Assessment of Countermovement Jump: What Should We Report?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Testing Protocol
2.4. Data Processing
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McMahon, J.J.; Murphy, S.; Rej, S.J.; Comfort, P. Countermovement-Jump-Phase Characteristics of Senior and Academy Rugby League Players. Int. J. Sport. Physiol. Perform. 2017, 12, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Lake, J.P.; Mundy, P.D.; Comfort, P.; Suchomel, T.J. Do the peak and mean force methods of assessing vertical jump force asymmetry agree? Sport. Biomech. 2020, 19, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Claudino, J.G.; Cronin, J.; Mezêncio, B.; McMaster, D.T.; McGuigan, M.; Tricoli, V.; Amadio, A.C.; Serrão, J.C. The countermovement jump to monitor neuromuscular status: A meta-analysis. J. Sci. Med. Sport 2017, 20, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Berton, R.; Lixandrão, M.E.; Pinto e Silva, C.M.; Tricoli, V. Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance: A meta-analysis. J. Sport. Sci. 2018, 36, 2038–2044. [Google Scholar] [CrossRef]
- Lake, J.P.; Mundy, P.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Concurrent Validity of a Portable Force Plate Using Vertical Jump Force–Time Characteristics. J. Appl. Biomech. 2018, 34, 410–413. [Google Scholar] [CrossRef]
- Wade, L.; Lichtwark, G.A.; Farris, D.J. Comparisons of laboratory-based methods to calculate jump height and improvements to the field-based flight-time method. Scand. J. Med. Sci. Sport. 2019, 30, 31–37. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; Fernandes, J.F.T.; Rojas, F.J.; García-Ramos, A. Reliability and Magnitude of Countermovement Jump Performance Variables: Influence of the Take-off Threshold. Meas. Phys. Educ. Exerc. Sci. 2021, 25, 227–235. [Google Scholar] [CrossRef]
- Markström, J.L.; Olsson, C.J. Countermovement jump peak force relative to body weight and jump height as predictors for sprint running performances: (In)homogeneity of track and field athletes? J. Strength Cond. Res. 2013, 27, 944–953. [Google Scholar] [CrossRef]
- Struzik, A.; Zawadzki, J.; Rokita, A. Leg stiffness and potential energy in the countermovement phase and the CMJ jump height. Biomed. Hum. Kinet. 2016, 8, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Barker, L.A.; Harry, J.R.; Mercer, J.A. Relationships between countermovement jump ground reaction forces and jump height, reactive strength index, and jump time. J. Strength Cond. Res. 2018, 32, 248–254. [Google Scholar] [CrossRef]
- McMahon, J.; Jones, P.A.; Suchomel, T.J.; Lake, J.; Comfort, P. Influence of reactive strength index modified on force- and power-time curves. Int. J. Sport. Physiol. Perform. 2018, 13, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Moir, G.L.; Garcia, A.; Dwyer, G.B. Intersession Reliability of Kinematic and Kinetic Variables During Vertical Jumps in Men and Women. Int. J. Sport. Physiol. Perform. 2009, 4, 317–330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirby, T.J.; McBride, J.M.; Haines, T.L.; Dayne, A.M. Relative Net Vertical Impulse Determines Jumping Performance. J. Appl. Biomech. 2011, 27, 207–214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Warr, D.M.; Pablos, C.; Sánchez-Alarcos, J.V.; Torres, V.; Izquierdo, J.M.; Redondo, J.C. Reliability of measurements during countermovement jump assessments: Analysis of performance across subphases. Cogent Soc. Sci. 2020, 6. in press. [Google Scholar] [CrossRef]
- Chiu, L.Z.F.; Dæhlin, T.E. Comparing Numerical Methods to Estimate Vertical Jump Height Using a Force Platform. Meas. Phys. Educ. Exerc. Sci. 2018, 24, 25–32. [Google Scholar] [CrossRef]
- Harry, J.R.; Barker, L.A.; Tinsley, G.M.; Krzyszkowski, J.; Chowning, L.D.; McMahon, J.J.; Lake, J. Relationships among countermovement vertical jump performance metrics, strategy variables, and inter-limb asymmetry in females. Sports Biomech. 2021, in press. [Google Scholar] [CrossRef]
- Moir, G.L. Three Different Methods of Calculating Vertical Jump Height from Force Platform Data in Men and Women. Meas. Phys. Educ. Exerc. Sci. 2008, 12, 207–218. [Google Scholar] [CrossRef]
- Carroll, K.M.; Wagle, J.P.; Sole, C.J.; Stone, M.H. Intrasession and Intersession Reliability of Countermovement Jump Testing in Division-I Volleyball Athletes. J. Strength Cond. Res. 2019, 33, 2932–2935. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stone, J.D.; Hornsby, W.G.; Hagen, J.A. Identifying Reliable and Relatable Force–Time Metrics in Athletes—Considerations for the Isometric Mid-Thigh Pull and Countermovement Jump. Sports 2021, 9, 4. [Google Scholar] [CrossRef]
- McMahon, J.J.; Lake, J.P.; Comfort, P. Reliability of and Relationship between Flight Time to Contraction Time Ratio and Reactive Strength Index Modified. Sports 2018, 6, 81. [Google Scholar] [CrossRef]
- Heishman, A.D.; Daub, B.D.; Miller, R.M.; Freitas, E.D.; Frantz, B.A.; Bemben, M.G. Countermovement Jump Reliability Performed With and Without an Arm Swing in NCAA Division 1 Intercollegiate Basketball Players. J. Strength Cond. Res. 2018, 32, 546–558. [Google Scholar] [CrossRef] [PubMed]
- Laffaye, G.; Bardy, B.G.; Durey, A. Principal Component Structure and Sport-Specific Differences in the Running One-Leg Vertical Jump. Int. J. Sport. Med. 2007, 28, 420–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laffaye, G.; Wagner, P.P.; Tombleson, T.I.L. Countermovement jump height: Gender and sport-specific differences in the force-time variables. J. Strength Cond. Res. 2014, 28, 1096–1105. [Google Scholar] [CrossRef] [PubMed]
- Kipp, K.; Kiely, M.T.; Geiser, C.F. Reactive Strength Index Modified Is a Valid Measure of Explosiveness in Collegiate Female Volleyball Players. J. Strength Cond. Res. 2016, 30, 1341–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merrigan, J.J.; Rentz, L.E.; Hornsby, W.G.; Wagle, J.P.; Stone, J.D.; Smith, H.T.; Galster, S.M.; Joseph, M.; Hagen, J.A. Comparisons of Countermovement Jump Force-Time Characteristics Among National Collegiate Athletic Association Division I American Football Athletes: Use of Principal Component Analysis. J. Strength Cond. Res. 2022, 36, 411–419. [Google Scholar] [CrossRef]
- James, L.P.; Suppiah, H.; McGuigan, M.R.; Carey, D.L. Dimensionality Reduction for Countermovement Jump Metrics. Int. J. Sport. Physiol. Perform. 2021, 16, 1052–1055. [Google Scholar] [CrossRef]
- Merrigan, J.J.; Stone, J.D.; Ramadan, J.; Hagen, J.; Thompson, A. Dimensionality reduction differentiates sensitive force-time characteristics from loaded and unloaded conditions throughout competitive military training. Sustainability 2021, 13, 6105. [Google Scholar] [CrossRef]
- Gathercole, R.J.; Stellingwerff, T.; Sporer, B.C. Effect of acute fatigue and training adaptation on countermovement jump performance in elite snowboard cross athletes. J. Strength Cond. Res. 2015, 29, 37–46. [Google Scholar] [CrossRef]
- Mizuguchi, S.; Sands, W.A.; Wassinger, C.A.; Lamont, H.S.; Stone, M.H. A new approach to determining net impulse and identification of its characteristics in countermovement jumping: Reliability and validity. Sport. Biomech. 2015, 14, 258–272. [Google Scholar] [CrossRef]
- Pérez-Castilla, A.; McMahon, J.J.; Comfort, P.; García-Ramos, A. Assessment of Loaded Squat Jump Height With a Free-Weight Barbell and Smith Machine: Comparison of the Takeoff Velocity and Flight Time Procedures. J. Strength Cond. Res. 2017, 34, 671–677. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sport. Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Kollias, I.; Hatzitaki, V.; Papaiakovou, G.; Giatsis, G. Using principal components analysis to identify individual differences in vertical jump performance. Res. Q. Exerc. Sport 2001, 72, 63–67. [Google Scholar] [CrossRef] [PubMed]
- McMahon, J.J.; Rej, S.J.E.; Comfort, P. Sex Differences in Countermovement Jump Phase Characteristics. Sports 2017, 5, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choukou, M.A.; Laffaye, G.; Taiar, R. Reliability and validity of an accele-rometric system for assessing vertical jumping performance. Biol. Sport 2014, 31, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Mcmahon, J.J.; Comfort, P.; Cscs, D. Lower limb stiffness: Effect on performance and training considerations. Strength Cond. J. 2012, 34, 94–101. [Google Scholar] [CrossRef]
- Lake, J.P.; Mundy, P.D.; Comfort, P.; McMahon, J.J.; Suchomel, T.J.; Carden, P. Effect of Barbell Load on Vertical Jump Landing Force-Time Characteristics. J. Strength Cond. Res. 2021, 35, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Linthorne, N.P. Analysis of standing vertical jumps using a force platform. Am. J. Phys. 2001, 69, 1198–1204. [Google Scholar] [CrossRef] [Green Version]
- McLellan, C.P.; Lovell, D.I.; Gass, G.C. The Role of Rate of Force Development on Vertical Jump Performance. J. Strength Cond. Res. 2011, 25, 379–385. [Google Scholar] [CrossRef]
- Gordon, D.; Hayward, S.; van Lopik, K.; Philpott, L.; West, A. Reliability of bilateral and shear components in a two-legged counter-movement jump. Proc. Inst. Mech. Eng. Part P J. Sport. Eng. Technol. 2021, 236, 159–171. [Google Scholar] [CrossRef]
- Osborne, J.W.; Costello, A.B. Sample size and subject to item ratio in principal components analysis. Pract. Assess. Res. Eval. 2004, 9, 11. [Google Scholar]
Variable Type | Variable | Unit |
---|---|---|
Performance variables | Jump height (flight time method) | cm |
Jump height (impulse momentum method) | cm | |
Leg stiffness | AU | |
Reactive strength index—modified | AU | |
Kinetic variables | Unloading peak force | N |
Unloading mean force | N | |
Breaking peak force | N | |
Breaking mean force | N | |
Propulsive peak force | N | |
Propulsive mean force | N | |
Landing first force peak | N | |
Landing second force peak | N | |
Breaking rate of force development | N·s−1 | |
Propulsive peak rate of force development | N·s−1 | |
Propulsive mean rate of force development | N·s−1 | |
Landing peak rate of force development | N·s−1 | |
Landing mean rate of force development | N·s−1 | |
Unloading impulse | N·s | |
Breaking impulse | N·s | |
Propulsive impulse | N·s | |
Positive impulse | N·s | |
Landing impulse | N·s | |
Breaking peak power | W | |
Breaking mean power | W | |
Propulsive peak power | W | |
Propulsive mean power | W | |
Landing rate of power development | W·s−1 | |
Kinematic variables | Jump duration | s |
Unloading phase duration | s | |
Breaking phase duration | s | |
Propulsive phase duration | s | |
Flight phase duration | s | |
Landing phase duration | s | |
Time to unloading peak force | s | |
Time to minimum power | s | |
Time to propulsive peak force | s | |
Time to first landing force peak | s | |
Time to second landing force peak | s | |
Peak negative velocity | m·s−1 | |
Propulsive peak velocity | m·s−1 | |
Take-off velocity | m·s−1 | |
Countermovement center of mass depth | cm | |
Center of mass at take off | cm | |
Flight time:Jump time ratio | AU | |
Breaking time:Jump time ratio | AU |
Variables | Performance Component | Eccentric Component | Concentric Component | Jump Strategy Component | Communalities |
---|---|---|---|---|---|
Δt flight phase (s) | 0.936 | 0.968 | |||
JH flight time (cm) | 0.934 | 0.967 | |||
Take-off V (m·s−1) | 0.924 | 0.980 | |||
JH impulse-momentum (cm) | 0.924 | 0.980 | |||
Peak V propulsive phase (m·s−1) | 0.919 | 0.981 | |||
Impulse landing phase (N·s) | 0.763 | 0.903 | |||
RSI modified (AU) | 0.755 | 0.952 | |||
Peak P propulsive phase (W) | 0.745 | 0.954 | |||
Mean P propulsive phase (W) | 0.693 | 0.625 | 0.984 | ||
Impulse propulsive phase (N·s) | 0.673 | 0.671 | 0.985 | ||
Impulse positive (N·s) | 0.673 | 0.672 | 0.986 | ||
COM take-off (m·s−1) | 0.554 | 0.325 | |||
Mean P breaking phase (W) | 0.929 | 0.992 | |||
Peak V negative (m·s−1) | −0.921 | 0.985 | |||
Impulse breaking phase (N·s) | 0.908 | 0.985 | |||
Impulse unloading phase (N·s) | −0.900 | 0.980 | |||
Mean F breaking phase (N) | 0.805 | 0.946 | |||
Mean F propulsive phase (N) | 0.826 | 0.982 | |||
Peak F propulsive phase (N) | 0.815 | 0.920 | |||
Peak F breaking phase (N) | 0.693 | 0.906 | |||
Δt propulsive phase (s) | −0.919 | 0.926 | |||
Leg stifness (AU) | 0.812 | 0.696 | |||
COM depth (cm) | 0.735 | 0.880 | |||
ΔtFP:Δtjump ratio (AU) | 0.672 | 0.871 | |||
Eigenvalues | 14.1 | 3.9 | 2.7 | 1.3 | |
% of Variance | 59 | 16 | 11 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anicic, Z.; Janicijevic, D.; Knezevic, O.M.; Garcia-Ramos, A.; Petrovic, M.R.; Cabarkapa, D.; Mirkov, D.M. Assessment of Countermovement Jump: What Should We Report? Life 2023, 13, 190. https://doi.org/10.3390/life13010190
Anicic Z, Janicijevic D, Knezevic OM, Garcia-Ramos A, Petrovic MR, Cabarkapa D, Mirkov DM. Assessment of Countermovement Jump: What Should We Report? Life. 2023; 13(1):190. https://doi.org/10.3390/life13010190
Chicago/Turabian StyleAnicic, Zdravko, Danica Janicijevic, Olivera M. Knezevic, Amador Garcia-Ramos, Milos R. Petrovic, Dimitrije Cabarkapa, and Dragan M. Mirkov. 2023. "Assessment of Countermovement Jump: What Should We Report?" Life 13, no. 1: 190. https://doi.org/10.3390/life13010190
APA StyleAnicic, Z., Janicijevic, D., Knezevic, O. M., Garcia-Ramos, A., Petrovic, M. R., Cabarkapa, D., & Mirkov, D. M. (2023). Assessment of Countermovement Jump: What Should We Report? Life, 13(1), 190. https://doi.org/10.3390/life13010190