Distribution of Four Vole Species through the Barn Owl Tyto alba Diet Spectrum: Pattern Responses to Environmental Gradients in Intensive Agroecosystems of Central Greece
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Field Monitoring and Data Collection
2.2. Datasets
2.3. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stenseth, N.C.; Leirs, H.; Skonhoft, A.; Davis, S.A.; Pech, R.P.; Andreassen, H.P.; Singleton, G.R.; Lima, M.; Machang’u, R.S.; Makundi, R.H.; et al. Mice, rats, and people: The bio-economics of agricultural rodent pests. Front. Ecol. Environ. 2003, 1, 367–375. [Google Scholar] [CrossRef]
- Blank, B.F.; Jacob, J.; Petri, A.; Esther, A. Topography and soil properties contribute to regional outbreak risk variability of common voles (Microtus arvalis). Wildl. Res. 2011, 38, 541–550. [Google Scholar] [CrossRef]
- Bryja, J.; Tkadlec, E.; Nesvadbova, J.; Gaisler, J.; Zejda, J. Comparison of enumeration and Jolly-Seber estimation of population size in the common vole Microtus arvalis. Acta Theriol. 2001, 46, 279–285. [Google Scholar] [CrossRef]
- Lambin, X.; Bretagnolle, V.; Yoccoz, N.G. Vole population cycles in northern and southern Europe: Is there a need for different explanations for single pattern? J. Anim. Ecol. 2006, 75, 340–349. [Google Scholar] [CrossRef]
- Luque-Larena, J.J.; Mougeot, F.; Vinuela, J.; Jareno, D.; Arroyo, L.; Lambin, X.; Arroyo, B. Recent large-scale range expansion and outbreaks of the common vole (Microtus arvalis) in NW Spain. Basic Appl. Ecol. 2013, 14, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Meerburg, B.G.; Singleton, G.R.; Kijlstra, A. Rodent-borne diseases and their risks for public health. Crit. Rev. Microbiol. 2009, 35, 221–270. [Google Scholar] [CrossRef]
- Han, B.A.; Schmidt, J.P.; Bowden, S.E.; Drake, J.M. Rodent reservoirs of future zoonotic diseases. PNAS 2015, 112, 7039–7044. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.; Imholt, C.; Caminero-Saldaña, C.; Couval, J.; Giraudoux, P.; Herrero-Cófreces, S.; Horváth, G.; Luque-Larena, J.J.; Tkadlec, E.; Wymenga, E. Europe-wide outbreaks of common voles in 2019. J. Pest Sci. 2019, 93, 703–709. [Google Scholar] [CrossRef] [Green Version]
- Berny, P. Pesticides and the intoxication of wild animals. J. Vet. Pharmacol. Ther. 2007, 30, 93–100. [Google Scholar] [CrossRef]
- Nakayama, M.N.; Morita, A.; Ikenaka, Y.; Mizukawa, H.; Ishizuka, M. A review: Poisoning by anticoagulant rodenticides in non-target animals globally. J. Vet. Med. Sci. 2019, 81, 298–313. [Google Scholar] [CrossRef]
- Labuschagne, L.; Swanepoel, L.H.; Taylor, P.J.; Belmain, S.R.; Keith, M. Are avian predators effective biological control agents for rodent pest management in agricultural systems? Biol. Control 2016, 101, 94–102. [Google Scholar] [CrossRef]
- Machar, I.; Harmacek, J.; Vrublova, K.; Filippovola, J.; Brus, J. Biocontrol of common vole populations by avian predators versus rodenticide application. Pol. J. Ecol. 2017, 65, 434–444. [Google Scholar] [CrossRef]
- Luna, A.P.; Bintanelc, H.; Viñuelad, J.; Villanúa, D. Nest-boxes for raptors as a biological control system of vole pests: High local success with moderate negative consequences for non-target species. Biol. Control 2020, 146, 104267. [Google Scholar] [CrossRef]
- Korpela, K.; Helle, P.; Henttonen, H.; Korpimaki, E.; Koskela, E.; Ovaskainen, O.; Pietiainen, H.; Sundell, J.; Valkama, J.; Huitu, O. Predator–vole interactions in northern Europe: The role of small mustelids revised. Proc. R. Soc. 2014, 281, 20142119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanek, J.P.; Preuss, T.S.; Rutter, A.U.; Jones, H.P.; Glowacki, G.A. Using Long-Term Data to Compare Two Sizes of Sherman Trap. Wildl. Soc. Bull. 2021, 45, 574–580. [Google Scholar] [CrossRef]
- Torre, I.; Arrizabalaga, A.; Flaquer, C. Three Methods for Assessing Richness and Composition of Small Mammal Communities. J. Mammal. 2004, 85, 524–530. [Google Scholar] [CrossRef]
- Torre, I.; Fernández, L.; Arrizabalaga, A. Using barn owl Tyto alba pellet analyses to monitor the distribution patterns of the yellow-necked mouse (Apodemus flavicollis Melchior 1834) in a transitional Mediterranean mountain. Mammal Study 2015, 40, 133–142. [Google Scholar] [CrossRef]
- Roulin, A. Barn Owls Evolution and Ecology with Grass Owls, Masked Owls and Sooty Owls; Cambridge University Press: Cambridge, UK, 2020; 314p. [Google Scholar]
- BirdLife International. Tyto alba (Europe Assessment). The IUCN Red List of Threatened Species 2021: e.T22688504A166222469. 2021. Available online: https://dx.doi.org/10.2305/IUCN.UK.2021-3.RLTS.T22688504A166222469.en (accessed on 23 December 2022).
- BirdLife International. Birds in Europe: Population Estimates, Trends and Conservation Status; Information Press: Oxford, UK, 2004; 374p. [Google Scholar]
- Kovinka, T.S.; Sharikov, A.V. Selection of prey by size and sex in the Long-eared Owl Asio otus. Bird Study 2019, 66, 543–549. [Google Scholar] [CrossRef]
- Bontzorlos, V. La Ecologia Trofica de la Lechuza Comun en los Ecosistemas Agricolas de Grecia Central: Su Aplicacion a la Distribucion y Abundancia de sus Presas. Ph.D. Thesis, University of Salamanca, Salamanca, Spain, 30 January 2009. [Google Scholar]
- Marti, C.D. Raptor food habit studies. In Raptor Management Techniques Manual; Pendleton, B.A., Millsap, B.A., Cleine, K.W., Bird, D.M., Eds.; Natural Wildlife Federation of Science Techniques: Washington, DC, USA, 1987; 420p. [Google Scholar]
- Yalden, D. The Analysis of Owl Pellets; Mammal Society: London, UK, 2003; 28p. [Google Scholar]
- Toschi, A.; Lanza, B. Mammalia. Generalita, Insectivora, Chiroptera; Edizioni Calderini: Bologna, Italy, 1959; 485p. [Google Scholar]
- Toschi, A. Mammalia: Lagomorpha, Rodentia, Carnivora, Artiodactyla, Cetacea; Edizioni Calderini: Bologna, Italy, 1965; 647p. [Google Scholar]
- Chaline, J.; Baudvin, H.; Jammot, D.; Saint-Girons, M.C. Les Proies des Rapaces. Petits Mammiferes et leur Environnement; Doin: Paris, France, 1974; 141p. [Google Scholar]
- Lawrence, M.J.; Brown, R.W. Mammals of Britain. Their Tracks, Trails and Signs; Blandford Press: Dorset, UK, 1974; 296p. [Google Scholar]
- Niethammer, J.; Krapp, F. Handbuch der Saugetiere Europas—Band 1, Nagetiere 1; Akademische Verlagsgesellschaft: Wiesbaden, Germany, 1977; 476p. [Google Scholar]
- Niethammer, J.; Krapp, F. Handbuch der Saugetiere Europas—Band 2/1, Nagetiere 2; Akademische Verlagsgesellschaft: Wiesbaden, Germany, 1982; 649p. [Google Scholar]
- Niethammer, J.; Krapp, F. Handbuch der Saugetiere Europas—Band 3/1, Insektenfresser—Herrentiere; AULA—Verlag: Wiesbaden, Germany, 1990; 523p. [Google Scholar]
- Krystufek, B.; Vohralik, V. Mammals of Turkey and Cyprus. Rodentia I: Sciuridae, Dipodidae, Gliridae, Arvicolinae; University of Primorska: Koper, Slovenia, 2005; 292p. [Google Scholar]
- Krystufek, B.; Vohralik, V. Mammals of Turkey and Cyprus. Rodentia II: Cricetinae, Muridae, Spalacidae, Calomyscidae, Capromyidae, Hystricidae, Castoridae; University of Primorska: Koper, Slovenia, 2009; 372p. [Google Scholar]
- Lindeman, R.H.; Merenda, P.F.; Gold, R. Introduction to Bivariate and Multivariate Analysis; Longman Higher Education: Harlow, UK, 1980; 444p. [Google Scholar]
- Hurley, A.E.; Scandura, T.A.; Schriesheim, C.A.; Brannick, M.T.; Seers, A.; Vandenberg, R.J.; Williams, L. Exploratory and Confirmatory Factor Analysis: Guidelines, Issues, and Alternatives. J. Organ. Behav. 1997, 18, 667–683. [Google Scholar] [CrossRef]
- Stevens, J. Applied Multivariate Statistics for the Social Sciences; Lawrence Erlbaum: Hillsdale, NJ, USA, 2001; 720p. [Google Scholar]
- Costello, A.B.; Osborne, J.W. Best practices in exploratory Factor Analysis: Four recommendations for getting the most from your analysis. Pract. Assess. Res. Eval. 2005, 10, 1–9. [Google Scholar]
- Ter Braak, C.J.F.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination; Version 5.10; Biometris, Wageningen University and Research: Wageningen, The Netherlands, 2018; p. 536. [Google Scholar]
- Šmilauer, P.; Lepš, J. Multivariate Analysis of Ecological Data using CANOCO 5; Cambridge University Press: Cambridge, UK, 2014; 362p. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Stojak, J.; Borowik, T.; Górny, M.; McDevitt, A.D.; Wójcik, J.M. Climatic influences on the genetic structure and distribution of the common vole and field vole in Europe. Mammal Res. 2019, 64, 19–29. [Google Scholar] [CrossRef] [Green Version]
- Horníková, M.A.; Marková, S.; Hayley, C.L.; Searle, J.B.; Kotlík, P. A dynamic history of admixture from Mediterranean and Carpathian glacial refugia drives genomic diversity in the bank vole. Ecol. Evol. 2021, 11, 8215–8225. [Google Scholar] [CrossRef] [PubMed]
- Barret, G.W.; Peles, J.D. Landscape Ecology of Small Mammals; Springer: New York, NY, USA, 1999; 372p. [Google Scholar]
- Manning, J.A.; Edge, W.D. Small mammals’ survival and downed wood at multiple scales in managed forests. J. Mammal. 2004, 85, 87–96. [Google Scholar] [CrossRef]
- Macdonald, D.; Barrett, P. Mammals of Europe; Princeton University Press: Princeton, NJ, USA, 2002; 448p. [Google Scholar]
- Krystufek, B. Microtus guentheri (Danford and Alston, 1880). In Atlas of European Mammals; Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralik, V., Zima, J., Eds.; Academic Press: London, UK, 1999; pp. 238–239. 484p. [Google Scholar]
- Zima, J. Microtus rossiaemeridionalis (Ognev, 1924). In Atlas of European Mammals; Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralik, V., Zima, J., Eds.; Academic Press: London, UK, 1999; pp. 238–239. 484p. [Google Scholar]
- Petrov, B.; Ruzic, A. Microtus epiroticus—Sudfeldmaus (Ognev, 1924). In Handbuch der Saugetiere Europas—Band 2/1, Nagetiere 2; Niethammer, J., Krapp, F., Eds.; Akademische Verlagsgesellschaft: Wiesbaden, Germany, 1982; pp. 319–330. 649p. [Google Scholar]
- Adams, M.B.; Kelly, C.; Kabrick, J.; Schuler, J. Temperate forests and soils, Chapter 6. In Global Change and Forest Soils. Cultivating stewardship of a finite natural resource. Developments in Soil Science, 1st ed.; Busse, M., Giardina, C., Morris, D., Dumroese, D.P., Eds.; Elsiever: Amsterdam, The Netherlands, 2019; Volume 36, 504p. [Google Scholar]
- Xiaobing, L.; Burras, C.L.; Kravchenko, Y.S.; Duran, A.; Huffman, T.; Morras, H.; Studdert, G.; Zhang, X.; Cruse, R.M.; Yuan, X. Overview of Mollisols in the world: Distribution, land use and management. Can. J. Soil Sci. 2012, 92, 383–402. [Google Scholar]
- Hillel, D. Encyclopedia of Soils in the Environment, 1st ed.; Elsiever Academic Press: Amsterdam, The Netherlands, 2005; 2200p. [Google Scholar]
- Krystufek, B. Microtus thomasi (Barrett-Hamilton, 1903). In Atlas of European Mammals; Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralik, V., Zima, J., Eds.; Academic Press: London, UK, 1999; pp. 254–255. 484p. [Google Scholar]
- Vohralik, V. Cricetulus migratorius (Pallas, 1773). In Atlas of European Mammals; Mitchell-Jones, A.J., Amori, G., Bogdanowicz, W., Krystufek, B., Reijnders, P.J.H., Spitzenberger, F., Stubbe, M., Thissen, J.B.M., Vohralik, V., Zima, J., Eds.; Academic Press: London, UK, 1999; pp. 204–205. 484p. [Google Scholar]
- Nechay, G. Status of Hamsters: Cricetus cricetus, Cricetulus migratorius, Mesocricetus Newtoni, and Other Hamster Species in Europe; Convention on the conservation of European wildlife and natural habitats; Nature and Environment Series, No. 106; Council of Europe Publishing: Strasburg, France, 2000; 73p. [Google Scholar]
- Rogovin, K.A.; Shenbrot, G.I.; Surov, A.V.; Idris, M. Spatial organization of a rodent community in the Western Rajastan desert (India). Mammalia 1994, 58, 243–260. [Google Scholar] [CrossRef]
- Massawe, A.W.; Rwamugira, W.; Leirs, H.; Makundi, H.R.; Mulungu, L.; Ngovo, V.; Machang’u, R. Soil type limits population abundance of rodents in crop fields: Case study of the multimammate rat Mastomys natalensis Smith, 1834 in Tanzania. Integr. Zool. 2008, 3, 27–30. [Google Scholar] [CrossRef]
- Galiano, D.; Kubiak, B.B.; Menezes, L.S.; Overbeck, G.E.; de Freitas, T.R.O. Wet soils affect habitat selection of a solitary subterranean rodent (Ctenomys minutus) in a Neotropical region. J. Mammal. 2016, 97, 1095–1101. [Google Scholar] [CrossRef] [Green Version]
- Mlyashimbi, E.C.M.; Broecke, B.V.; Mariën, J.; Kimaro, D.N.; Tarimo, A.J.P.; Machang’u, R.S.; Isabirye, M.; Makundi, R.H.; Massawe, A.W.; Hieronimo, P.; et al. Soil type influences population dynamics and survival of the Multimammate rat (Mastomys natalensis) in semi-arid areas in Tanzania. Crop Prot. 2019, 124, 104829. [Google Scholar] [CrossRef]
- Zárybnická, M.; Riegert, J.; Bejček, V.; Sedláček, F.; Šťastný, K.; Šindelář, J.; Heroldová, M.; Vilímová, J.; Zima, J. Long-term changes of small mammal communities in heterogenous landscapes of Central Europe. Eur. J. Wildl. Res. 2017, 63, 89. [Google Scholar] [CrossRef]
- Krebs, C.J. Population Fluctuations in Rodents; The University of Chicago Press: Chicago, IL, USA, 2013; 320p. [Google Scholar]
Absolute Frequency | Relative Frequency | Biomass | |
---|---|---|---|
n | n% | gr% | |
Bicoloured white-toothed shrew (Crocidura leucodon) | 708 | 2.44% | 0.72% |
Lesser white-toothed shrew (Crocidura suaveolens) | 6229 | 21.43% | 4.80% |
Crocidura un. | 37 | 0.13% | 0.03% |
Etruscan shrew (Suncus etruscus) | 478 | 1.64% | 0.09% |
Soricidae | 7452 | 25.64% | 5.64% |
INSECTIVORA | 7452 | 25.64% | 5.64% |
Harting’s vole (Microtus hartingi) | 8313 | 28.60% | 40.05% |
East European vole (Microtus levis) | 2060 | 7.09% | 7.05% |
Thomas’s pine vole (Microtus thomasi) | 1233 | 4.24% | 2.73% |
Microtus un. | 2 | 0.01% | 0.01% |
Grey dwarf hamster (Cricetulus migratorius) | 162 | 0.56% | 0.55% |
Cricetidae | 11,770 | 40.50% | 50.39% |
Yellow necked mouse (Apodemus flavicollis) | 973 | 3.35% | 2.63% |
Western broad-toothed field mouse (Apodemus epimelas) | 201 | 0.69% | 0.81% |
Wood mouse (Apodemus sylvaticus) | 2024 | 6.96% | 3.90% |
Apodemus un. | 26 | 0.09% | 0.08% |
Brown rat (Rattus norvegicus) | 500 | 1.72% | 19.15% |
Black rat (Rattus rattus) | 223 | 0.77% | 4.46% |
Rattus un. | 129 | 0.44% | 3.76% |
House mouse (Mus musculus) | 3644 | 12.54% | 5.97% |
Macedonian mouse (Mus macedonicus) | 1375 | 4.73% | 1.99% |
Mus un. | 99 | 0.34% | 0.15% |
Muridae | 9194 | 31.63% | 42.90% |
Hazel dormouse (Muscardinus avellanarius) | 50 | 0.17% | 0.11% |
Myoxidae | 50 | 0.17% | 0.11% |
RODENTIA | 21,014 | 72.30% | 93.40% |
Common pipistrelle (Pipistrellus pipistrellus) | 2 | 0.01% | 0.01% |
Vespertilionidae | 2 | 0.01% | 0.01% |
European free-tailed bat (Tadarida teniotis) | 2 | 0.01% | 0.01% |
Molossidae | 2 | 0.01% | 0.01% |
Greater horseshoe bat (Rhinolophus ferrumequinum) | 5 | 0.02% | 0.01% |
Rhinolophidae | 5 | 0.02% | 0.01% |
CHIROPTERA | 9 | 0.03% | 0.03% |
MAMMALIA | 28,475 | 97.97% | 99.06% |
House sparrow (Passer domesticus) | 100 | 0.34% | 0.24% |
Eurasian tree sparrow (Passer montanus) | 25 | 0.09% | 0.05% |
Passeridae | 125 | 0.43% | 0.29% |
European greenfinch (Carduelis chloris) | 31 | 0.11% | 0.08% |
European serin (Serinus serinus) | 39 | 0.13% | 0.05% |
Common chaffinch (Fringilla coelebs) | 44 | 0.15% | 0.09% |
Fringillidae | 114 | 0.39% | 0.22% |
Corn bunting (Milaria calandra) | 16 | 0.06% | 0.07% |
Emberizidae | 16 | 0.06% | 0.07% |
Common blackbird (Turdus merula) | 14 | 0.05% | 0.13% |
European robin (Erithacus rubecula) | 26 | 0.09% | 0.05% |
Turdidae | 40 | 0.14% | 0.18% |
Great tit (Parus major) | 10 | 0.03% | 0.02% |
Eurasian blue tit (Parus caeruleus) | 15 | 0.05% | 0.02% |
Paridae | 25 | 0.09% | 0.03% |
Common starling (Sturnus vulgaris) | 6 | 0.02% | 0.05% |
Sturnidae | 6 | 0.02% | 0.05% |
Eurasian magpie (Pica pica) | 2 | 0.01% | 0.04% |
Corvidae | 2 | 0.01% | 0.04% |
Corvidae | 2 | 0.01% | 0.04% |
PASSERIFORMES | 328 | 1.13% | 0.89% |
Eurasian collared dove (Streptopelia decaocto) | 3 | 0.01% | 0.05% |
Columbidae | 3 | 0.01% | 0.05% |
COLUMBIFORMES | 3 | 0.01% | 0.05% |
AVES | 331 | 1.14% | 0.94% |
Meadow grasshopper (Chorthippus parallelus) | 115 | 0.40% | |
Migratory locust (Locusta migratoria) | 60 | 0.21% | |
Acrididae | 175 | 0.60% | |
European mole cricket (Gryllotalpa gryllotalpa) | 9 | 0.03% | |
Gryllotalpidae | 9 | 0.03% | |
Great green bush-cricket (Tettigonia viridissima) | 9 | 0.03% | |
Tettigonidae | 9 | 0.03% | |
ORTHOPTERA | 193 | 0.66% | |
Black ground beetle (Pterostichus nigrita) | 21 | 0.07% | |
Bronze carabid (Carabus nemoralis) | 11 | 0.04% | |
Carabidae | 32 | 0.11% | |
Horned dung beetle (Copris lunaris) | 20 | 0.07% | |
Common cockschafer (Melolontha melolontha) | 10 | 0.03% | |
Scarabaeidae | 30 | 0.10% | |
COLEOPTERA | 62 | 0.21% | |
INSECTA | 255 | 0.88% | |
Total Prey Items | 29,061 |
1st Group | Factor 1 Intensive Cultivations | Factor 2 Land Uses | Factor 3 Arable Land | 2nd Group | Factor 1 Soil Texture | Factor 2 Soil Type E, M, and V | Factor 3 Soil Type I and V |
---|---|---|---|---|---|---|---|
Cereals | −0.7336 ** | Alfisol soil type | −0.7208 ** | ||||
Industrial cultivations | 0.9380 ***** | Entisol soil type | 0.8441 ** | ||||
Arable cultivated land | 0.9054 ** | 0.4128 *** | Inceptisol soil type | −0.9503 ** | |||
Non-arable cultivated land | −0.9776 ** | Mollisol soil type | 0.6666 ***** | ||||
Irrigated cultivated land | 0.9282 ***** | Vertisol soil type | −0.6750 ***** | 0.4700 ***** | |||
Non-irrigated cultivated land | −0.9119 ***** | Sandy-clay texture | −0.9345 ***** | ||||
Other land uses | −0.9989 ** | Argillaceous-clay texture | 0.9463 ***** | ||||
Total cultivated land | 0.9989 ** |
Principal Component Analysis (PCA) | ||||
---|---|---|---|---|
Axes | 1 | 2 | 3 | 4 |
Eigenvalues | 0.410 | 0.196 | 0.104 | 0.068 |
Cumulative percentage variance of species data | 41.0 | 60.6 | 71.0 | 77.8 |
Redundancy Analysis (RDA) | ||||
Axes | 1 | 2 | 3 | 4 |
Eigenvalues | 0.0689 | 0.0608 | 0.0262 | 0.0236 |
Explained variation (cumulative) | 6.89 | 12.97 | 15.59 | 17.95 |
Pseudo-canonical correlation | 0.6517 | 0.5892 | 0.5798 | 0.4996 |
Explained fitted variation (cumulative) | 37.12 | 69.90 | 84.01 | 96.74 |
Simple/Marginal Effects | Conditional Effects | FS | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Explains % | Pseudo-F | p | p adj | Variable | Explains % | Pseudo-F | p | p adj | Contribution |
Soil texture | 5.0 | 6.4 | 0.0099 | 0.01485 | Soil texture | 5.0 | 6.4 | 0.0099 | 0.0099 | 27% |
Intensive cultivations | 4.5 | 5.8 | 0.0099 | 0.01485 | Intensive cultivations | 4.3 | 5.8 | 0.0099 | 0.0099 | 23.4% |
Soil E, M, V | 3.0 | 3.8 | 0.0099 | 0.01485 | Soil E, M, V | 3.1 | 4.2 | 0.0099 | 0.0099 | 16.5% |
Arable land | 2.4 | 3.0 | 0.0099 | 0.01485 | Land uses | 2.3 | 3.2 | 0.0099 | 0.0099 | 12.3% |
Land uses | 2.2 | 2.8 | 0.0099 | 0.02376 | Arable land | 2.1 | 3.0 | 0.0099 | 0.0099 | 11.6% |
Soil I and V | 1.4 | 1.8 | 0.06931 | 0.06931 | Soil I and V | 1.7 | 2.5 | 0.0099 | 0.0099 | 9.2% |
Model Selection | Generalized Linear Model Results | |||||
---|---|---|---|---|---|---|
R2 (%) | AIC | b0 + b1X | b0 + b1X + b2X2 | F | p | |
INTENSIVE CULTIVATIONS | ||||||
Harting’s vole (Microtus hartingi) | 15 | 1408.23 | √ | 12.2 | **** | |
Thomas’s pine vole (Microtus thomasi) | 6.4 | 2122.53 | √ | 6.4 | * | |
Grey dwarf hamster (Cricetulus migratorius) | 3.0 | 794.90 | √ | 2.6 | 0.10773 | |
LAND USES | ||||||
Harting’s vole (Microtus hartingi) | 6.4 | 1475.21 | √ | 9.5 | ** | |
Grey dwarf hamster (Cricetulus migratorius) | 12.0 | 728.27 | √ | 12.5 | *** | |
ARABLE LAND | ||||||
Harting’s vole (Microtus hartingi) | 4.8 | 1502.53 | √ | 3.4 | * | |
Grey dwarf hamster (Cricetulus migratorius) | 4.3 | 655.43 | √ | 4.0 | * | |
SOIL TEXTURE | ||||||
Thomas’s pine vole (Microtus thomasi) | 34.8 | 1575.52 | √ | 20.7 | ***** | |
Grey dwarf hamster (Cricetulus migratorius) | 29.2 | 610.51 | √ | 22.6 | ***** | |
SOIL TYPES E, M, AND V | ||||||
Harting’s vole (Microtus hartingi) | 2.4 | 1510.84 | √ | 3.5 | 0.06401 | |
East European vole (Microtus levis) | 2.2 | 878.81 | √ | 3.3 | 0.07313 | |
Thomas’s pine vole (Microtus thomasi) | 9.4 | 2096.70 | √ | 4.9 | ** | |
Grey dwarf hamster (Cricetulus migratorius) | 4.4 | 781.97 | √ | 4.3 | * | |
SOIL TYPES I AND V | ||||||
Thomas’s pine vole (Microtus thomasi) | 23.3 | 1798.84 | √ | 14.9 | ***** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bontzorlos, V.; Vlachopoulos, K.; Xenos, A. Distribution of Four Vole Species through the Barn Owl Tyto alba Diet Spectrum: Pattern Responses to Environmental Gradients in Intensive Agroecosystems of Central Greece. Life 2023, 13, 105. https://doi.org/10.3390/life13010105
Bontzorlos V, Vlachopoulos K, Xenos A. Distribution of Four Vole Species through the Barn Owl Tyto alba Diet Spectrum: Pattern Responses to Environmental Gradients in Intensive Agroecosystems of Central Greece. Life. 2023; 13(1):105. https://doi.org/10.3390/life13010105
Chicago/Turabian StyleBontzorlos, Vasileios, Konstantinos Vlachopoulos, and Anastasios Xenos. 2023. "Distribution of Four Vole Species through the Barn Owl Tyto alba Diet Spectrum: Pattern Responses to Environmental Gradients in Intensive Agroecosystems of Central Greece" Life 13, no. 1: 105. https://doi.org/10.3390/life13010105
APA StyleBontzorlos, V., Vlachopoulos, K., & Xenos, A. (2023). Distribution of Four Vole Species through the Barn Owl Tyto alba Diet Spectrum: Pattern Responses to Environmental Gradients in Intensive Agroecosystems of Central Greece. Life, 13(1), 105. https://doi.org/10.3390/life13010105