Improved Detection of Cavernous Sinus Invasion of Pituitary Macroadenomas with Ultra-High-Field 7 T MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Acquisition and Postprocessing
2.2.1. MRI
2.2.2. Imaging Protocol and Sequence Details
2.3. Data Evaluation
2.3.1. Image Quality
- Overall image quality;
- Anatomy;
- Artifacts;
2.3.2. Qualitative Assessment
2.3.3. Quantitative Assessment
- (0)
- Adenoma does not reach the medial internal carotid artery, no CS infiltration;
- (1)
- Adenoma does not extend the median internal carotid artery;
- (2)
- Adenoma extends the median internal carotid artery, but does not extend the lateral internal carotid artery;
- (3a)
- Adenoma extends beyond the lateral internal carotid artery into the superior CS
- (3b)
- Adenoma extends beyond the lateral internal carotid artery into the inferior CS;
- (4)
- Adenoma completely surrounds the internal carotid artery.
2.3.4. Intraoperative Findings
2.4. Statistical Analysis
3. Results
3.1. Patients
3.2. Image Quality
3.2.1. Overall Image Quality
3.2.2. Anatomy 1.5 T vs. 7 T MRI
3.2.3. Anatomy 3 T vs. 7 T MRI
3.2.4. Artifacts 1.5 T vs. 7 T MRI
3.2.5. Artifacts 3 T vs. 7 T MRI
3.3. Qualitative Analysis
3.4. Quantitative Analysis
3.5. Intraoperative Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ezzat, S.; Asa, S.L.; Couldwell, W.T.; Barr, C.E.; Dodge, W.E.; Vance, M.L.; McCutcheon, I.E. The prevalence of pituitary adenomas: A systematic review. Cancer 2004, 101, 613–619. [Google Scholar] [CrossRef] [PubMed]
- Famini, P.; Maya, M.M.; Melmed, S. Pituitary magnetic resonance imaging for sellar and parasellar masses: Ten-year experience in 2598 patients. J. Clin. Endocrinol. Metab. 2011, 96, 1633–1641. [Google Scholar] [CrossRef] [PubMed]
- Daly, A.F.; Beckers, A. The Epidemiology of Pituitary Adenomas. Endocrinol. Metab. Clin. 2020, 49, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Molitch, M.E. Diagnosis and Treatment of Pituitary Adenomas: A Review. JAMA 2017, 317, 516–524. [Google Scholar] [CrossRef]
- Graffeo, C.S.; Yagnik, K.J.; Carlstrom, L.P.; Lakomkin, N.; Bancos, I.; Davidge-Pitts, C.; Erickson, D.; Choby, G.; Pollock, B.E.; Chamberlain, A.M.; et al. Pituitary Adenoma Incidence, Management Trends, and Long-term Outcomes: A 30-Year Population-Based Analysis. Mayo. Clin. Proc. 2022, 97, 1861–1871. [Google Scholar] [CrossRef]
- Ntali, G.; Wass, J.A. Epidemiology, clinical presentation and diagnosis of non-functioning pituitary adenomas. Pituitary 2018, 21, 111–118. [Google Scholar] [CrossRef]
- Lake, M.G.; Krook, L.S.; Cruz, S.V. Pituitary adenomas: An overview. Am. Fam. Physician. 2013, 88, 319–327. [Google Scholar]
- Karimian-Jazi, K. Pituitary gland tumors. Radiologe 2019, 59, 982–991. [Google Scholar] [CrossRef]
- Varrassi, M.; Cobianchi Bellisari, F.; Bruno, F.; Palumbo, P.; Natella, R.; Maggialetti, N.; De Filippo, M.; Di Cesare, E.; Barile, A.; Masciocchi, C.; et al. High-resolution magnetic resonance imaging at 3T of pituitary gland: Advantages and pitfalls. Gland Surg. 2019, 8 (Suppl. S3), S208–S215. [Google Scholar] [CrossRef]
- Kim, L.J.; Lekovic, G.P.; White, W.L.; Karis, J. Preliminary Experience with 3-Tesla MRI and Cushing’s Disease. Skull Base 2007, 17, 273–277. [Google Scholar] [CrossRef] [Green Version]
- Wolfsberger, S.; Ba-Ssalamah, A.; Pinker, K.; Mlynarik, V.; Czech, T.; Knosp, E.; Trattnig, S. Application of three-tesla magnetic resonance imaging for diagnosis and surgery of sellar lesions. J. Neurosurg. 2004, 100, 278–286. [Google Scholar] [CrossRef] [PubMed]
- Jörg Bojunga, M.B.; Deutschbein, T.; Ditzen, B.; Fassnacht, M.; Flitsch, J.; Gerlach, R.; Gertzen, E.; Honegger, J.; Horstmann, G.; Jaursch-Hancke, C.; et al. S2k-Leitlinie Diagnostik und Therapie klinisch hormoninaktiver Hypophysentumoren. AWMF Online. 2020. Available online: https://www.endokrinologie.net/files/download/089-002l_S2k_Diagnostik-Therapie-hormonaktiver-Hypophsenadenome_2020-02.pdf (accessed on 11 December 2022).
- Buchfelder, M.; Schlaffer, S. Imaging of pituitary pathology. Handb Clin. Neurol 2014, 124, 151–166. [Google Scholar] [PubMed]
- van der Kolk, A.G.; Hendrikse, J.; Zwanenburg, J.J.; Visser, F.; Luijten, P.R. Clinical applications of 7 T MRI in the brain. Eur. J. Radiol. 2013, 82, 708–718. [Google Scholar] [CrossRef] [Green Version]
- de Rotte, A.A.; van der Kolk, A.G.; Rutgers, D.; Zelissen, P.M.; Visser, F.; Luijten, P.R.; Hendrikse, J. Feasibility of high-resolution pituitary MRI at 7.0 tesla. Eur. Radiol. 2014, 24, 2005–2011. [Google Scholar] [CrossRef] [PubMed]
- de Rotte, A.A.; Groenewegen, A.; Rutgers, D.R.; Witkamp, T.; Zelissen, P.M.; Meijer, F.J.; van Lindert, E.J.; Hermus, A.; Luijten, P.R.; Hendrikse, J. High resolution pituitary gland MRI at 7.0 tesla: A clinical evaluation in Cushing’s disease. Eur. Radiol. 2016, 26, 271–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eisenhut, F.; Schlaffer, S.-M.; Hock, S.; Heynold, E.; Kremenevski, N.; Bluemcke, I.; Buchfelder, M.; Doerfler, A.; Schmidt, M.A. Ultra-High-Field 7 T Magnetic Resonance Imaging Including Dynamic and Static Contrast-Enhanced T1-Weighted Imaging Improves Detection of Secreting Pituitary Microadenomas. Investig. Radiol. 2022, 57, 567–574. [Google Scholar] [CrossRef]
- Ahmadi, J.; North, C.M.; Segall, H.D.; Zee, C.S.; Weiss, M.H. Cavernous sinus invasion by pituitary adenomas. Radiology 1986, 146, 257–262. [Google Scholar] [CrossRef] [Green Version]
- Fahlbusch, R.; Buchfelder, M. Transsphenoidal surgery of parasellar pituitary adenomas. Acta Neurochir. 1988, 92, 93–99. [Google Scholar] [CrossRef]
- Dhandapani, S.; Singh, H.; Negm, H.M.; Cohen, S.; Anand, V.K.; Schwartz, T.H. Cavernous Sinus Invasion in Pituitary Adenomas: Systematic Review and Pooled Data Meta-Analysis of Radiologic Criteria and Comparison of Endoscopic and Microscopic Surgery. World Neurosurg. 2016, 96, 36–46. [Google Scholar] [CrossRef]
- Rutland, J.W.; Pawha, P.; Belani, P.; Delman, B.N.; Gill, C.M.; Brown, T.; Cheesman, K.; Shrivastava, R.K.; Balchandani, P. Tumor T2 signal intensity and stalk angulation correlates with endocrine status in pituitary adenoma patients: A quantitative 7 tesla MRI study. Neuroradiology 2020, 62, 473–482. [Google Scholar] [CrossRef]
- Knosp, E.; Steiner, E.; Kitz, K.; Matula, C. Pituitary adenomas with invasion of the cavernous sinus space: A magnetic resonance imaging classification compared with surgical findings. Neurosurgery 1993, 33, 610–617. [Google Scholar] [CrossRef] [PubMed]
- Dallapiazza, R.F.; Grober, Y.; Starke, R.M.; Laws, E.R., Jr.; Jane, J.A., Jr. Long-term results of endonasal endoscopic transsphenoidal resection of nonfunctioning pituitary macroadenomas. Neurosurgery 2015, 76, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Gondim, J.A.; Almeida, J.P.; Albuquerque, L.A.; Gomes, E.F.; Schops, M. Giant pituitary adenomas: Surgical outcomes of 50 cases operated on by the endonasal endoscopic approach. World Neurosurg. 2014, 82, e281–e290. [Google Scholar] [CrossRef] [PubMed]
- Micko, A.S.; Wohrer, A.; Wolfsberger, S.; Knosp, E. Invasion of the cavernous sinus space in pituitary adenomas: Endoscopic verification and its correlation with an MRI-based classification. J. Neurosurg. 2015, 122, 803–811. [Google Scholar] [CrossRef] [Green Version]
- Pinker, K.; Ba-Ssalamah, A.; Wolfsberger, S.; Mlynarik, V.; Knosp, E.; Trattnig, S. The value of high-field MRI (3T) in the assessment of sellar lesions. Eur. J. Radiol. 2005, 54, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Law, M.; Wang, R.; Liu, C.J.; Shiroishi, M.S.; Carmichael, J.D.; Mack, W.J.; Weiss, M.; Wang, D.J.J.; Toga, A.W.; Zada, G. Value of pituitary gland MRI at 7 T in Cushing’s disease and relationship to inferior petrosal sinus sampling: Case report. J. Neurosurg. 2018, 130, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Dehdashti, A.R.; Ganna, A.; Karabatsou, K.; Gentili, F. Pure endoscopic endonasal approach for pituitary adenomas: Early surgical results in 200 patients and comparison with previous microsurgical series. Neurosurgery 2008, 62, 1006–1015. [Google Scholar]
- Frank, G.; Pasquini, E. Endoscopic endonasal cavernous sinus surgery, with special reference to pituitary adenomas. Front. Horm. Res. 2006, 34, 64–82. [Google Scholar]
- Giovanelli, M.; Losa, M.; Mortini, P. Surgical therapy of pituitary adenomas. Metabolism 1996, 45 (Suppl. S1), 115–116. [Google Scholar] [CrossRef]
- Burkett, B.J.; Fagan, A.J.; Felmlee, J.P.; Black, D.F.; Lane, J.I.; Port, J.D.; Rydberg, C.H.; Welker, K.M. Clinical 7-T MRI for neuroradiology: Strengths, weaknesses, and ongoing challenges. Neuroradiology 2021, 63, 167–177. [Google Scholar] [CrossRef]
1.5 T | 3 T | 7 T | ||||
---|---|---|---|---|---|---|
T1 cor | T2 cor | T1 cor | T2 cor | T1 cor | T2 cor | |
TE (ms) | 9.8 | 88 | 15 | 93 | 3.18 | 91 |
TR (ms) | 374 | 2910 | 484 | 3100 | 188 | 3380 |
flip angle (degree) | 150 | 143 | 180 | 93 | 66 | 120 |
FOV (mm) | 180 | 185 | 180 | 205 | 150 | 180 |
matrix | 256 × 128 | 256 × 256 | 240 × 320 | 448 × 448 | 544 × 544 | 512 × 512 |
slice thickness (mm) | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 | 1.5 |
voxel size (mm × mm × mm) | 0.7 × 0.7 × 1.5 | 0.4 × 0.4 × 1.5 | 0.75 × 0.56 × 1.5 | 0.46 × 0.46 × 1.5 | 0.3 × 0.3 × 1.5 | 0.35 × 0.35 × 1.5 |
acquisition time (min:sec) | 2:26 | 2:47 | 3:08 | 5:21 | 3:06 | 3:55 |
Patients with Preoperative 1.5 T and 7 T MRI | |||||||||
Lesion Location | Knosp Score | ||||||||
Nr. | Sex | Age | 1.5 T | 7 T | 1.5 T | 7 T | Intraoperative Findings | Hormone Status | Lesion Diameter (mm × mm × mm) |
1 | female | 46 | left | left | 4 | 4 | CS infiltration | hormone-negative | 25 × 12 × 15 |
2 | female | 61 | left | left | 1 | 1 | CS infiltration | growth-hormone-releasing | 15 × 12 × 11 |
3 | female | 67 | medial | medial | 2 | 2 | no CS infiltration | hormone-negative | 14 × 14 × 13 |
4 | male | 55 | right | right | 1 | 1 | no CS infiltration | growth-hormone- and prolactin-releasing | 12 × 10 × 10 |
5 | male | 56 | right | right | 1 | 0 | no CS infiltration | growth-hormone- and prolactin-releasing | 13 × 10 × 10 |
6 | male | 59 | medial | medial | 3a | 3a | CS infiltration | hormone-negative | 30 × 29 × 27 |
7 | male | 82 | medial | medial | 3a | 3a | CS infiltration | hormone-negative | 26 × 25 × 15 |
8 | male | 85 | medial | medial | 0 | 0 | no CS infiltration | hormone-negative | 22 × 21 × 13 |
9 | male | 85 | right | right | 3a | 3a | CS infiltration | hormone-negative | 26 × 21 × 16 |
Patients with Preoperative 3 T and 7 T MRI | |||||||||
Lesion Location | Knosp Score | ||||||||
Nr. | Sex | Age | 3 T | 7 T | 3 T | 7 T | Intraoperative Findings | Hormone Status | Lesion Diameter (mm × mm × mm) |
10 | female | 29 | right | right | 1 | 0 | no CS infiltration | ACTH secreting | 15 × 10 × 11 |
11 | female | 50 | medial | medial | 2 | 2 | no CS infiltration | growth-hormone-releasing | 19 × 19 × 17 |
12 | female | 61 | left | left | 0 | 0 | no CS infiltration | growth-hormone- and prolactin-releasing | 13 × 11 × 10 |
13 | female | 61 | medial | medial | 0 | 0 | no CS infiltration | growth-hormone-releasing | 14 × 13 × 10 |
14 | male | 35 | medial | medial | 3a | 3a | CS infiltration | hormone-negative | 43 × 33 × 23 |
1.5 T | 7 T | p | 3 T | 7 T | p | |
---|---|---|---|---|---|---|
overall IQ | 2.11 ± 0.60 | 2.78 ± 0.44 | 0.0448 (*) | 2.80 ± 0.45 | 3.0 ± 0.0 | >0.9999 |
anatomy | ||||||
border between the PG and the CS | 1.33 ± 0.71 | 2.11 ± 0.93 | 0.0628 | 2.40 ± 0.55 | 3.00 ± 0.0 | 0.1667 |
border between anterior and posterior PG | 0.67 ± 0.87 | 0.89 ± 0.93 | 0.7668 | 1.40 ± 0.89 | 1.80 ± 1.10 | 0.6429 |
optic nerve differentiation | 2.22 ± 0.44 | 3.00 ± 0.0 | 0.0023 (**) | 2.80 ± 0.45 | 2.80 ± 0.45 | >0.9999 |
oculomotor/trigeminal nerve differentiation | 1.44 ± 0.53 | 2.78 ± 0.44 | 0.0006 (***) | 2.20 ± 0.84 | 3.00 ± 0.0 | 0.1667 |
artifacts | ||||||
pulsation artifacts | 2.89 ± 0.33 | 2.33 ± 0.5 | 0.0498 (*) | 3.00 ± 0.0 | 2.20 ± 0.45 | 0.0476 (*) |
susceptibility artifacts | 2.89 ± 0.33 | 2.44 ± 0.53 | 0.1312 | 2.40 ± 0.55 | 3.00 ± 0.0 | 0.1667 |
motion artifacts | 2.67 ± 0.71 | 2.89 ± 0.33 | 0.7353 | 3.00 ± 0.0 | 3.00 ± 0.0 | >0.9999 |
1.5 T | 7 T | p | r | 3 T | 7 T | p | r | |
---|---|---|---|---|---|---|---|---|
lengthmean (cm) | 1.96 ± 0.78 | 1.94 ± 0.80 | 0.5599 | 0.9968 | 2.08 ± 1.27 | 2.02 ± 1.22 | 0.1082 | 0.9991 |
heightmean (cm) | 1.63 ± 0.71 | 1.65 ± 0.71 | 0.3729 | 0.9946 | 1.48 ± 1.13 | 1.40 ± 1.07 | 0.0544 | 1.000 |
depthmean (cm) | 1.58 ± 0.53 | 1.53 ± 0.53 | 0.2543 | 0.9820 | 1.49 ± 0.52 | 1.46 ± 0.52 | 0.1778 | 0.9974 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eisenhut, F.; Schmidt, M.A.; Buchfelder, M.; Doerfler, A.; Schlaffer, S.-M. Improved Detection of Cavernous Sinus Invasion of Pituitary Macroadenomas with Ultra-High-Field 7 T MRI. Life 2023, 13, 49. https://doi.org/10.3390/life13010049
Eisenhut F, Schmidt MA, Buchfelder M, Doerfler A, Schlaffer S-M. Improved Detection of Cavernous Sinus Invasion of Pituitary Macroadenomas with Ultra-High-Field 7 T MRI. Life. 2023; 13(1):49. https://doi.org/10.3390/life13010049
Chicago/Turabian StyleEisenhut, Felix, Manuel Alexander Schmidt, Michael Buchfelder, Arnd Doerfler, and Sven-Martin Schlaffer. 2023. "Improved Detection of Cavernous Sinus Invasion of Pituitary Macroadenomas with Ultra-High-Field 7 T MRI" Life 13, no. 1: 49. https://doi.org/10.3390/life13010049
APA StyleEisenhut, F., Schmidt, M. A., Buchfelder, M., Doerfler, A., & Schlaffer, S. -M. (2023). Improved Detection of Cavernous Sinus Invasion of Pituitary Macroadenomas with Ultra-High-Field 7 T MRI. Life, 13(1), 49. https://doi.org/10.3390/life13010049