Ust-Luga Seaport of Russia: Biological Invasions and Resting Stages Accumulation
Abstract
:1. Introduction
2. Material and Methods
NN Site | Locality, (Depth, m) | Category | Density, i/m2 | Groups Found | Dominant Species |
---|---|---|---|---|---|
1 | Ust-Luga river port, (6–12 m) | I | 23,000 (1500–40,500) | Branchiopoda Copepoda Rotifera | Eurytemora affinis |
2 | Kronshtadt port (10–18 m) | I | 69,000 (1250–125,500) | Branchiopoda Copepoda Rotifera | Eurytemora affinis Cercopagis pengoi |
3 | Luga River estuary (4 m) | I | 32,750 (1050–65,000) | Branchiopoda Copepoda | Eurytemora affinis |
4 | Neva River estuary (7 m) | I | 43,500 (1250–75,000) | Branchiopoda Copepoda | Eurytemora affinis |
5 | Neva estuary near shore (1 m) | II | 0 | ||
6 | Luga estuary near shore (0.5 m) | II | 0 | ||
7 | Luga River (4 m) | III | 6500 (150–11,200) | Branchiopoda Copepoda Insecta | Mesocyclops leuckarti, Daphnia cucullate |
8 | Temporary waterbody Ust-Luga port vicinity | IV | 7914 (2340–11,700) | Branchiopoda Copepoda | Eurytemora affinis |
9 | Temporary waterbody, Cotlin Isl, Kronshtadt Port vicinity | IV | 2908 (1170–4680) | Branchiopoda Copepoda Rotifera Nematoda | Metacyclops minutus |
10 | Temporary waterbody, Neva estuary | IV | 18,970 (1170–37,440) | Rotifera Nematoda | Bdelloidea |
2.1. Reactivation Protocol
2.2. Design of Full-Scale Experiment in Ship’s Ballast Compartment
2.3. Design of Small-Scale Experiment
2.4. Statistics
3. Results
3.1. Invasive Species in the Ecosystems of the Gulf of Finland
3.2. Seasonal Accumulation of Resting Stages in Ship Ballast Compartments
3.3. Dormant Species Biodiversity and Density in Sediments in Seaport Area after Reactivation
4. Discussion
4.1. Invasive Species in Ust-Luga Seaport Vicinity
4.2. Study on the Bank of Resting Stages of Aquatic Invertebrates
4.3. Spatial Distribution of Resting Stages in the Water Area of the Seaport and Related Parts of the Gulf of Finland
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carlton, J.T.; Geller, J.B. Ecological roulette: The global transport of nonindigenous marine organisms. Science 1993, 261, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.E.; Padilla, D.K. Geographic spread of exotic species: Ecological lessons and opportunities from the invasion of the zebra mussel Dreissena polymorpha. Biol. Conserv. 1996, 78, 23–33. [Google Scholar] [CrossRef]
- Olenin, S. Invasive Aquatic Species in the Baltic States; Klaipëda University Press: Klaipeda, Lithuania, 2005. [Google Scholar]
- Gollasch, S.; David, M. Ballast water: Problems and management. In World Seas: An Environmental Evaluation; Academic Press: Cambridge, MA, USA, 2019; pp. 237–250. [Google Scholar]
- Occhipinti-Ambrogi, A. Biopollution by Invasive Marine Non-Indigenous Species: A Review of Potential Adverse Ecological Effects in a Changing Climate. Int. J. Environ. Res. Public Health 2021, 18, 4268. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.A. An overview of thirty years of research on ballast water as a vector for aquatic invasive species to freshwater and marine environments. Aquat. Ecosyst. Health Manag. 2015, 18, 261–268. [Google Scholar] [CrossRef]
- Carlton, J.T. Transoceanic and interoceanic dispersal of coastal marine organisms: The biology of ballast water. Oceanogr. Mar. Biol. 1985, 23, 313–371. [Google Scholar]
- Panov, V.E.; Caceres, C. Role of diapause in dispersal of aquatic invertebrates. In Diapause in Aquatic Invertebrates Theory and Human Use; Springer: Dordrecht, The Netherlands, 2007; pp. 187–195. [Google Scholar]
- Slusarczyk, M.; Pinel-Alloul, B.; Pietrzak, B. Mechanisms facilitating dispersal of dormant eggs in a planktonic crustacean. In Dormancy in Aquatic Organisms. Theory, Human Use and Modeling; Springer: Cham, Switzerland, 2019; pp. 137–161. [Google Scholar]
- Alekseev, V.R.; Ravera, O.; de Stasio, B.T. Introduction to diapause. In Diapause in Aquatic Invertebrates Theory and Human Use; Springer: Dordrecht, The Netherlands, 2007; pp. 3–10. [Google Scholar]
- Jansson, K. Alien Species in the Marine Environment; Report 4357; Swedish Environmental Protection Agency: Norrbotten, Sweden, 1994; 67p. [Google Scholar]
- Leppäkoski, E.; Gollasch, S.; Gruszka, P.; Ojaveer, H.; Olenin, S.; Panov, V. The Baltic a sea of invaders. Can. J. Fish. Aquat. Sci. 2002, 59, 1175–1188. [Google Scholar] [CrossRef]
- Leppäkoski, E.; Olenin, S. Non-native species and rates of spread: Lessons from the brackish Baltic Sea. Biol. Invasions 2000, 2, 151–163. [Google Scholar] [CrossRef]
- IMO. International Convention for the Control and Management of Ship’s Ballast Water and Sediments (BWMC); IMO: London, UK, 2004. [Google Scholar]
- Ogorodnikova, V.A. Zooplankton of the Luga River and the Luga Bay of the Gulf of Finland. Trudy GosNIORKh 1994, 328, 55–67. (In Russian) [Google Scholar]
- Malyavin, S.A.; Berezina, N.A.; Hwang, J.S. On the finding of Chelicorophium curvispinum (amphipoda, Crustacea) in the Gulf of Finland of the Baltic Sea. Zool. Zhurnal 2008, 87, 643–649. (In Russian) [Google Scholar]
- Katajisto, T.; Karjala, L.; Lehtiniemi, M. Fifteen years after invasion: Egg bank of the predatory cladoceran Cercopagis pengoi in the Baltic Sea. Mar. Ecol. Prog. Ser. 2013, 482, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Kerfoot, W.C.; Weider, L.J. Experimental paleoecology (resurrection ecology): Chasing Van Valen’s Red Queen hypothesis. Limnol. Oceanogr. 2004, 49, 1300–1316. [Google Scholar] [CrossRef] [Green Version]
- Smirnov, S.S. On appearance of Acartia tonsa Dana (Copepoda) in the Gulf of Finland. Reports of Acad. Sci. USSR 1935, 3, 237–240. (In Russian) [Google Scholar]
- Ioffe, C.I. Enrichment of the food base for fish in the reservoirs of the USSR by acclimatization of invertebrates. Trudy GosNIORKh 1974, 100, 3–206. (In Russian) [Google Scholar]
- Panov, V.E. Establishment of the Baikalian endemic amphipod Gmelinoides fasciatus in Lake Ladoga. Hydrobiologia 1996, 322, 187–192. [Google Scholar] [CrossRef]
- Berezina, N.A.; Zhakova, L.V.; Zaporozhets, N.V.; Panov, V.E. Key role of the amphipod Gmelinoides fasciatus in reed beds of Lake Ladoga. Boreal Environ. Res. 2009, 14, 404–414. [Google Scholar]
- Malyavin, S.A. Contribution of invasive amphipods (Crustacea, Amphipoda) in the benthic community of the Luga river estuary. In Aquatic Invertebrate Biodiversity in Continental Water-Bodies; ZIN RAS: St-Petersburg, Russia, 2011; pp. 59–68. (In Russian) [Google Scholar]
- Pennuto, C.; Keppler, D. Short-term predator avoidance behavior by invasive and native amphipods in the Great Lakes. Aquat. Ecol. 2008, 42, 629–641. [Google Scholar] [CrossRef]
- Berezina, N.A. Interspecific interactions of amphipods Gammarus lacustris and Gmelinoides fasciatus. Russ. J. Ecol. 2009, 40, 81–85. [Google Scholar] [CrossRef]
- Alekseev, V.R. Confusing Invader: Acanthocyclops americanus (Copepoda: Cyclopoida) and Its Biological, Anthropogenic and Climate-Dependent Mechanisms of Rapid Distribution in Eurasia. Water 2021, 13, 1423. [Google Scholar] [CrossRef]
- Alekseev, V. Diapause in Crustacean, Ecological-Physiological Aspects; Nauka Academic Press: Moscow, Russia, 1990; pp. 1–163. (In Russian) [Google Scholar]
- Denlinger, D.L. Insect Diapause; Cambridge University Press: Cambridge, UK, 2022. [Google Scholar]
- Elgmork, K. Ecological aspects of diapause in copepods. Proc. Symp. Crust. III. Mar. Biol. Assoc. India Symp. Ser. 1967, 2, 947–954. [Google Scholar]
- Borutzky, E.V. Zur Frage über den Ruhezustand bei Copepoda Harpacticoida. Dauereier bei Canthocamptus arcticus Lilljeborg. Zool. Anz. 1929, 83, 225–233. (In German) [Google Scholar]
- Williams-Howze, J. The biology and morphology of the marine harpacticoid copepod Heteropsyllus nunni Coull, during encystment diapause. Hydrobiologia 1996, 320, 179–189. [Google Scholar] [CrossRef]
- Monchenko, V.I. The problem of induction and termination of diapause in cyclopoid copepods. Hydrobiologia 1996, 320, 119–122. [Google Scholar] [CrossRef]
- Monchenko, V.I. Gnathostome cyclopoids (Cyclopidae). Fauna of the Ukraine; Naukova Dumka: Kiev, Ukraine, 1974. (In Ukrainian) [Google Scholar]
- Frisch, D. Life cycles of the two freshwater copepods Cyclops strenuus Fischer and Cyclops insignis Claus (Cyclopoida, Copepoda) in an amphibious floodplain habitat. Hydrobiologia 2001, 453, 285–293. [Google Scholar] [CrossRef]
- Nalepa, T.F. Occurrence of a resting stage in cyclopoid and harpacticoid copepods in nearshore Lake Michigan. J. Great Lakes Res. 1985, 11, 59–66. [Google Scholar] [CrossRef]
- Pinel-Alloul, B.; Alekseev, V.R. The role of biotic and abiotic interactions in summer diapause in cyclopoids: Conceptual model and field validation in southern Quebec boreal lakes. In Dormancy in Aquatic Organisms.Theory, Human Use and Modeling; Springer: Cham, Switzerland, 2019; pp. 221–246. [Google Scholar]
- Wyngaard, G.A. Geographical variation in dormancy in a copepod: Evidence from population crosses. Hydrobiologia 1988, 167, 367–374. [Google Scholar] [CrossRef]
- Uye, S.-I. Resting egg production as a life history strategy of marine planktonic copepods. Bull. Mar. Sci. 1985, 37, 440–449. [Google Scholar]
- Danilevsky, A.S. Photoperiodism and Seasonal Development of Insects; Len. State Univ.: St-Petersburg, Russia, 1961. (In Russian) [Google Scholar]
- Hairston, N.G., Jr.; van Brunnt, R.A.; Keams, C.M.; Engstrom, D.R. Age and survivorship of diapausing eggs in a sediment egg bank. Ecology 1995, 76, 1706–1711. [Google Scholar] [CrossRef]
Categories | Environment | Level of Stability | Type of Waterbody |
---|---|---|---|
I | Sea | Stable | Sea shelf, depth more than 4 m |
II | Sea shore | Fluctuated | Sea tidal zone, dried lagoon, wind affected shelf |
III | Continental | Stable | River |
IV | Continental | Unstable/Temporary | Temporary waterbodies |
Taxa | Luga River | Luga Estuary | Sediments in Gulf of Finland |
---|---|---|---|
Freshwater | Brakishwater/Sea | Reactivated | |
BRANCHIOPODA | |||
Daphnia cucullata Sars, 1862 | + | + | |
Ceriodaphnia quadrangula (Müller, 1785) | + | ||
Chydorus sphaericus (Müller, 1776) | + | ||
Cercopagis pengoi (Ostroumov, 1891) (Ponto-Caspian) | + | + | |
Coronatella rectangula (Sars, 1862) | + | + | |
Bosmina coregoni Baird, 1857 | + | ||
Podon intermedius Lilljeborg, 1853 | + | + | |
Pleopis polyphemoides (Leuckart, 1859) | + | ||
Evadne nordmanni Lovén, 1836 | + | ||
Leptodora kindtii (Focke, 1844) | + | ||
COPEPODA | |||
Pseudocalanus elongatus (Brady, 1865) | + | ||
Centropages hamatus (Lilljeborg, 1853) | + | ||
Limnocalanus grimaldii (Guerne, 1886) | + | ||
Temora longicornis (Müller, 1785) | + | ||
Eurytemora velox (Lilljeborg, 1853) | + | ||
Eurytemora affinis (Poppe, 1880) | + | + | + |
Eurytemora carolleeae Alekseev & Souissi, 2011 (North America) | + | + | |
Acartia bifilosa (Giesbrecht, 1881) | + | + | |
Acartia longiremis (Lilljeborg, 1853) | + | ||
Acartia tonsa Dana, 1849 (Indo-Pacific?) | + | ||
Heterocope appendiculata Sars, 1863 | + | + | |
Eudiaptomus graciloides (Lilljeborg, 1888) | + | ||
Eudiaptomus gracilis (Sars, 1863) | + | ||
Ectocyclops phaleratus (Koch, 1838) | + | + | |
Macrocyclops albidus (Jurine, 1820) | + | + | |
Macrocyclops fuscus (Jurine, 1820) | + | + | |
Eucyclops denticulatus (Graeter, 1903) | + | ||
Eucyclops macrurus (Sars G.O., 1863) | + | ||
Eucyclops serrulatus (Fischer, 1851) | + | ||
Eucyclops speratus (Lilljeborg, 1901) | + | ||
Cyclops strenuus Fischer, 1851 | + | ||
Acanthocyclops americanus (Marsh, 1893) (North America) | + | ||
Acanthocyclops vernalis (Fischer, 1853) | + | + | |
Megacyclops viridis (Jurine, 1820) | + | + | |
Microcyclops varicans (Sars, 1863) | + | + | |
Mesocyclops leuckarti (Claus, 1857) | + | + | |
Thermocyclops oithonoides (Sars, 1863) | + | ||
Metacyclops minutus (Claus, 1863) (Ponto-Caspian region) | + | ||
EUROTATORIA | |||
Synchaeta baltica Ehrenberg, 1834 | + | ||
Synchaeta fennica Rousselet, 1909 | + | ||
Synchaeta monopus Plate, 1889 | + | ||
Synchaeta sp. | + | + | |
Keratella cochlearis (Gosse, 1851) | + | + | + |
Keratella quadrata (Müller, 1786) | + | ||
Keratella quadrata platei Jägerskiöld, 1894 | + | + | |
Keratella eichwaldi (Levander, 1894) | + | ||
Euchlanis dilatata Ehrenberg, 1832 | + | + | |
Euchlanis sp. | + | ||
Notholca striata (Müller, 1786) | + | ||
Lecane sp. | + | + | |
Polyarthra dolichoptera Idelson, 1925 | + | + | |
Polyarthra minor Voigt, 1904 | + | + | |
Polyarthra remata Skorikov, 1896 | + | ||
Polyarthra major Burckhardt, 1900 | + | + | |
MALACOSTRACA | |||
Gammarus lacustris Sars, 1863 | + | ||
Gammarus tigrinus Sexton, 1939 (North America) | + | ||
Gmelinoides fasciatus (Stebbing, 1899) (Baikal) | + | + | |
Chelicorophium curvispinum (Sars, 1895) (Ponto-Caspian) | + | ||
Pontogammarus robustoides (Sars, 1894) (Ponto-Caspian) | + | ||
GASTROPODA | |||
Viviparus viviparus (Linnaeus, 1758) | + | + | |
Lymnaea stagnalis (Linnaeus, 1758) | + | + | |
BIVALVIA | |||
Dreissena polymorpha (Pallas, 1771) (Ponto-Caspian) | + | + | |
Pisidium sp. | + | ||
Macoma sp. | + | ||
MALACOSTRACA | |||
Astacus astacus (Linnaeus, 1758) | + | ||
Pontastacus leptodactylus (Eschscholtz, 1823) | + | ||
Eriocheir sinensis H. Milne Edwards, 1853 (Eastern Asia) | + | ||
Mysis sp. juv. | + | ||
OTHER GROUPS | |||
Hydra sp. | + | ||
Ostracoda juv. | + | + | |
Balanus juv. | + | ||
Nematoda juv. | + | + | |
Chironomus sp. juv. | + | + | |
Odonata lar. | + |
Date of Filling of Tanks | Dates of Draining of Tanks | Dates of End of Anoxic Termination | Copepoda Ind/100 L | Cladocera Ind/100 L | Insecta (Chironomus Larvae) Ind/100 L |
---|---|---|---|---|---|
21 September 2005 | 20 December 2005 | February 2006 | 13.2 ± 1.2 | 6.6 ± 5.7 | 3.3 ± 1.7 |
21 December 2005 | 20 March 2006 | May 2006 | 3.3 ± 2.1 | 0 | 0 |
21 March 2006 | 20 June 2006 | July 2006 | 0 | 0 | 0 |
21 June 2006 | 20 September 2006 | October 2006 | 3.3 ± 2.3 | 3.3 ± 2.3 | 0 |
Date of Filling | Dates of Draining | Copepoda Diapausing, Ind/20 L | Cladocera Ephippia Ind/20 L | Insecta (Chironomus Larvae) Reactivated Ind/20 L |
---|---|---|---|---|
21 September 2005 | 20 March 2006 | 4.7 ± 1.2 | 6.7 ± 2.7 | 1.3 ± 0.3 |
21 March 2006 | 20 September 2006 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alekseev, V.; Sukhikh, N. Ust-Luga Seaport of Russia: Biological Invasions and Resting Stages Accumulation. Life 2023, 13, 117. https://doi.org/10.3390/life13010117
Alekseev V, Sukhikh N. Ust-Luga Seaport of Russia: Biological Invasions and Resting Stages Accumulation. Life. 2023; 13(1):117. https://doi.org/10.3390/life13010117
Chicago/Turabian StyleAlekseev, Victor, and Natalia Sukhikh. 2023. "Ust-Luga Seaport of Russia: Biological Invasions and Resting Stages Accumulation" Life 13, no. 1: 117. https://doi.org/10.3390/life13010117
APA StyleAlekseev, V., & Sukhikh, N. (2023). Ust-Luga Seaport of Russia: Biological Invasions and Resting Stages Accumulation. Life, 13(1), 117. https://doi.org/10.3390/life13010117