Phytochemical Profile, Antioxidant Activity, Anti-Hyperglycemic Effect and Toxicity Assessment of Ridolfia segetum (L.) Moris Extract
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.1.1. Harvest and Botanical Identification
2.1.2. Quality Control of Plant Material
pH Determination
Content of Mineral Matter (Ash) and Organic Matter
Dry Matter Moisture Content
Determination of Mineral Composition by ICP-AES
2.2. Phytochemical Study
2.2.1. Phytochemical Screening
2.2.2. Extraction of Polyphenols
Decoction Extraction
Soxhlet Extraction
Splitting
2.2.3. Amount of Total Phenols
2.2.4. Amount of Flavonoids
2.2.5. Amount of Condensed Tannins
2.2.6. High-Performance Liquid Chromatography Coupled with Diode Array Detector Analysis
2.2.7. Antioxidant Activity
DPPH* Free Radical Scavenging
FRAP Iron Reducing Power Test
2.3. Pharmacological Study
2.3.1. Animals
2.3.2. Acute oral Extract of R. segetum (L.) Moris
2.3.3. Study of the Antihyperglycemic Effect of R. segetum (L.) Moris Extract in Normal Rats
Oral Glucose Tolerance Test
Evaluation of the Inhibitory Effect of Aqueous Extracts on the Activity of Pancreatic α-Amylase, In Vitro
3. Results and Discussion
3.1. Quality Control
3.1.1. pH Determination
3.1.2. ASH Content
3.1.3. Dry Matter Rate and Humidity Rate TH (%)
3.1.4. Analysis of the Mineral Composition of R. segetum (L.) Moris by ICP/AES
3.2. Phytochemical Screening
3.3. Extraction Yields of Polyphenols from R. segetum (L.) Moris
3.4. Polyphenol Content
3.5. Flavonoid Content
3.6. Condensed Tannin Content
3.7. Identification and Quantification of the Polyphenols Contained in the Extract of R. segetum (L.) Moris by High-Pressure Liquid Chromatography Coupled with UV Spectrometry (HPLC/DAD)
3.8. Antioxidant Activity
3.8.1. DPPH* Free Radical Trapping Method
Determination of Inhibition Percentages
Determination of Inhibition Percentages
Determination of Inhibitory Concentration IC50
3.8.2. Iron Reduction by R. segetum (L.) Moris Extracts
Evaluation of Iron Reduction Capacity by Extracts and Fractions of R. segetum (L.) Moris
Determination of the Effective Concentration (EC50) of Extracts of R. segetum
3.9. Antihyperglycemic Effect of Decocted Extract of R. segetum (L.) Moris
3.9.1. Acute Safety of R. segetum (L.) Moris Decoction
3.9.2. Antihyperglycemic Effect of R. segetum (L.) Moris Extract in Normal Rats
3.9.3. Evaluation of the Inhibitory Effect of Aqueous Extracts on the Activity of Pancreatic α-Amylase, In Vitro
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thellung, A. Nov. RegniVeg. Daucus Studkn. Repert Spec. 1926, 23, 147–159. [Google Scholar]
- Thellunq, A.; Thellunq, A. The weed flora of Montpellier. Mém Soc. Nation Se Nat. Math. 1912, 38, 57–728. [Google Scholar]
- Tanji, A.; Nassif, F. Edible Weeds in Morocco. Weed Technol. 1995, 9, 617–620. [Google Scholar] [CrossRef]
- Bicchi, C.; Rubiolo, P.; Ballero, M.; Sanna, C.; Matteodo, M.; Esposito, F.; Zinzula, L.; Tramontano, E. HIV-1-inhibiting activity of the essential oil of Ridolfia segetum and Oenanthe croca. Planta. Med. 2009, 75, 1331–1335. [Google Scholar] [CrossRef] [PubMed]
- Cabral, C.; Poças, J.; Gonçalves, M.J.; Cavaleiro, C.; Cruz, M.T.; Salgueiro, L. Ridolfia Segetum (L.) Moris (Apiaceae) from Portugal: A Source of Safe Antioxidant and Anti-Inflammatory Essential Oil. Ind. Crops Prod. 2015, 65, 56–61. [Google Scholar] [CrossRef] [Green Version]
- Jabrane, A.; Ben Jannet, H.; Mastouri, M.; Mighri, Z.; Casanova, J. Chemical Composition and In Vitro Evaluation of Antioxidant and Antibacterial Activities of the Root Oil of Ridolfia Segetum (L.) Moris from Tunisia. Nat. Prod. Res. 2010, 24, 491–499. [Google Scholar] [CrossRef]
- Drioiche, A.; Benhlima, N.; Kchibale, A.; Boutahiri, S.; Ailli, A.; El Hilali, F.; Moukaid, B.; Zair, T. Ethnobotanical investigation of herbal food additives of Morocco used as natural dyes. Ethnobot. Resear. Applicat. 2021, 21, 1–43. [Google Scholar] [CrossRef]
- Tanji, A. Weeds of Wheat and Barley in Morocco; INRA Editions: Rabat, Morocco, 2005. (In French) [Google Scholar]
- Benkhnigue, F.; Akka, B.; Salhi, S.; Fadli, M.; Douira, A.; Zidane, L. Catalogue des plantes médicinales utilisées dans le traitement du diabète dans la région d’Al Haouz-Rhamna (Maroc). J. Anim. Plant Sci. 2014, 23, 3539–3568. [Google Scholar]
- Chaachouay, N.; Benkhnigue, O.; El Ibaoui, H.; El Ayadi, R.; Zidane, L. Medicinal Plants Used for Diabetic Problems in the Rif, Morocco. Ethnobot. Res. Appl. 2019, 18, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Belhaj, S.; Chaachouay, N.; Zidane, L. Ethnobotanical and Toxicology Study of Medicinal Plants Used for the Treatment of Diabetes in the High Atlas Central of Morocco. J. Pharm. Pharmacogn. Res. 2021, 9, 619–662. [Google Scholar] [CrossRef]
- Jannet, H.B.; Mighri, Z. Hydrodistillation Kinetic and Antibacterial Effect Studies of the Flower Essential Oil from the Tunisian R. segetum (L.) Moris. J. Essent. Oil Res. 2007, 19, 258–261. [Google Scholar] [CrossRef]
- Božović, M.; Garzoli, S.; Baldisserotto, A.; Andreotti, E.; Cesa, S.; Pepi, F.; Vertuani, S.; Manfredini, S.; Ragno, R. Variation in Essential Oil Content and Composition of R. segetum (L.) Moris Based on 30-Hour Prolonged Fractionated Extraction Procedure. Nat. Prod. Res. 2020, 34, 1923–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Basaid, K.; Chebli, B.; Bouharroud, R.; Elaini, R.; Alaoui, I.F.; Kaoui, S.; de Oliveira, A.L.; Furze, J.N.; Mayad, E.H. Biocontrol Potential of Essential Oil from Moroccan R. segetum (L.) Moris. J. Plant Dis. Prot. 2021, 128, 1157–1166. [Google Scholar] [CrossRef]
- Poças, J. Assessment of the Properties of the Essential Oil from R. segetum Moris (Portugal) on cancer cell viability. Planta Med. 2014, 80, P1L44. [Google Scholar] [CrossRef]
- Beeby, E.; Magalhães, M.; Lemos, M.F.L.; Pires, I.M.; Cabral, C. Cytotoxic Effects of Ridolfia Segetum (L.) Moris Phytoproducts in Cancer Cells. J. Ethnopharmacol. 2021, 267, 113515. [Google Scholar] [CrossRef] [PubMed]
- Badalamenti, N.; Ilardi, V.; Bruno, M.; Pavela, R.; Boukouvala, M.C.; Kavallieratos, N.G.; Maggi, F.; Canale, A.; Benelli, G. Chemical Composition and Broad-Spectrum Insecticidal Activity of the Flower Essential Oil from an Ancient Sicilian Food Plant, Ridolfia segetum. Agriculture 2021, 11, 304. [Google Scholar] [CrossRef]
- Alberti, K.G.M.M.; Zimmet, P.Z. Definition, Diagnosis and Classification of Diabetes Mellitus and Its Complications. Part 1: Diagnosis and Classification of Diabetes Mellitus. Provisional Report of a Who Consultation. Diabet. Med. 1998, 15, 539–553. [Google Scholar] [CrossRef]
- Shapiro, K.; Gong, W.C. Natural Products Used for Diabetes. J. Am. Pharm. Assoc. 2002, 42, 217–226. [Google Scholar] [CrossRef]
- Marles, R.J.; Farnsworth, N.R. Antidiabetic Plants and Their Active Constituents. Phytomedicine 1995, 2, 137–189. [Google Scholar] [CrossRef]
- Coste, H.; Jovet, P.; De Vilmorin, R. Descriptive and Illustrated Flora of France. Third Suppl. Librair. Alber. Blanch. 1997, 2-85367-013-9. [Google Scholar]
- AFNOR. Animal Feed. Determination of Raw Ash; NF V18-101; ISO 5984:1978; 1977; p. 2. [Google Scholar]
- Bekro, Y.; Mamyrbekova, J.; Boua, B.; Tra Bi, F.; Ehile, E. Ethnobotanical Study and Phytochemical Screening of Caesalpiniabenthamiana (Baill.). Herend Zarucchi (Caesalpiniaceae) Sci. Nat. Sci. 2008, 4, 217–225. [Google Scholar]
- Bruneton, J. Pharmacognosia, Phytochemistry, Medicinal Plants, 4th ed.; Technique & Documentation-Lavoisier: Paris, France, 2009; p. 1269. [Google Scholar]
- Gharibi, S.; Tabatabaei, B.E.S.; Saeidi, G.; Talebi, M.; Matkowski, A. The effect of drought stress on polyphenolic compounds and expression of flavonoid biosynthesis related genes in Achillea pachycephala Rech.f. Phytochemistry 2019, 162, 90–98. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic- Phosphotungstic Acid Reagents. Am. J. Technol. Vitic. 1965, 16, 144–153. [Google Scholar]
- Mirniyam, G.; Rahimmalek, M.; Arzani, A.; Matkowski, A.; Gharibi, S.; Szumny, A. Changes in Essential Oil Composition, Polyphenolic Compounds and Antioxidant Capacity of Ajowan (Trachyspermum ammi L.) Populations in Response to Water Deficit. Foods 2022, 11, 3084. [Google Scholar] [CrossRef] [PubMed]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Price, M.L.; Van Scoyoc, S.; Butler, L.G.A. Critical Evaluation of the Vanillinreaction as an Assay for Tannin in Sorghum Grain. J. Agric. Food Chem. 1978, 26, 1214–1218. [Google Scholar] [CrossRef]
- Popovici, C.; Ilonka, S.; Bartek, T. Evaluation de l’Activité Antioxydante des Composés Phénoliques par la Réactivité avec le Radical Libre DPPH*. Rev. Génie Ind. 2009, 4, 25–39. [Google Scholar]
- Sanchez-Moreno, C.; Larrauri, J.A.; Saura-Calixto, F. Aprocedure to Measure the Antiradicalefficiency of Polyphenols. J. Sci. Technol. Int. 1998, 8, 121–137. [Google Scholar]
- Parejo, F.; Viladomat, J.; Bastida, A.; Rosas-Romero, N.; Flerlage, J.; Burillo, C.C. Comparison Between the Radical Scavenging Activities and Antioxidant Activity of Six Distilled and Non-distilled Mediterranean Herbs and Aromatic Plants. J. Agric. Food Chem. 2002, 50, 6882–6890. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on Products of Browning Reaction Antioxidative Activities of Products of Browning Reaction Prepared from Glucosamine. Jpn. J. Nutr. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Zerkani, H.; Tagnaout, I.; Khiya, Z.; Boutahiri, S.; Amalich, S.; Fadili, K.; Cherrat, A.; Mouradi, A.; Benhlima, N.; Zair, T. Comparative Study of the Antioxidant Power of Polyphenols of Leaves, Fruits, and Bark of Pistacia atlantica Desf. from Morocco. J. Chem. 2022, 13, 7432169. [Google Scholar] [CrossRef]
- Karkouri, J.; Amalich, S.; Drioiche, A.; Fadili, K.; Eto, B.; Khabal, Y.; Zair, T. Phytochemical Valuation of the Umbels of Ridolfia Segetum (L.) Moris of Morocco. Int. J. Adv. Res. 2017, 5, 1780–1788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Afshari, M.; Rahimmalek, M.; Sabzalian, M.R.; Bielecka, M.; Matkowski, A.; Majid, T. Changes in physiological, phytochemical traits and gene expression of two Perovskia species in response to water deficit. Scient. Horticultura 2021, 293, 110747. [Google Scholar] [CrossRef]
- Marongiu, B.; Piras, A.; Porcedda, S.; Tuveri, E.; Maxia, A. Comparative analysis of the oil and supercritical CO2 extract of Ridolfia segetum (L.). Moris. Nat. Prod. Res. 2007, 21, 5. [Google Scholar] [CrossRef]
- Kim, J.A.; Formoso, G.; Li, Y.; Potenza, M.A.; Marasciulo, F.L.; Montagnani, M.; Quon, M.J. Epigallocatechin Gallate, a Green Tea Polyphenol, Mediates NO-Dependent Vasodilation Using Signaling Pathways in Vascular Endothelium Requiring Reactive Oxygen Species and Fyn. J. Biol. Chem. 2007, 282, 13736–13745. [Google Scholar] [CrossRef] [Green Version]
- González-Montelongo, R.; Gloria Lobo, M.G.; González, M. Antioxidant Activity in Banana Peel Extracts: Testing Extraction Conditions and Related Bioactive Compounds. Food Chem. 2010, 119, 1030–1039. [Google Scholar] [CrossRef]
- Franco, D.; Sineiro, J.; Rubilar, M.; Sánchez, M.; Jerez, M.; Pinelo, M.; Núñez, M.J. Polyphenols from Plant Materials: Extraction and Antioxidant Power. Electron. J. Environ. Agric. Food Chem. 2008, 7, 3210–3216. [Google Scholar]
- Henanou, R.; Zaghez, N. Study of the Antibacterial and Antioxidant Activity of the Extracts of the Aerial Part of Pituranthos scoparius “Guezzah”. Master’s Thesis, University of Biskra, Biskira, Algieria, 2019. [Google Scholar]
- Galanakis, C.M.; Markouli, E.; Gekas, V. Recovery and Fractionation of Different Phenolic Classes from Winery Sludge Using Ultrafiltration. Sep. Purif. Technol. 2013, 107, 245–251. [Google Scholar] [CrossRef]
- Majhenič, L.; Škerget, M.S.; Knez, Ž. Antioxidant and Antimicrobial Activity of Guarana Seed Extracts. Food Chem. 2007, 104, 1258–1268. [Google Scholar] [CrossRef]
- Pokorny, J.; Yanishlieva, N.; Gordon, M.H. (Eds.) Antioxidants in Food: Practical Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Kang, D.G.; Yun, C.; Lee, H.S. Screening and Comparison of Antioxidant Activity of Solvent Extracts of Herbal Medicines Used in Korea. J. Ethnopharml. 2003, 87, 231–236. [Google Scholar] [CrossRef]
- Hodgson, E. A Textbook of Modern Toxicology, 3rd ed.; Wiley Interscience: Hoboken, NJ, USA, 2004; pp. 525–541. [Google Scholar]
- Miranda, M.; Cruz, M.T.; Vitorino, C.; Cabral, C. Nanostructuring Lipid Carriers Using Ridolfia segetum (L.) Moris Essential Oil. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 103, 109804. [Google Scholar] [CrossRef]
- Bellakhdar, J. Traditional Pharmacopoeia, Ancient Arabic Medicine and Popular Knowledge; Ibis Press: Lake Worth, FL, USA, 1997; p. 475. [Google Scholar]
- Bouhrim, M.; Ouassou, H.; Boutahiri, S.; Daoudi, N.E.; Mechchate, H.; Gressier, B.; Eto, B.; Imtara, H.; A Alotaibi, A.; Al-Zharani, M.; et al. Opuntia Dillenii (Ker Gawl.) Haw., Seeds Oil Antidiabetic Potential Using In Vivo, In Vitro, In Situ, and Ex Vivo Approaches to Reveal Its Underlying Mechanism of Action. Molecules 2021, 26, 1677. [Google Scholar] [CrossRef] [PubMed]
- Shai, L.J.; Masoko, P.; Mokgotho, M.P.; Magano, S.R.; Mogale, A.M.; Boaduo, N.; Eloff, J.N. Yeast Alpha Glucosidase Inhibitory and Antioxidant Activities of Six Medicinal Plants Collected in Phalaborwa, South Africa. S. Afr. J. Bot. 2010, 76, 465–470. [Google Scholar] [CrossRef] [Green Version]
- Sattar, N.A.; Hussain, F.; Iqbal, T.; Sheikh, M.A. Determination of In Vitro Antidiabetic Effects of Zingiber officinale Roscoe. Braz. J. Pharm. Sci. 2012, 48, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Nammi, S.; Sreemantula, S.; Roufogalis, B.D. Protective Effects of Ethanolic Extract of Zingiber officinale Rhizome on the Development of Metabolic Syndrome in High-Fat Diet-Fed Rats. Basic Clin. Pharmacol. Toxicol. 2009, 104, 366–373. [Google Scholar] [CrossRef]
- Bansal, P.; Paul, P.; Mudgal, J.; Nayak, P.G.; Pannakal, S.T.; Priyadarsini, K.I.; Unnikrishnan, M.K. Antidiabetic, Antihyperlipidemic and Antioxidant Effects of the Flavonoid Rich Fraction of Pilea microphylla (L.) in High Fat Diet/Streptozotocin-Induced Diabetes in Mice. Exp. Toxicol. Pathol. 2012, 64, 651–658. [Google Scholar] [CrossRef] [PubMed]
- Abdelmoaty, M.A.; Ibrahim, M.A.; Ahmed, N.S.; Abdelaziz, M.A. Confirmatory Studies on the Antioxidant and Antidiabetic Effect of Quercetin in Rats. Indian J. Clin. Biochem. 2010, 25, 188–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Gao, P.; Zhu, Q.; Luan, F.; Davis, A.R.; Wang, X. Development of Cleaved Amplifiedpolymorphic Sequence Markers and a CAPS-Based Genetic Linkage Map in Watermelon (Citrullus lanatus [Thunb.] Matsum. and Nakai) Constructed Using Whole-Genome Resequencing Data. Breed. Sci. 2016, 66, 244–259. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.W.; Li, X.; Sun, W.L.; Xing, Y.; Xiu, Z.L.; Zhuang, C.L.; Dong, Y.S. Dietary Flavonoids and Acarbose Synergistically Inhibit α-Glucosidase and Lower Postprandial Blood Glucose. J. Agric. Food Chem. 2017, 65, 8319–8330. [Google Scholar] [CrossRef]
- Proença, C.; Freitas, M.; Ribeiro, D.; Tomé, S.M.; Oliveira, E.F.T.; Viegas, M.F.; Araújo, A.N.; Ramos, M.J.; Silva, A.M.S.; Fernandes, P.A.; et al. Evaluation of a Flavonoids Library for Inhibition of Pancreatic α-Amylase Towards a Structure—Activity Relationship. J. Enzyme Inhib. Med. Chem. 2019, 34, 577–588. [Google Scholar] [CrossRef] [PubMed]
Superdivision | Spermatophyte |
---|---|
Subclasse | Rosidae |
Order | Apials |
Branch line | Spermaphyte (phanerogam) |
Branch | Angiosperme |
Class | Dicotyledon |
Subclass | Dialypetal (with separate petals) |
Order | Apiale (ombellale) |
Family | Apiaceous (Umbelliferous) |
Genre | Ridolfia |
Species | Segetum |
Speces | TH (%) | MS (%) | pH | MO (%) | Ash (%) |
---|---|---|---|---|---|
R. segetum | 12.49 ± 0.01 | 91.8 | 5.21 | 2.18 ± 0.15 | 97.82 ± 0.15 |
Elements | Mn | Cu | Cr | Zn | As | Pb | Cd | Sb | Al | Ca | Fe | Ti |
---|---|---|---|---|---|---|---|---|---|---|---|---|
En(mg/L) | 0.1359 | 0.0332 | 0.0041 | 0.0585 | 0.0319 | 0.0344 | ND | 0.0208 | 0.4799 | 47.685 | 2.358 | 0.0166 |
Chimical Groups | Reagents/Reaction | Ridolfia segetum | ||
---|---|---|---|---|
Alcaloïds | Valse-Mayer Reagents | + | ||
DragendorffReagents | + | |||
Polyphénols | total Tannins | T Gallic tannins | Stiasny HCl Reagents | + |
Catechic tannins | - | |||
Anthocyanes | Acid-base reaction | - | ||
Free flavonoids | Reaction to cyanidin with Mg | + + | ||
Leukocytes | Reaction to cyanidin without Mg | + ++ | ||
Free anthracene derivatives | Bornträger Reaction | - | ||
Combined Santhracenoic Derivatives | O-heterosides | Coloration Reaction | + + | |
C-heterosides | ||||
Sterols et triterpenes | Libermann-Burchard Reaction | ++ + | ||
Mucilages | Precipitation Reaction | + ++ | ||
Saponosides | Foam test | + |
Phenolic Compounds | TR (Min) | Percentage % | Metabolite Families | ||
---|---|---|---|---|---|
R. segetum | Phenolic Acid | Flavonoids | Tannins | ||
Gallic Acid | 1.43 | 25.2 | + | - | - |
Cathechol | 2.9 | 7.7 | + | - | - |
Vanillic Acid | 8.05 | 7.3 | + | - | - |
Catechin | 12.27 | 2.2 | - | - | + |
Tannic Acid | 16.76 | 4 | - | - | + |
Rosmarinic Acid | 18.93 | 1.1 | + | - | - |
Naringenin | 22 | 1.2 | - | + | - |
Coumarinic Acid | 24.1 | 1.3 | + | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Karkouri, J.; Kchibale, A.; Chroho, M.; Eddamsyry, B.; Touijer, H.; El Makhoukhi, F.; Handaq, N.; Eto, B.; Salamatullah, A.M.; Bourhia, M.; et al. Phytochemical Profile, Antioxidant Activity, Anti-Hyperglycemic Effect and Toxicity Assessment of Ridolfia segetum (L.) Moris Extract. Life 2023, 13, 44. https://doi.org/10.3390/life13010044
El Karkouri J, Kchibale A, Chroho M, Eddamsyry B, Touijer H, El Makhoukhi F, Handaq N, Eto B, Salamatullah AM, Bourhia M, et al. Phytochemical Profile, Antioxidant Activity, Anti-Hyperglycemic Effect and Toxicity Assessment of Ridolfia segetum (L.) Moris Extract. Life. 2023; 13(1):44. https://doi.org/10.3390/life13010044
Chicago/Turabian StyleEl Karkouri, Jamila, Amale Kchibale, Mounia Chroho, Brahim Eddamsyry, Hanane Touijer, Fadoua El Makhoukhi, Nadia Handaq, Bruno Eto, Ahmad Mohammad Salamatullah, Mohammed Bourhia, and et al. 2023. "Phytochemical Profile, Antioxidant Activity, Anti-Hyperglycemic Effect and Toxicity Assessment of Ridolfia segetum (L.) Moris Extract" Life 13, no. 1: 44. https://doi.org/10.3390/life13010044
APA StyleEl Karkouri, J., Kchibale, A., Chroho, M., Eddamsyry, B., Touijer, H., El Makhoukhi, F., Handaq, N., Eto, B., Salamatullah, A. M., Bourhia, M., & Zair, T. (2023). Phytochemical Profile, Antioxidant Activity, Anti-Hyperglycemic Effect and Toxicity Assessment of Ridolfia segetum (L.) Moris Extract. Life, 13(1), 44. https://doi.org/10.3390/life13010044