and Weather Data. In Proceedings of the 40th Asian Conference on Remote Sensing, ACRS 2019: Progress of Remote Sensing Technology for Smart Future, Daejeon, Korea, 14–18 October 2019. [Google Scholar]
- Ali, Q.; Ahmar, S.; Sohail, M.A.; Kamran, M.; Ali, M.; Saleem, M.H.; Rizwan, M.; Ahmed, A.M.; Mora-Poblete, F.; do Amaral Júnior, A.T.; et al. Research Advances and Applications of Biosensing Technology for the Diagnosis of Pathogens in Sustainable Agriculture. Environ. Sci. Pollut. Res. Int. 2021, 28, 9002–9019. [Google Scholar] [CrossRef]
- Albattah, W.; Javed, A.; Nawaz, M.; Masood, M.; Albahli, S. Artificial Intelligence-Based Drone System for Multiclass Plant Disease Detection Using an Improved Efficient Convolutional Neural Network. Front. Plant Sci. 2022, 13, 808380. [Google Scholar] [CrossRef]
- Bedi, P.; Gole, P. Plant Disease Detection Using Hybrid Model Based on Convolutional Autoencoder and Convolutional Neural Network. Artif. Intell. Agric. 2021, 5, 90–101. [Google Scholar] [CrossRef]
- Pandey, D.K.; Chaudhary, B. Transcriptional Loss of Domestication-Driven Cytoskeletal GhPRF1 Gene Causes Defective Floral and Fiber Development in Cotton (Gossypium). Plant Mol. Biol. 2021, 107, 519–532. [Google Scholar] [CrossRef]
- Pandey, D.K.; Chaudhary, B. Domestication-Driven Gossypium Profilin 1 (GhPRF1) Gene Transduces Early Flowering Phenotype in Tobacco by Spatial Alteration of Apical/Floral-Meristem Related Gene Expression. BMC Plant Biol. 2016, 16, 201310. [Google Scholar] [CrossRef]
- Sharma, R.; Kumar, N.; Sharma, B.B. Applications of Artificial Intelligence in Smart Agriculture: A Review. In Recent Innovations in Computing. Lecture Notes in Electrical Engineering; Springer Science and Business Media Deutschland GmbH: Berlin/Heidelberg, Germany, 2022; Volume 832, pp. 135–142. ISBN 9789811682476. [Google Scholar]
- Gong, L.; Yu, M.; Jiang, S.; Cutsuridis, V.; Pearson, S. Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN. Sensors 2021, 21, 4537. [Google Scholar] [CrossRef]
- Mohd Nain, F.N.; Ahamed Hassain Malim, N.H.; Abdullah, R.; Abdul Rahim, M.F.; Ahmad Mokhtar, M.A.; Mohamad Fauzi, N.S. A Review of an Artificial Intelligence Framework for Identifying the Most Effective Palm Oil Prediction. Algorithms 2022, 15, 218. [Google Scholar] [CrossRef]
- Seyhan, K.; Nguyen, T.N.; Akleylek, S.; Cengiz, K.; Islam, S.K.H. Bi-GISIS KE: Modified Key Exchange Protocol with Reusable Keys for IoT Security. J. Inf. Secur. Appl. 2021, 58, 102788. [Google Scholar] [CrossRef]
- Zhou, Y.; Xia, Q.; Zhang, Z.; Quan, M.; Li, H. Artificial Intelligence and Machine Learning for the Green Development of Agriculture in the Emerging Manufacturing Industry in the IoT Platform. Acta Agric. Scand. Sect. B Soil Plant Sci. 2022, 72, 284–299. [Google Scholar] [CrossRef]
- Partel, V.; Costa, L.; Ampatzidis, Y. Smart Tree Crop Sprayer Utilizing Sensor Fusion and Artificial Intelligence. Comput. Electron. Agric. 2021, 191, 106556. [Google Scholar] [CrossRef]
- Paraforos, D.S.; Vassiliadis, V.; Kortenbruck, D.; Stamkopoulos, K.; Ziogas, V.; Sapounas, A.A.; Griepentrog, H.W. A Farm Management Information System Using Future Internet Technologies. IFAC-PapersOnLine 2016, 49, 324–329. [Google Scholar] [CrossRef]
- Marchetti, C.F.; Ugena, L.; Humplík, J.F.; Polák, M.; Ćavar Zeljković, S.; Podlešáková, K.; Fürst, T.; De Diego, N.; Spíchal, L. A Novel Image-Based Screening Method to Study Water-Deficit Response and Recovery of Barley Populations Using Canopy Dynamics Phenotyping and Simple Metabolite Profiling. Front. Plant Sci. 2019, 10, 1252. [Google Scholar] [CrossRef]
- Harfouche, A.L.; Jacobson, D.A.; Kainer, D.; Romero, J.C.; Harfouche, A.H.; Scarascia Mugnozza, G.; Moshelion, M.; Tuskan, G.A.; Keurentjes, J.J.B.; Altman, A. Accelerating Climate Resilient Plant Breeding by Applying Next-Generation Artificial Intelligence. Trends Biotechnol. 2019, 37, 1217–1235. [Google Scholar] [CrossRef]
- Polat, H.; Topalcengiz, Z.; Danyluk, M.D. Prediction of Salmonella Presence and Absence in Agricultural Surface Waters by Artificial Intelligence Approaches. J. Food Saf. 2020, 40, e12733. [Google Scholar] [CrossRef]
- Liu, L.W.; Lu, C.T.; Wang, Y.M.; Lin, K.H.; Ma, X.; Lin, W.S. Rice (Oryza sativa L.) Growth Modeling Based on Growth Degree Day (GDD) and Artificial Intelligence Algorithms. Agriculture 2022, 12, 59. [Google Scholar] [CrossRef]
- Shadrin, D.; Menshchikov, A.; Somov, A.; Bornemann, G.; Hauslage, J.; Fedorov, M. Enabling Precision Agriculture through Embedded Sensing with Artificial Intelligence. IEEE Trans. Instrum. Meas. 2020, 69, 4103–4113. [Google Scholar] [CrossRef]
- Lee, J.; Nazki, H.; Baek, J.; Hong, Y.; Lee, M. Artificial Intelligence Approach for Tomato Detection and Mass Estimation in Precision Agriculture. Sustainability 2020, 12, 9138. [Google Scholar] [CrossRef]
- Popp, M.; Stegemann, M.; Metzendorf, M.-I.; Gould, S.; Kranke, P.; Meybohm, P.; Skoetz, N.; Weibel, S. Ivermectin for Preventing and Treating COVID-19. Cochrane Database Syst. Rev. 2021, 2021, Cd015017. [Google Scholar] [CrossRef]
- Collado-Mesa, F.; Alvarez, E.; Arheart, K. The Role of Artificial Intelligence in Diagnostic Radiology: A Survey at a Single Radiology Residency Training Program. J. Am. Coll. Radiol. 2018, 15, 1753–1757. [Google Scholar] [CrossRef]
- Fernández Núñez, E.G.; Barchi, A.C.; Ito, S.; Escaramboni, B.; Herculano, R.D.; Mayer, C.R.M.; de Oliva Neto, P. Artificial Intelligence Approach for High Level Production of Amylase Using Rhizopus Microsporus Var. Oligosporus and Different Agro-Industrial Wastes. J. Chem. Technol. Biotechnol. 2017, 92, 684–692. [Google Scholar] [CrossRef]
- Singh, A.; Majumder, A.; Goyal, A. Artificial Intelligence Based Optimization of Exocellular Glucansucrase Production from Leuconostoc Dextranicum NRRL B-1146. Bioresour. Technol. 2008, 99, 8201–8206. [Google Scholar] [CrossRef]
- Bezerra, C.O.; Carneiro, L.L.; Carvalho, E.A.; das Chagas, T.P.; de Carvalho, L.R.; Uetanabaro, A.P.T.; da Silva, G.P.; da Silva, E.G.P.; da Costa, A.M. Artificial Intelligence as a Combinatorial Optimization Strategy for Cellulase Production by Trichoderma Stromaticum AM7 Using Peach-Palm Waste Under Solid-State Fermentation. Bioenergy Res. 2021, 14, 1161–1170. [Google Scholar] [CrossRef]
- Chauhan, P.S.; Goradia, B.; Jha, B. Optimization and up Scaling of Ionic Liquid Tolerant and Thermo-Alkali Stable Laccase from a Marine Staphylococcus Arlettae S1-20 Using Tea Waste. J. Taiwan Inst. Chem. Eng. 2018, 86, 1–8. [Google Scholar] [CrossRef]
- Carrasco, E.F.; Rodríguez, J.; Pual, A.; Roca, E.; Lema, J.M. Rule-Based Diagnosis and Supervision of a Pilot-Scale Wastewater Treatment Plant Using Fuzzy Logic Techniques. Expert Syst. Appl. 2002, 22, 11–20. [Google Scholar] [CrossRef]
- Liao, M.; Yao, Y. Applications of Artificial Intelligence-based Modeling for Bioenergy Systems: A Review. GCB Bioenergy 2021, 13, 774–802. [Google Scholar] [CrossRef]
- Aniza, R.; Chen, W.H.; Yang, F.C.; Pugazhendh, A.; Singh, Y. Integrating Taguchi Method and Artificial Neural Network for Predicting and Maximizing Biofuel Production via Torrefaction and Pyrolysis. Bioresour. Technol. 2022, 343, 126140. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, B. The Application of Artificial Intelligence in Agriculture. J. Phys. Conf. Ser. 2020, 1574, 012139. [Google Scholar] [CrossRef]
- Rodríguez-Rangel, H.; Arias, D.M.; Morales-Rosales, L.A.; Gonzalez-Huitron, V.; Partida, M.V.; García, J. Machine Learning Methods Modeling Carbohydrate-Enriched Cyanobacteria Biomass Production in Wastewater Treatment Systems. Energies 2022, 15, 2500. [Google Scholar] [CrossRef]
- Chen, G.Q.; Jiang, X.R. Next Generation Industrial Biotechnology Based on Extremophilic Bacteria. Curr. Opin. Biotechnol. 2018, 50, 94–100. [Google Scholar]
- Lawson, C.E.; Martí, J.M.; Radivojevic, T.; Jonnalagadda, S.V.R.; Gentz, R.; Hillson, N.J.; Peisert, S.; Kim, J.; Simmons, B.A.; Petzold, C.J.; et al. Machine Learning for Metabolic Engineering: A Review. Metab. Eng. 2021, 63, 34–60. [Google Scholar]
- Kim, S.W.; Kong, J.H.; Lee, S.W.; Lee, S. Recent Advances of Artificial Intelligence in Manufacturing Industrial Sectors: A Review. Int. J. Precis. Eng. Manuf. 2022, 23, 111–129. [Google Scholar] [CrossRef]
- Viejo, C.G.; Fuentes, S. Beer Aroma and Quality Traits Assessment Using Artificial Intelligence. Fermentation 2020, 6, 56. [Google Scholar] [CrossRef]
- Gonzalez Viejo, C.; Fuentes, S.; Godbole, A.; Widdicombe, B.; Unnithan, R.R. Development of a Low-Cost e-Nose to Assess Aroma Profiles: An Artificial Intelligence Application to Assess Beer Quality. Sens. Actuators B Chem. 2020, 308, 127688. [Google Scholar] [CrossRef]
- Florea, A.; Sipos, A.; Stoisor, M.-C. Applying AI Tools for Modeling, Predicting and Managing the White Wine Fermentation Process. Fermentation 2022, 8, 137. [Google Scholar] [CrossRef]
- Sipos, A. A Knowledge-Based System as a Sustainable Software Application for the Supervision and Intelligent Control of an Alcoholic Fermentation Process. Sustainability 2020, 12, 10205. [Google Scholar] [CrossRef]
- Gerke, S.; Minssen, T.; Cohen, G. Ethical and Legal Challenges of Artificial Intelligence-Driven Healthcare. In Artificial Intelligence in Healthcare; Elsevier: Amsterdam, The Netherlands, 2020; pp. 295–336. ISBN 9780128184387. [Google Scholar]
- Wiens, J.; Saria, S.; Sendak, M.; Ghassemi, M.; Liu, V.X.; Doshi-Velez, F.; Jung, K.; Heller, K.; Kale, D.; Saeed, M.; et al. Do No Harm: A Roadmap for Responsible Machine Learning for Health Care. Nat. Med. 2019, 25, 1337–1340. [Google Scholar] [CrossRef]
- Schwendicke, F.; Golla, T.; Dreher, M.; Krois, J. Convolutional Neural Networks for Dental Image Diagnostics: A Scoping Review. J. Dent. 2019, 91, 103226. [Google Scholar] [CrossRef]
- Schwendicke, F.; Samek, W.; Krois, J. Artificial Intelligence in Dentistry: Chances and Challenges. J. Dent. Res. 2020, 99, 769–774. [Google Scholar] [CrossRef]
- Oakden-Rayner, L. Exploring the ChestXray14 Dataset: Problems. Available online: https://laurenoakdenrayner.com/2017/12/18/the-chestxray14-dataset-problems/ (accessed on 22 August 2022).
- Hashimoto, D.A.; Rosman, G.; Rus, D.; Meireles, O.R. Artificial Intelligence in Surgery: Promises and Perils. Ann. Surg. 2018, 268, 70–76. [Google Scholar]
- Lumaka, A.; Cosemans, N.; Lulebo Mampasi, A.; Mubungu, G.; Mvuama, N.; Lubala, T.; Mbuyi-Musanzayi, S.; Breckpot, J.; Holvoet, M.; de Ravel, T.; et al. Facial Dysmorphism Is Influenced by Ethnic Background of the Patient and of the Evaluator. Clin. Genet. 2017, 92, 166–171. [Google Scholar] [CrossRef]
- Martin, A.R.; Kanai, M.; Kamatani, Y.; Okada, Y.; Neale, B.M.; Daly, M.J. Clinical Use of Current Polygenic Risk Scores May Exacerbate Health Disparities. Nat. Genet. 2019, 51, 584–591. [Google Scholar] [CrossRef]
- Goldstein, B.A.; Navar, A.M.; Carter, R.E. Moving beyond Regression Techniques in Cardiovascular Risk Prediction: Applying Machine Learning to Address Analytic Challenges. Eur. Heart J. 2017, 38, 1805–1814. [Google Scholar]
- Hashimoto, D.A.; Witkowski, E.; Gao, L.; Meireles, O.; Rosman, G. Artificial Intelligence in AnesthesiologyCurrent Techniques, Clinical Applications, and Limitations. Anesthesiology 2020, 132, 379–394. [Google Scholar] [CrossRef]
- Jin, X.B.; Yang, N.X.; Wang, X.Y.; Bai, Y.T.; Su, T.L.; Kong, J.L. Hybrid Deep Learning Predictor for Smart Agriculture Sensing Based on Empirical Mode Decomposition and Gated Recurrent Unit Group Model. Sensors 2020, 20, 1334. [Google Scholar] [CrossRef]
- Ayoub Shaikh, T.; Rasool, T.; Rasheed Lone, F. Towards Leveraging the Role of Machine Learning and Artificial Intelligence in Precision Agriculture and Smart Farming. Comput. Electron. Agric. 2022, 198, 107119. [Google Scholar] [CrossRef]
- Jones, T. International Commercial Drone Regulation and Drone Delivery Services; RAND Corporation: Santa Monica, CA, USA, 2017. [Google Scholar]
- Terence, S.; Purushothaman, G. Systematic Review of Internet of Things in Smart Farming. Trans. Emerg. Telecommun. Technol. 2020, 31, e3958. [Google Scholar] [CrossRef]
- Pivoto, D.; Waquil, P.D.; Talamini, E.; Finocchio, C.P.S.; Dalla Corte, V.F.; de Vargas Mores, G. Scientific Development of Smart Farming Technologies and Their Application in Brazil. Inf. Process. Agric. 2018, 5, 21–32. [Google Scholar] [CrossRef]
- Wu, G.; Kechavarzi, C.; Li, X.; Wu, S.; Pollard, S.J.T.; Sui, H.; Coulon, F. Machine Learning Models for Predicting PAHs Bioavailability in Compost Amended Soils. Chem. Eng. J. 2013, 223, 747–754. [Google Scholar] [CrossRef]
- Guo, H.-n.; Wu, S.-b.; Tian, Y.-j.; Zhang, J.; Liu, H.-t. Application of Machine Learning Methods for the Prediction of Organic Solid Waste Treatment and Recycling Processes: A Review. Bioresour. Technol. 2021, 319, 124114. [Google Scholar] [CrossRef]
- Henstock, P.V. Artificial Intelligence for Pharma: Time for Internal Investment. Trends Pharmacol. Sci. 2019, 40, 543–546. [Google Scholar] [CrossRef]
- Kamali, M.; Appels, L.; Yu, X.; Aminabhavi, T.M.; Dewil, R. Artificial Intelligence as a Sustainable Tool in Wastewater Treatment Using Membrane Bioreactors. Chem. Eng. J. 2021, 417, 128070. [Google Scholar] [CrossRef]
Diseases Studied | Algorithm | Modality | Findings | References |
---|---|---|---|---|
AMD | ML-based predictive model | Clinical data | AI-based predictive model was able to predict the progression of AMD with high accuracy | [61] |
Alzheimer’s disease | RF, SHAP | Clinical and Imaging data | AI-model was able to accurately detect and predict the progression of Alzheimer’s disease with accuracy of 93.95% in first layer and 87.08% in second layer | [62] |
COVID-19 | PA | Clinical data | An accuracy of 70–80% was achieved inn predicting severe COVID-19 cases | [63] |
Ovarian cancer | ANN | Clinical data | An accuracy of 93% was achieved in predicting the survival of ovarian cancer patients, and 77% accuracy was achieved in predicting the surgical outcome | [64] |
Pulmonary cancer | LCP-CNN, Brock model | Clinical data | LCP-CNN was able to predict the malignancy of pulmonary nodules with higher accuracy and lower false negative results than Brock model | [65] |
Influenza | IAT-BPNN | CDC data and Twitter dataset | IAT-BPNN was able to predict influenza-like illness in a large population size with an high accuracy | [66] |
Aim | Algorithm | Sample Size | Results | References |
---|---|---|---|---|
Salmonella occurrence and absence prediction in agriculture streams | ANN, kNN, SVM | 400 | Tested algorithms predicted Salmonella presence with an accuracy ranging 58.15–59.23% | [117] |
Prediction of Oryza sativa L. growth rate modelling | REG, ANN, GEP | 95 | Simulation of growth rate was predicted better with ANN & GEP than REG | [118] |
Detection of seed germination | CNN | 16 | An average of 97% seed recognition accuracy was achieved | [119] |
Detection of tomato and mass estimation | Mask-RCNN, ResNet101-FPN, RPN | - | A detection accuracy of 99.02% with a precision of 99.7% was achieved | [120] |
Designing of smart tree crop sprayer | LiDAR, machine vision, GPS, CNN | - | An accuracy of 84% was achieved in the classification of different trees; a 28% reduction rate was achieved in spraying of chemicals as compared to conventional techniques. | [113] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhardwaj, A.; Kishore, S.; Pandey, D.K. Artificial Intelligence in Biological Sciences. Life 2022, 12, 1430. https://doi.org/10.3390/life12091430
Bhardwaj A, Kishore S, Pandey DK. Artificial Intelligence in Biological Sciences. Life. 2022; 12(9):1430. https://doi.org/10.3390/life12091430
Chicago/Turabian StyleBhardwaj, Abhaya, Shristi Kishore, and Dhananjay K. Pandey. 2022. "Artificial Intelligence in Biological Sciences" Life 12, no. 9: 1430. https://doi.org/10.3390/life12091430
APA StyleBhardwaj, A., Kishore, S., & Pandey, D. K. (2022). Artificial Intelligence in Biological Sciences. Life, 12(9), 1430. https://doi.org/10.3390/life12091430