Methods to Improve the Solubility of Curcumin from Turmeric
Abstract
:1. Introduction
2. Nanoparticles
2.1. Encapsulation in Polysaccharide Nanoparticles
2.2. Silica Nanoparticles
2.3. Single-Walled Carbon Nanotubes (SWCNTs)
2.4. Nanoparticles of the Poly Lactide-Glycolide (PLGA) Polymer
2.5. Nanosuspensions
3. Complexes with Cyclodextrins (CDC)
4. Polymorphic Forms
5. Cocrystals of Curcumin
- The molecular structure of the substance remains unchanged while its properties are affected by the co-former.
- Thanks to understanding the principles of crystal engineering, the structure of a cocrystal can be controlled.
- Thanks to the library of available synthons and co-formers, it is possible to select the required functional properties for a large number of APIs.
- The form of a cocrystal, in comparison to salt, can also be obtained for the substances which do not undergo ionization, or which have sensitive functional groups that can undergo transformation when affected by strong acids and bases.
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, A.; Singh, M.; Singh, P.P.; Singh, S.K.; Raj, P.; Pandey, K.D. Antioxidant efficacy and curcumin content of turmeric (Curcuma-longa L.) flower. Int. J. Curr. Pharm. Res. 2016, 8, 112–114. [Google Scholar]
- Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011, 16, 4567–4598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Negi, P.S.; Jayaprakasha, G.K.; Jagan Mohan Rao, L.; Sakariah, K.K. Antibacterial Activity of Turmeric Oil: A Byproduct from Curcumin Manufacture. J. Agric. Food Chem. 1999, 47, 4297–4300. [Google Scholar] [CrossRef] [PubMed]
- Giordano, A.; Tommonaro, G. Curcumin and cancer. Nutrients 2019, 11, 2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hewlings, S.J.; Kalman, D.S. Curcumin: A review of its effects on human health. Foods 2017, 6, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Den Hartogh, D.J.; Gabriel, A.; Tsiani, E. Antidiabetic properties of curcumin I: Evidence from in vitro studies. Nutrients 2020, 12, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, F.S.; Sun, J.L.; Xie, W.H.; Shen, L.; Ji, H.F. Neuroprotective effects and mechanisms of curcumin–Cu (II) and–Zn (II) complexes systems and their pharmacological implications. Nutrients 2017, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Hamaguchi, T.; Ono, K.; Yamada, M. Curcumin and Alzheimer’s disease. CNS Neurosci. Ther. 2010, 16, 285–297. [Google Scholar] [CrossRef]
- Patel, S.S.; Acharya, A.; Ray, R.S.; Agrawal, R.; Raghuwanshi, R.; Jain, P. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease. Crit. Rev. Food Sci. Nutr. 2020, 60, 887–939. [Google Scholar] [CrossRef]
- Yang, C.; Zhu, K.; Yuan, X.; Zhang, X.; Qian, Y.; Cheng, T. Curcumin has immunomodulatory effects on RANKL-stimulated osteoclastogenesis in vitro and titanium nanoparticle-induced bone loss in vivo. J. Cell. Mol. Med. 2020, 24, 1553–1567. [Google Scholar] [CrossRef] [Green Version]
- Abo-Zaid, M.A.; Shaheen, E.S.; Ismail, A.H. Immunomodulatory effect of curcumin on hepatic cirrhosis in experimental rats. J. Food Biochem. 2020, 44, e13219. [Google Scholar] [CrossRef] [PubMed]
- Nabavi, S.F.; Daglia, M.; Moghaddam, A.H.; Habtemariam, S.; Nabavi, S.M. Curcumin and liver disease: From chemistry to medicine. Compreh. Rev. Food Sci. Food Saf. 2014, 13, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Hu, R.W.; Carey, E.J.; Lindor, K.D.; Tabibian, J.H. Curcumin in hepatobiliary disease: Pharmacotherapeutic properties and emerging potential clinical applications. Ann. Hepatol. 2018, 16, 835–841. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.; Mukim, M.; Sharma, P.; Devi, S.; Nagar, J.C.; Khalid, M. Curcumin: A review for health benefits. Int. J. Res. Rev. 2020, 7, 273–290. [Google Scholar]
- Santini, A.; Novellino, E. Nutraceuticals-shedding light on the grey area between pharmaceuticals and food. Expert Rev. Clin. Pharmacol. 2018, 11, 545–547. [Google Scholar] [CrossRef] [Green Version]
- Durazzo, A.; Camilli, E.; D’Addezio, L.; Piccinelli, R.; Mantur-Vierendeel, A.; Marletta, L.; Finglas, P.; Turrini, A.; Sette, S. Development of dietary supplement label database in Italy: Focus of FoodEx2 coding. Nutrients 2019, 12, 89. [Google Scholar] [CrossRef] [Green Version]
- de Souza, J.F.; da Silva Pontes, K.; Alves, T.F.R.; de Barros, C.T.; Amaral, V.A.; de Moura Crescencio, K.M.; Rios, A.C.; Batain, F.; Souto, E.B.; Severino, P.; et al. Structural comparison, physicochemical properties, and in vitro release profile of curcumin-loaded lyotropic liquid crystalline nanoparticle: Influence of hydrotrope as interface stabilizers. J. Mol. Liq. 2020, 306, 112861. [Google Scholar] [CrossRef]
- Doktorovova, S.; Souto, E.B.; Silva, A.M. Hansen solubility parameters (HSP) for prescreening formulation of solid lipid nanoparticles (SLN): In vitro testing of curcumin-loaded SLN in MCF-7 and BT-474 cell lines. Pharm. Dev. Technol. 2018, 23, 96–105. [Google Scholar] [CrossRef]
- Souto, E.B.; Severino, P.; Basso, R.; Santana, M.H.A. Encapsulation of antioxidants in gastrointestinal-resistant nanoparticulate carriers. Oxid. Stress Nanotechnol. 2013, 1028, 37–46. [Google Scholar]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The therapeutic potential of apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef] [Green Version]
- Daliu, P.; Santini, A.; Novellino, E. From pharmaceuticals to nutraceuticals: Bridging disease prevention and management. Exp. Rev. Clin. Pharmacol. 2019, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Durazzo, A.; Lucarini, M. Extractable and non-extractable antioxidants. Molecules 2019, 24, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durazzo, A.; Lucarini, M.; Kiefer, J.; Mahesar, S.A. State-of-the-art infrared applications in drugs, dietary supplements, and nutraceuticals. J. Spectrosc. 2020, 2020, 1397275. [Google Scholar] [CrossRef]
- Chen, Z.; Xue, J.; Shen, T.; Mu, S.; Fu, Q. Curcumin alleviates glucocorticoid-induced osteoporosis through the regulation of the Wnt signaling pathway. Int. J. Mol. Med. 2016, 37, 329–338. [Google Scholar] [CrossRef] [Green Version]
- Kurien, B.T.; Singh, A.; Matsumoto, H.; Scofield, R.H. Improving the solubility and pharmacological efficacy of curcumin by heat treatment. Assay Drug Dev. Technol. 2007, 5, 567–576. [Google Scholar] [CrossRef]
- Song, Y.; Sonawane, N.; Salinas, D.; Qian, L.; Pedemonte, N.; Galietta, L.J.; Verkman, A. Evidence against the rescue of defective ΔF508-CFTR cellular processing by curcumin in cell culture and mouse models. J. Biol. Chem. 2004, 279, 40629–40633. [Google Scholar] [CrossRef] [Green Version]
- Ireson, C.R.; Jones, D.J.; Orr, S.; Coughtrie, M.W.; Boocock, D.J.; Williams, M.L.; Farmer, P.B.; Steward, W.P.; Gescher, A. Metabolism of the cancer chemopreventive agent curcumin in human and rat intestine. Cancer Epidemiol. Biomark. Prev. 2002, 11, 105–111. [Google Scholar]
- Guzman-Villanueva, D.; El-Sherbiny, I.M.; Herrera-Ruiz, D.; Smyth, H.D. Design and in vitro evaluation of a new nano-microparticulate system for enhanced aqueous-phase solubility of curcumin. Biomed. Res. Int. 2013, 2013, 724763. [Google Scholar] [CrossRef] [Green Version]
- Seljak, K.B.; Kocbek, P.; Gašperlin, M. Mesoporous silica nanoparticles as delivery carriers: An overview of drug loading techniques. J. Drug Deliv. Sci. Technol. 2020, 59, 101906. [Google Scholar] [CrossRef]
- Gangwar, R.K.; Tomar, G.B.; Dhumale, V.A.; Zinjarde, S.; Sharma, R.B.; Datar, S. Curcumin conjugated silica nanoparticles for improving bioavailability and its anticancer applications. J. Agric. Food Chem. 2013, 61, 9632–9637. [Google Scholar] [CrossRef]
- Liang, F.; Wang, M.; Hu, Y.; Guo, Z.; Yang, W.; Aspects, E. Cetyltrimethylammonium bromide promoted dispersing and incorporation of curcumin into silica particles in alkaline ethanol/water mixture. Colloids Surf. A: Physicochem. Eng. Asp. 2021, 624, 126789. [Google Scholar] [CrossRef]
- Jambhrunkar, S.; Karmakar, S.; Popat, A.; Yu, M.; Yu, C. Mesoporous silica nanoparticles enhance the cytotoxicity of curcumin. RSC Adv. 2014, 4, 709–712. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Dutta, S.; Sarkar, A.; Kundu, M.; Sil, P.C. Targeted delivery of curcumin in breast cancer cells via hyaluronic acid modified mesoporous silica nanoparticle to enhance anticancer efficiency. Colloids Surf. B Biointerfaces 2021, 197, 111404. [Google Scholar] [CrossRef]
- Mielcarek, J.; Kruszyńska, M.; Sokołowski, P. Zastosowanie nanorurek węglowych w medycynie. Farm. Pol. 2009, 65, 251–254. [Google Scholar]
- Liu, Z.; Chen, K.; Davis, C.; Sherlock, S.; Cao, Q.; Chen, X.; Dai, H. Drug delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res. 2008, 68, 6652–6660. [Google Scholar] [CrossRef]
- More, M.P.; Pardeshi, S.R.; Pardeshi, C.V.; Sonawane, G.A.; Shinde, M.N.; Deshmukh, P.K.; Naik, J.B.; Kulkarni, A.D. Recent advances in phytochemical-based Nano-formulation for drug-resistant Cancer. Med. Drug Discov. 2021, 10, 100082. [Google Scholar] [CrossRef]
- Li, H.; Zhang, N.; Hao, Y.; Wang, Y.; Jia, S.; Zhang, H.; Zhang, Y.; Zhang, Z. Formulation of curcumin delivery with functionalized single-walled carbon nanotubes: Characteristics and anticancer effects in vitro. Drug Deliv. 2014, 21, 379–387. [Google Scholar] [CrossRef] [PubMed]
- Lanone, S.; Andujar, P.; Kermanizadeh, A.; Boczkowski, J. Determinants of carbon nanotube toxicity. Adv. Drug Deliv. Rev. 2013, 65, 2063–2069. [Google Scholar] [CrossRef] [PubMed]
- Zullo, B.A.; Ciafardini, G. The olive oil oxygen radical absorbance capacity (DPPH assay) as a quality indicator. Eur. J. Lipid Sci. Technol. 2008, 110, 428–434. [Google Scholar] [CrossRef]
- Nair, K.L.; Thulasidasan, A.K.T.; Deepa, G.; Anto, R.J.; Kumar, G.V. Purely aqueous PLGA nanoparticulate formulations of curcumin exhibit enhanced anticancer activity with dependence on the combination of the carrier. Int. J. Pharm. 2012, 425, 44–52. [Google Scholar] [CrossRef]
- Lakshmi, P.; Kumar, G.A. Nanosuspension technology: A review. Int. J. Pharm. Phamrm. Sci. 2010, 2, 35–40. [Google Scholar]
- Zhang, J.; Xie, Z.; Zhang, N.; Zhong, J. Nanosuspension drug delivery system: Preparation, characterization, postproduction processing, dosage form, and application. Nanostruct. Drug Deliv. 2017, 413–443. [Google Scholar] [CrossRef]
- Gao, Y.; Li, Z.; Sun, M.; Guo, C.; Yu, A.; Xi, Y.; Cui, J.; Lou, H.; Zhai, G. Preparation and characterization of intravenously injectable curcumin nanosuspension. Drug Deliv. 2011, 18, 131–142. [Google Scholar] [CrossRef]
- Jacob, S.; Nair, A.B. Cyclodextrin complexes: Perspective from drug delivery and formulation. Drug Dev. Res. 2018, 79, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Qin, X.; Zhong, S.; Chen, S.; Su, W.; Liu, Y. Characterization of curcumin/cyclodextrin polymer inclusion complex and investigation on its antioxidant and antiproliferative activities. Molecules 2018, 23, 1179. [Google Scholar] [CrossRef] [Green Version]
- Celebioglu, A.; Uyar, T. Fast-dissolving antioxidant curcumin/cyclodextrin inclusion complex electrospun nanofibrous webs. Food Chem. 2020, 317, 126397. [Google Scholar] [CrossRef]
- Lu, J.; Rohani, S. Polymorphism and crystallization of active pharmaceutical ingredients (APIs). Curr. Med. Chem. 2009, 16, 884–905. [Google Scholar] [CrossRef]
- Sanphui, P.; Goud, N.R.; Khandavilli, U.R.; Bhanoth, S.; Nangia, A. New polymorphs of curcumin. ChemComm 2011, 47, 5013–5015. [Google Scholar] [CrossRef]
- Sokal, A.; Pindelska, E. Kokryształy–nowa forma leku. Prosp. Pham. Sci. 2013, 11, 37–41. [Google Scholar] [CrossRef]
- Sanphui, P.; Goud, N.R.; Khandavilli, U.R.; Nangia, A. Fast dissolving curcumin cocrystals. Cryst. Growth Des. 2011, 11, 4135–4145. [Google Scholar] [CrossRef]
- Chow, S.F.; Shi, L.; Ng, W.W.; Leung, K.H.Y.; Nagapudi, K.; Sun, C.C.; Chow, A.H. Kinetic entrapment of a hidden curcumin cocrystal with phloroglucinol. Cryst. Growth Des. 2014, 14, 5079–5089. [Google Scholar] [CrossRef]
- Su, H.; He, H.; Tian, Y.; Zhao, N.; Sun, F.; Zhang, X.; Jiang, Q.; Zhu, G. Syntheses and characterizations of two curcumin-based cocrystals. Inorg. Chem. Commun. 2015, 55, 92–95. [Google Scholar] [CrossRef]
- Sathisaran, I.; Dalvi, S.V. Crystal engineering of curcumin with salicylic acid and hydroxyquinol as coformers. Cryst. Growth Des. 2017, 17, 3974–3988. [Google Scholar] [CrossRef]
- Sanphui, P.; Bolla, G. Curcumin, a biological wonder molecule: A crystal engineering point of view. Cryst. Growth Des. 2018, 18, 5690–5711. [Google Scholar] [CrossRef]
- Patent Solid Forms of Curcumin and Derivatives Thereof WO2015052568A2. Available online: https://patents.google.com/patent/WO2015052568A2/fi (accessed on 2 December 2022).
Co-Former | Preparation Method | Molar Ratio | Intermolecular Interactions | Change of Solubility | Ref. |
---|---|---|---|---|---|
Resorcinol | Hand fragmentation (liquid-assisted) of particular solid components for 30 min in a mortar after adding 5–6 drops of ethanol | 1:1 | Intermolecular hydrogen bond between phenolic group of resorcinol and carbonyl group of curcumin Alternatively, weak C-H···O interaction between methoxyl group of resorcinol and C-H···π interaction | Increase of solubility in ethanolic solution (4.72-fold) | [50] |
Pyrogallol | Hand fragmentation (liquid-assisted) of particular solid components for 30 min in a mortar after adding 5–6 drops of EtOH | 1:1 | Intermolecular hydrogen bond between phenolic group of pyrogallol and carbonyl group of curcumin Formation of a trimer between two molecules of curcumin and one molecule of pyrogallol by O-H···O bonds between phenolic groups of two curcumin molecules and oxygen acceptor of pyrogallol | Increase of solubility in ethanol–water solution (11.76-fold) | [50] |
Phloroglucinol | Dissolution of curcumin and phloroglucinol in organic solvent removed in vacuo using a water evaporator, drying for 3 h at 40 °C | 1:1 | No data | Reduction of solubility | [51] |
4,4′-bipyridine-N,N′-dioxide | Suspension of curcumin and 4,4′-bipyridine-N,N′-dioxide (BPNO) in ethanol–acetone mixture, stirring at room temperature. After heating the suspension at 60 °C for 72 h, left to evaporate for 24 h. | 1:1 | Hydrogen bond between oxygen of 4,4′-bipyridine-N,N′-dioxide and the -OH group of phenolic group of curcumin | No data | [52] |
Hydroxyquinol | Heating up to 130 °C and dissolution in equimolar acetone-toluene or ethyl acetate-toluene mixture | 1:1 | Strong hydrogen bond between -OH group of hydroxyquinol and β-diketo of curcumin | Increase of solubility from acetone-toluene mixture 1.6-fold, and from ethyl acetate-toluene mixture 1.6-fold. | [53] |
Heating up to 135 °C and dissolution in 10 mL of equimolar acetone-toluene or ethyl acetate-toluene mixture at sonification | 1:2 | Increase of solubility from acetone-toluene mixture 2.8-fold, and from ethyl acetate-toluene mixture 3-fold. | |||
Methylparaben | Wet grinding with ethanol | 1:1 | Intermolecular hydrogen bonds between hydroxyl group of methylparaben and β-diketo of curcumin | No data | [54] |
2-aminobenzimidazole | Grinding of curcumin-2-aminobenzimidazole mixture by adding methylisobutylketone dropwise in a ball mill | 1:1 | No data | Increase of solubility in aqueous ethanolic solution: IDR 0.023 ((mg/cm2)/min) 1 | [55] |
Nicotinamide | Grinding of curcumin-nicotinamide mixture by adding ethyl acetate dropwise in a ball mill | 1:1 | No data | Increase of solubility in aqueous ethanolic solution: IDR 0.040 ((mg/cm2)/min) 1 | [55] |
L-lysine | Grinding of curcumin-L-lysine mixture in a ball mill | 1:1 | No data | Increase of solubility in aqueous ethanolic solution: IDR 0.029 ((mg/cm2)/min) 1 | [55] |
Piperazine | Grinding of suspension in acetonitrile for 6 and 24 h (for polymorphic forms 1 and 2, respectively) | 1:1 | No data | No data | [55] |
Grinding of suspension in methanol for 4 h | 2:1 | ||||
Isonicotinamide | Dissolution of equimolar mixture in n-propyl acetate or ethyl acetate, then slow evaporation | 1:2 | No data | No data | [55] |
Sodium naproxen | Grinding the suspension in acetone | 1:1 | No data | No data | [55] |
Piperidine | Grinding the suspension in acetonitrile | 1:1 | No data | No data | [55] |
Sodium ibuprofen | Sonification of curcumin-sodium ibuprofen mixture in acetone for 15 min | 1:1 | No data | No data | [55] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Górnicka, J.; Mika, M.; Wróblewska, O.; Siudem, P.; Paradowska, K. Methods to Improve the Solubility of Curcumin from Turmeric. Life 2023, 13, 207. https://doi.org/10.3390/life13010207
Górnicka J, Mika M, Wróblewska O, Siudem P, Paradowska K. Methods to Improve the Solubility of Curcumin from Turmeric. Life. 2023; 13(1):207. https://doi.org/10.3390/life13010207
Chicago/Turabian StyleGórnicka, Julia, Martyna Mika, Oliwia Wróblewska, Paweł Siudem, and Katarzyna Paradowska. 2023. "Methods to Improve the Solubility of Curcumin from Turmeric" Life 13, no. 1: 207. https://doi.org/10.3390/life13010207
APA StyleGórnicka, J., Mika, M., Wróblewska, O., Siudem, P., & Paradowska, K. (2023). Methods to Improve the Solubility of Curcumin from Turmeric. Life, 13(1), 207. https://doi.org/10.3390/life13010207