Development of a Nanotechnology Matrix-Based Citronella Oil Insect Repellent to Obtain a Prolonged Effect and Evaluation of the Safety and Efficacy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Identification of Citronella Oil
2.2. Quantification of Citronella Oil
2.3. Development of a Nanostructured Lipid Carrier with Citronella Oil (NLC-CO)
2.4. Oil-in-Water Emulsion (O/W Emulsion)
2.5. O/W Emulsion with Citronella Oil or NLC-CO
2.6. Thermal Analysis
2.7. Particle Size Analysis
2.8. Determination of pH
2.9. Efficacy Test of Mosquito Repellency
2.10. Safety Test—In Vitro Skin Penetration (IVPT)
2.10.1. Analytical Method
2.10.2. IVPT Protocol
3. Results and Discussion
3.1. Identification of Citronella Oil
3.2. Quantification of Citronella Oil
3.3. Thermal Analysis
3.4. Particle Size Analysis
3.5. Determination of pH
3.6. Efficacy test
3.7. Safety Test—Skin Penetration
3.7.1. Analytical Method
3.7.2. IVPT Protocol Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tavares, M.; da Silva, M.R.M.; de Oliveira de Siqueira, L.B.; Rodrigues, R.A.S.; Bodjolle-d’Almeira, L.; dos Santos, E.P.; Ricci-Júnior, E. Trends in Insect Repellent Formulations: A Review. Int. J. Pharm. 2018, 539, 190–209. [Google Scholar] [CrossRef] [PubMed]
- WMP. What Are Mosquito-Borne Diseases? Available online: https://www.worldmosquitoprogram.org/en/learn/mosquito-borne-diseases (accessed on 16 November 2022).
- CDC Mosquito-Borne Diseases. Available online: https://www.cdc.gov/niosh/topics/outdoor/mosquito-borne/default.html#:~:text=Diseases%20that%20are%20spread%20to,from%20diseases%20spread%20by%20mosquitoes (accessed on 16 November 2022).
- LIma, J.B.P.; Da-Cunha, M.P.; Júnior, R.C.D.S.; Galardo, A.K.R.; Soares, S.D.S.; Braga, I.A.; Ramos, R.P.; Valle, D. Resistance of Aedes Aegypti to Organophosphates in Several Municipalities in the State of Rio de Janeiro and Espírito Santo, Brazil. Am. J. Trop. Med. Hyg. 2003, 68, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Macoris, M.D.L.G.; Andrighetti, M.T.M.; Takaku, L.; Glasser, C.M.; Garbeloto, V.C.; Bracco, J.E. Resistance of Aedes Aegypti from the State of São Paulo, Brazil, to Organophosphates Insecticides. Mem. Inst. Oswaldo Cruz 2003, 98, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Gillij, Y.G.; Gleiser, R.M.; Zygadlo, J.A. Mosquito Repellent Activity of Essential Oils of Aromatic Plants Growing in Argentina. Bioresour. Technol. 2008, 99, 2507–2515. [Google Scholar] [CrossRef] [PubMed]
- Chiasson, H.; Vincent, C.; Bostanian, N.J. Insecticidal Properties of a Chenopodium Based Botanical. J. Econ. Entomol. 2009, 97, 1378–1383. [Google Scholar] [CrossRef] [PubMed]
- Maia, M.F.; Moore, S.J. Plant-Based Insect Repellents: A Review of Their Efficacy, Development and Testing. Malar. J. 2011, 10, S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rehman, J.U.; Ali, A.; Khan, I.A. Plant Based Products: Use and Development as Repellents against Mosquitoes: A Review. Fitoterapia 2014, 95, 65–74. [Google Scholar] [CrossRef]
- Pichersky, E.; Gershenzon, J. The Formation and Function of Plant Volatiles: Perfumes for Pollinator Attraction and Defense. Curr. Opin. Plant Biol. 2002, 5, 237–243. [Google Scholar] [CrossRef]
- Higuchi, C.T.; Andreo-Filho, N.; Lopes, P.S.; Grice, J.F.; Leite-Silva, V.R. Topical Mosquito Repellent Formulations for Enhanced Repellency Time and Reduced Toxicity. Curr. Drug Deliv. 2022, 1, 1–19. [Google Scholar] [CrossRef]
- EPA Safety Review of DEET. Available online: https://www.epa.gov/insect-repellents/deet#:~:text=The%20human%20health%20risk%20assessment,or%20occupational%20exposure%20for%20DEET (accessed on 16 November 2022).
- Trongtokit, Y.; Rongsriyam, Y.; Komalamisra, N.; Apiwathnasorn, C. Comparative Repellency of 38 Essential Oils against Mosquito Bites. Phytother. Res. 2005, 19, 303–309. [Google Scholar] [CrossRef]
- Goodyer, L.I.; Croft, A.M.; Frances, S.P.; Hill, N.; Moore, S.J.; Onyango, S.P.; Debboun, M. Expert Review of the Evidence Base for Arthropod Bite Avoidance. J. Travel Med. 2010, 17, 182–192. [Google Scholar] [CrossRef] [Green Version]
- da Silva, M.R.M.; Ricci-Júnior, E. An Approach to Natural Insect Repellent Formulations: From Basic Research to Technological Development. Acta Trop. 2020, 212, 105419. [Google Scholar] [CrossRef]
- Quintans-Júnior, L.J.; Viana Santos, M.R.; Guedes da Silva Almeida, J.R.; Ribeiro, L.A.A. A Systematic Review on Biological Properties of Citronela Java Essential Oil. Recent Prog. Med. Plants 2015, 36, 361–387. [Google Scholar]
- Choi, S.; Son, B.; Son, Y.; Park, Y.; Lee, S.; Chung, M. The Wound-Healing Effect of a Glycoprotein Fraction Isolated from Aloe Vera. Br. J. Dermatol. 2001, 145, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Gallardo, A.; Picollo, M.I.; Mougabure-Cueto, G. Lethal Activity of Individual and Mixed Monoterpenoids of Geranium Essential Oil on Musca Domestica. Parasitol. Res. 2015, 114, 1229–1232. [Google Scholar] [CrossRef] [PubMed]
- Songkro, S.; Hayook, N.; Jaisawang, J.; Maneenuan, D.; Chuchome, T.; Kaewnopparat, N. Investigation of Inclusion Complexes of Citronella Oil, Citronellal and Citronellol with b-Cyclodextrin for Mosquito Repellent. J. Incl. Phenom. Macrocycl. Chem. 2012, 72, 339–355. [Google Scholar] [CrossRef]
- Nerio, L.S.; Olivero-Verbel, J.; Stashenko, E. Repellent Activity of Essential Oils: A Review. Bioresour. Technol. 2010, 101, 372–378. [Google Scholar] [CrossRef]
- Garcês, A.; Amaral, M.H.; Sousa Lobo, J.M.; Silva, A.C. Formulations Based on Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for Cutaneous Use: A Review. Eur. J. Pharm. Sci. 2018, 112, 159–167. [Google Scholar] [CrossRef] [PubMed]
- CGEN. Diário Oficial da União; 2021; p. 43. Available online: https://sigam.ambiente.sp.gov.br/sigam3/repositorio/570/documentos/Resolu%C3%A7%C3%A3o%20CGEN%20N%C2%BA%2028,%20de%2025%20de%20agosto%20de%202021.pdf#:~:text=RESOLU%C3%87%C3%83O%20CGEN%20N%C2%BA%2028%2C%20DE%2025%20DE%20AGOSTO,e%20a%20Resolu%C3%A7%C3%A3o%20CGen%20n%C2%BA%203%2C%20de%202019 (accessed on 12 March 2021).
- Sales, C.C. Desenvolvimento de Nanocarreadores Lipídicos Veiculando o Óleo de Citronela Para a Obtenção de Um Repelente. Master’s Thesis, Universidade Federal de São Paulo, São Paulo, Brazil, 2019. [Google Scholar]
- Müller, R.H.; Mäder, K.; Gohla, S. Solid Lipid Nanoparticles (SLN) for Controlled Drug Delivery—A Review of the State of the Art. Eur. J. Pharm. Biopharm. 2000, 50, 161–177. [Google Scholar] [CrossRef]
- Losito, D.W.; Lopes, P.S.; Ueoka, A.R.; Fantini, M.C.A.; Oseliero Filho, P.L.; Andréo-Filho, N.; Martins, T.S. Biocomposites Based on SBA-15 and Papain: Characterization, Enzymatic Activity and Cytotoxicity Evaluation. Microporous Mesoporous Mater. 2021, 325, 111316. [Google Scholar] [CrossRef]
- Takamori, D.Y.; Bizeto, M.A.; Fantini, M.C.D.A.; Rubinger, C.P.L.; Faez, R.; Martins, T.S. Polyaniline Inclusion into Ordered Mesoporous Silica Matrices: Synthesis, Characterization and Electrical Transport Mechanism. Microporous Mesoporous Mater. 2019, 274, 212–219. [Google Scholar] [CrossRef]
- Kovačević, A.B.; Müller, R.H.; Savić, S.D.; Vuleta, G.M.; Keck, C.M. Solid Lipid Nanoparticles (SLN) Stabilized with Polyhydroxy Surfactants: Preparation, Characterization and Physical Stability Investigation. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 15–25. [Google Scholar] [CrossRef]
- Environmental Protection Agency (EPA). Insect Repellents to Be Applied to Human Skin. In EPA Product Performance Test Guidelines; OPPTS 810.3700; 2010. Available online: https://nepis.epa.gov/Exe/ZyNET.exe/P100LBO3.TXT?ZyActionD=ZyDocument&Client=EPA&Index=2006+Thru+2010&Docs=&Query=&Time=&EndTime=&SearchMethod=1&TocRestrict=n&Toc=&TocEntry=&QField=&QFieldYear=&QFieldMonth=&QFieldDay=&IntQFieldOp=0&ExtQFieldOp=0&XmlQuery=&File=D%3A%5Czyfiles%5CIndex%20Data%5C06thru10%5CTxt%5C00000036%5CP100LBO3.txt&User=ANONYMOUS&Password=anonymous&SortMethod=h%7C-&MaximumDocuments=1&FuzzyDegree=0&ImageQuality=r75g8/r75g8/x150y150g16/i425&Display=hpfr&DefSeekPage=x&SearchBack=ZyActionL&Back=ZyActionS&BackDesc=Results%20page&MaximumPages=1&ZyEntry=1&SeekPage=x&ZyPURL (accessed on 12 March 2021).
- White, G.B.; Debboun, M.; Frances, S.P.; Strickman, D. Insect Repellents: Principles, Methods and Uses; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- De Paepe, K.; Houben, E.; Adam, R.; Wiessemann, F.; Rogiers, V. Validation of the VapoMeter, a Closed Unventilated Chamber System to Assess Transepidermal Water Loss vs. the Open Chamber Tewameter®. Ski. Res. Technol. 2005, 11, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Andréo-Filho, N.; Bim, A.V.K.; Kaneko, T.M.; Kitice, N.A.; Haridass, I.N.; Abd, E.; Santos Lopes, P.; Thakur, S.S.; Parekh, H.S.; Roberts, M.S.; et al. Development and Evaluation of Lipid Nanoparticles Containing Natural Botanical Oil for Sun Protection: Characterization and in Vitro and in Vivo Human Skin Permeation and Toxicity. Ski. Pharmacol. Physiol. 2018, 31, 1–9. [Google Scholar] [CrossRef]
- Songkro, S.; Yapong, P.; Puechpan, P.; Maneenuan, D.; Boonme, P. Microencapsulation of Citronella Oil for Mosquito Repellent: Preparation and Evaluation of Release Characteristics. Songklanakarin J. Sci. Technol. 2018, 40, 767–775. [Google Scholar] [CrossRef]
- Songkro, S.; Jenboonlap, M.; Boonprasertpon, M.; Maneenuan, D.; Bouking, K.; Kaewnopparat, N. Effects of Glucam P-20, Vanillin, and Fixolide on Mosquito Repellency of Citronella Oil Lotions. J. Med. Entomol. 2012, 49, 672–677. [Google Scholar] [CrossRef] [Green Version]
- Benelli, G.; Pavela, R.; Giordani, C.; Casettari, L.; Curzi, G.; Cappellacci, L.; Petrelli, R.; Maggi, F. Acute and Sub-Lethal Toxicity of Eight Essential Oils of Commercial Interest against the Filariasis Mosquito Culex Quinquefasciatus and the Housefly Musca Domestica. Ind. Crop. Prod. 2018, 112, 668–680. [Google Scholar] [CrossRef]
- Kongkaew, C.; Sakunrag, I.; Chaiyakunapruk, N.; Tawatsin, A. Effectiveness of Citronella Preparations in Preventing Mosquito Bites: Systematic Review of Controlled Laboratory Experimental Studies. Trop. Med. Int. Health 2011, 16, 802–810. [Google Scholar] [CrossRef]
- Tawatsin, A.; Wratten, S.D.; Scott, R.R.; Thavara, U.; Techadamrongsin, Y. Repellency of Volatile Oils from Plants against Three Mosquito Vectors. J. Vector Ecol. 2001, 26, 76–82. [Google Scholar]
- Katritzky, A.R.; Wang, Z.; Slavov, S.; Tsikolia, M.; Dobchev, D.; Akhmedov, N.G.; Hall, C.D.; Bernier, U.R.; Clark, G.G.; Linthicum, K.J. Synthesis and Bioassay of Improved Mosquito Repellents Predicted from Chemical Structure. Proc. Natl. Acad. Sci. USA 2008, 105, 7359–7364. [Google Scholar] [CrossRef] [Green Version]
- Chemicalbook No Title. 2021. Available online: https://www.chemicalbook.com/ (accessed on 12 March 2021).
- O’Neil, M.J. The Merck Index: An Encyclopedia of Chemicals, Drugs and Biologicals; Wiley: Hoboken, NJ, USA, 2006. [Google Scholar]
- Katz, T.M.; Miller, J.H.; Hebert, A.A. Insect Repellents: Historical Perspectives and New Developments. J. Am. Acad. Dermatol. 2008, 58, 865–871. [Google Scholar] [CrossRef]
- Wany, A.; Kumar, A.; Nallapeta, S.; Jha, S.; Nigam, V.K.; Pandey, D.M. Extraction and Characterization of Essential Oil Components Based on Geraniol and Citronellol from Java Citronella (Cymbopogon Winterianus Jowitt). Plant Growth Regul. 2014, 73, 133–145. [Google Scholar] [CrossRef]
- Nuchuchua, O.; Sakulku, U.; Uawongyart, N.; Puttipipatkhachorn, S.; Soottitantawat, A.; Ruktanonchai, U. In Vitro Characterization and Mosquito (Aedes Aegypti) Repellent Activity of Essential-Oils-Loaded Nanoemulsions. AAPS PharmSciTech 2009, 10, 1234–1242. [Google Scholar] [CrossRef] [PubMed]
- Tisserand, R.; Balacs, T. Essential Oil Safety: A Guide for Health Care Professionals; Churchill Livingstone: London, UK, 1995. [Google Scholar]
- Ribeiro, A.D.; Marques, J.; Forte, M.; Correia, F.C.; Parpot, P.; Oliveira, C.; Pereira, A.I.; Andrade, L.; Azenha, C.; Mendes, A.; et al. Microencapsulation of Citronella Oil for Solar-Activated Controlled Release as an Insect Repellent. Appl. Mater. Today 2016, 5, 90–97. [Google Scholar] [CrossRef] [Green Version]
- Baranauskiene, R.; Venskutonis, P.R.; Dewettinck, K.; Verhé, R. Properties of Oregano (Origanum vulgare L.), Citronella (Cymbopogon nardus G.) and Marjoram (Majorana hortensis L.) Flavors Encapsulated into Milk Protein-Based Matrices. Food Res. Int. 2006, 39, 413–425. [Google Scholar] [CrossRef]
- Del Valle, J.M.; Godoy, C.; Asencio, M.; Aguilera, J.M. Recovery of Antioxidants from Boldo (Peumus Boldus M.) by Conventional and Supercritical CO2 Extraction. Food Res. Int. 2004, 37, 695–702. [Google Scholar] [CrossRef]
- Marco, C.A.; Innecco, R.; Mattos, S.H.; Borges, N.S.S.; Nagao, E.O. Essential Oil Characteristics from Citronella Grass Depending on Planting Space, Cutting Height and Harvesting Time. Hortic. Bras. 2007, 25, 429–432. [Google Scholar] [CrossRef] [Green Version]
- Konuklu, Y. Microencapsulation of Phase Change Material with Poly (Ethylacrylate) Shell for Thermal Energy Storage. Int. J. Energy Res. 2014, 38, 2019–2029. [Google Scholar] [CrossRef]
- Carvalho, I.T.; Estevinho, B.N.; Santos, L. Application of Microencapsulated Essential Oils in Cosmetic and Personal Healthcare Products—A Review. Int. J. Cosmet. Sci. 2016, 38, 109–119. [Google Scholar] [CrossRef] [Green Version]
- de Assis, L.M.; Zavareze, E.d.R.; Prentice-Hernández, C.; de Souza-Soares, L.A. Revisão: Características de Nanopartículas e Potenciais Aplicações Em Alimentos. Braz. J. Food Technol. 2012, 15, 99–109. [Google Scholar] [CrossRef]
- Ebrahimi, H.A.; Javadzadeh, Y.; Hamidi, M.; Jalali, M.B. Repaglinide-Loaded Solid Lipid Nanoparticles: Effect of Using Different Surfactants/Stabilizers on Physicochemical Properties of Nanoparticles. DARU J. Pharm. Sci. 2015, 23, 46. [Google Scholar] [CrossRef] [PubMed]
- Kovacevic, A.; Savic, S.; Vuleta, G.; Müller, R.H.; Keck, C.M. Polyhydroxy Surfactants for the Formulation of Lipid Nanoparticles (SLN and NLC): Effects on Size, Physical Stability and Particle Matrix Structure. Int. J. Pharm. 2011, 406, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.O.; Aditya, N.P.; Ko, S. Effect of Aqueous PH and Electrolyte Concentration on Structure, Stability and Flow Behavior of Non-Ionic Surfactant Based Solid Lipid Nanoparticles. Food Chem. 2014, 147, 239–244. [Google Scholar] [CrossRef]
- Jaiswal, P.; Gidwani, B.; Vyas, A. Nanostructured Lipid Carriers and Their Current Application in Targeted Drug Delivery. Artif. Cells Nanomed. Biotechnol. 2016, 44, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Montalvo, E.M. Escoamento de Emulsões Óleo Em Água Através de Micro-Capilares. Master’s Thesis, Pontífica Universidade Católica (PUC), Rio de Janeiro, Brazil, 2008. [Google Scholar]
- Mai, H.C.; Nguyen, T.S.V.; Le, T.H.N.; Nguyen, D.C.; Bach, L.G. Evaluation of Conditions Affecting Properties of Gac (Momordica Cocochinensis Spreng) Oil-Loaded Solid Lipid Nanoparticles (SLNs) Synthesized Using High-Speed Homogenization Process. Processes 2019, 7, 90. [Google Scholar] [CrossRef] [Green Version]
- Blaak, J.; Staib, P. The Relation of PH and Skin Cleansing. Curr. Probl. Dermatol. 2018, 54, 132–142. [Google Scholar]
- Lertsatitthanakorn, P.; Taweechaisupapong, S.; Aromdee, C.; Khunkitti, W. Antibacterial Activity of Citronella Oil Solid Lipid Particles in Oleogel against Propionibacterium Acnes and Its Chemical Stability. Int. J. Essent. Oil Ther. 2008, 2, 167–171. [Google Scholar]
- Kasting, G.B.; Bhatt, V.D.; Speaker, T.J. Microencapsulation Decreases the Skin Absorption of N,N-Diethyl-m-Toluamide (DEET). Toxicol. Vitr. 2008, 22, 548–552. [Google Scholar] [CrossRef]
- Solomon, B.; Sahle, F.F.; Gebre-Mariam, T.; Asres, K.; Neubert, R.H.H. Microencapsulation of Citronella Oil for Mosquito-Repellent Application: Formulation and in Vitro Permeation Studies. Eur. J. Pharm. Biopharm. 2012, 80, 61–66. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.Q.; Fan, H.F.; Xia, Q. Heat-Resistant Sustained-Release Fragrance Microcapsules. J. Appl. Polym. Sci. 2014, 131, 40053. [Google Scholar] [CrossRef]
- Frum, Y.; Khan, G.M.; Sefcik, J.; Rouse, J.; Eccleston, G.M.; Meidan, V.M. Towards a Correlation between Drug Properties and in Vitro Transdermal Flux Variability. Int. J. Pharm. 2007, 336, 140–147. [Google Scholar] [CrossRef] [PubMed]
Ingredients | Phase | (% w/w) 1 |
---|---|---|
Citronella oil (CO) | Oily | 7.5 |
Glyceryl monostearate | 7.5 | |
Caprylic capric acid triglyceride | 7.5 | |
Cetyl trimethyl ammonium chloride 50% | 6.0 | |
Polyvinyl alcohol | Aqueous | 1.0 |
Purified water up to | 100.0 |
INCI Name | Phase | Commercial Name | (% w/w) 1 |
---|---|---|---|
Ceteareth-6 (and) stearyl alcohol | Oily | Cremophor® A6 | 3.0 |
Ceteareth-25 | Cremophor® A25 | 3.0 | |
Cetyl alcohol | Lanette® 16 | 2.0 | |
Cetostearyl alcohol and polysorbate 60 | Polybase® CT | 6.0 | |
Octyldodecanol | Eutanol® | 5.0 | |
Glycerin | Aqueous | Glycerin | 5.0 |
5-chloro-2-methyl-4-isothiazolin-3-one and 2-methyl-4-isothiazolin-3-one | ProTeg® GC | 0.5 | |
Purified water up to | Purified water | 100.0 |
Ingredients (% w/w) 1 | F1 CO | F2 CO/NLC-CO (2:1) | F3 CO/NLC-CO (1:1) | F4 CO/NLC-CO (1:2) |
---|---|---|---|---|
Citronella oil | 10.0 | 7.3 | 5.0 | 2.7 |
NLC-CO | - | 36.0 (2.7 CO) | 66.6 (5.0 CO) | 97.3 (7.3 CO) |
O/W Emulsion up to | 100.0 | 100.0 | 100.0 | - |
tR (min) a | Chemical Compounds (INCI) b | % Area |
---|---|---|
5.609 | β-pinene | 0.43 |
6.874 | Eucalyptol | 0.90 |
8.607 | Linalool | 0.47 |
10.226 | p-Menth-8-en-3-ol | 5.24 |
10.535 | Citronellal | 71.13 |
10.708 | p-Menth-8-en-3-ol | 3.48 |
11.171 | Cyclohexanol | 0.31 |
13.996 | Citronellol | 7.10 |
20.207 | p-Menthane-3,8-diol | 0.88 |
20.797 | Citronellol acetate | 1.28 |
22.323 | β-Caryophyllene | 0.92 |
24.811 | Diethyl Phthalate | 0.27 |
27.523 | (R)-(+)-Citronellal | 1.18 |
27.828 | Naphthalene | 3.56 |
27.992 | Cyclohexane | 0.30 |
28.158 | β-Citronellal | 2.31 |
28.932 | Farnesyl acetone | 0.25 |
Markers | Formula and Molecular Weight (g/mol) | d (g/cm3) to 25 °C. | Log Pow | SP (mmHg) | MP e BP (°C) |
---|---|---|---|---|---|
Citronellal | C10H18O e 154.24 | 0.855 | 3.53 | 2.5 × 10−1 | < −16 e 207 |
Citronellol | C10H20O e 156.26 | 0.855 | 3.91 | 2.0 × 10−2 | < −20 e < 225 |
Geraniol | C10H18O e 154.25 | 0.890 | 3.56 | 3.0 × 10−2 | < −15 e 229 |
Samples | First Step (I) * 25–215 °C ♣ 25–125 °C ♦ 25–120 °C | Second Step (II) * 215–285 °C ♣ 125–228 °C ♦ 120–180 °C | Third Step (III) * 285–700 °C ♣ 228–500 °C ♦ 180–700 °C ♠ 180–275, † 275–375, ∙ 375–700 °C | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Δw (%) | Tonset (°C) | Tpeak DTG (°C) | Tpeak DSC (°C) | ΔH (J g−1) | Δw (%) | Tonset (°C) | Tpeak DTG (°C) | Tpeak DSC (°C) | ΔH (J g−1) | Δw (%) | Tonset (°C) | Tpeak DTG (°C) | Tpeak DSC (°C) | ΔH (J g−1) | |
* CAT | - | - | - | 101 | 129.2 | 4.1 | 248 | 245 | 266 | 5.2 | 95.4 | 365 | 396 | 401 | 77.7 |
♣ Citronella oil | 5.3 | 97 | - | 95 | 76.6 | 90.4 | 182 | 201 | 207 | 111.2 | 4.0 | 236 | 242 | - | - |
♦ NLC | 67.0 | 93 | 101 | 104 | 1856.1 | 7.8 | 133 | 135 | - | - | 25.3 | 313 | 358 | - | - |
♦ NLC-CO | 72.0 | 96 | 100 | 105 | 1902 | 7.2 | 125 | 130 | - | - | ♠ 8.3 † 14.1 ∙ 4.4 | ♠ 213 † 315 ∙ 405 | ♠ 232 † 340 ∙ 407 | - - - | - - - |
pH (SD) | ||||
---|---|---|---|---|
Samples | Day 1 | Day 7 | Day 14 | Day 28 |
NLC | 3.80 (0.00) | 3.79 (0.00) | 3.82 (0.00) | 3.89 (0.02) |
Emulsion | 4.75 (0.00) | 4.95 (0.00) | 4.88 (0.00) | 4.95 (0.00) |
F3 | 3.95 (0.01) | 3.90 (0.00) | 3.93 (0.00) | 4.02 (0.02) |
Formulations | Average Protection Time (h) (Mean ± SD, N = 6) | Protection Time of Each Volunteer | |||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | ||
F1—10.0% CO | 0.3 ± 0.5 (6) | 1 h | 0 | 1 h | 0 | 0 | 0 |
F2—CO/CO:NLC (2:1) | 0.0 ± 0.0 (6) | 0 | 0 | 0 | 0 | 0 | 0 |
F3—CO/CO:NLC (1:1) | 4.0 ± 0.0 (6) | 4 h | 4 h | 4 h | 4 h | 4 h | 4 h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Higuchi, C.T.; Sales, C.C.; Andréo-Filho, N.; Martins, T.S.; Ferraz, H.O.; Santos, Y.R.; Lopes, P.S.; Grice, J.E.; Benson, H.A.E.; Leite-Silva, V.R. Development of a Nanotechnology Matrix-Based Citronella Oil Insect Repellent to Obtain a Prolonged Effect and Evaluation of the Safety and Efficacy. Life 2023, 13, 141. https://doi.org/10.3390/life13010141
Higuchi CT, Sales CC, Andréo-Filho N, Martins TS, Ferraz HO, Santos YR, Lopes PS, Grice JE, Benson HAE, Leite-Silva VR. Development of a Nanotechnology Matrix-Based Citronella Oil Insect Repellent to Obtain a Prolonged Effect and Evaluation of the Safety and Efficacy. Life. 2023; 13(1):141. https://doi.org/10.3390/life13010141
Chicago/Turabian StyleHiguchi, Celio Takashi, Caroline Cianga Sales, Newton Andréo-Filho, Tereza Silva Martins, Helena Onishi Ferraz, Yasmin Rosa Santos, Patricia Santos Lopes, Jeffrey Ernest Grice, Heather Ann Elizabeth Benson, and Vania Rodrigues Leite-Silva. 2023. "Development of a Nanotechnology Matrix-Based Citronella Oil Insect Repellent to Obtain a Prolonged Effect and Evaluation of the Safety and Efficacy" Life 13, no. 1: 141. https://doi.org/10.3390/life13010141
APA StyleHiguchi, C. T., Sales, C. C., Andréo-Filho, N., Martins, T. S., Ferraz, H. O., Santos, Y. R., Lopes, P. S., Grice, J. E., Benson, H. A. E., & Leite-Silva, V. R. (2023). Development of a Nanotechnology Matrix-Based Citronella Oil Insect Repellent to Obtain a Prolonged Effect and Evaluation of the Safety and Efficacy. Life, 13(1), 141. https://doi.org/10.3390/life13010141