Influence of Mineral Treatment, Plant Growth Regulators and Artificial Light on the Growth of Jewel Sweet Potato (Ipomoea batatas Lam. cv. Jewel) In Vitro
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material Preparation
2.2. Experiment 1: Evaluate the Influence of Different MS Salt Concentrations on Induction and Growth of In Vitro Jewel Sweet Potato Shoots
2.3. Experiment 2: Evaluate the Influence of Different PGRs on Proliferation and Growth of In Vitro Jewel Sweet Potato Shoots
2.4. Experiment 3: Evaluate the Influence of Different Artificial Light Conditions on Induction and Growth of In Vitro Jewel Sweet Potato Shoots
- (1)
- PGR-free MS medium containing sucrose 2% and agar 0.8%;
- (2)
- Medium containing only distilled water and agar 0.8%, without mineral salts and PGRs.
2.5. Statistical Analysis of Experimental Data
3. Results
3.1. Influence of Different MS Salt Concentrations on Induction and Growth of In Vitro Jewel Sweet Potato Shoots
3.2. Influence of Different PGRs on Proliferation and Growth of In Vitro Jewel Sweet Potato Shoots
3.3. Influence of Different Artificial Light Conditions on Induction and Growth of In Vitro Jewel Sweet Potato Shoots
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chee, R.P.; Schultheis, J.R.; Cantlife, D.J. Micropropagation of sweet potato (Ipomoea batatas Lam.). In Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin, Germany, 1992. [Google Scholar]
- Ayeleso, T.B.; Ramachela, K.; Mukwevho, E. A review of therapeutic potentials of sweet potato: Pharmacological activities and infuence of the cultivar. Trop. J. Pharm. Res. 2016, 15, 2751–2761. [Google Scholar] [CrossRef] [Green Version]
- Tadda, S.A.; Kui, X.; Yang, H.; Li, M.; Huang, Z.; Chen, X.; Qiu, D. The response of vegetable sweet potato (Ipomoea batatas Lam.) nodes to different concentrations of encapsulation agent and MS salts. Agronomy 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Dewir, Y.H.; Aldubai, A.A.; Kher, M.M.; Alsadon, A.A.; El-Hendawy, S.; Al-Suhaibani, N.A. Optimization of media formulation for axillary shoot multiplication of the red-peeled sweet potato (Ipomoea batatas Lam. ‘Abees’). Chil. J. Agric. Res. 2020, 80, 3–10. [Google Scholar] [CrossRef]
- Deng, X.P.; Cheng, Y.J.; Wu, X.B.; Kwak, S.S.; Chen, W.; Eneji, A.E. Exogenous hydrogen peroxide positively influences root growth and metabolism in leaves of sweet potato seedlings. Aust. J. Crop Sci. 2012, 6, 1572–1578. [Google Scholar]
- Islam, S. Sweet potato (Ipomoea batatas Lam.) leaf: Its potential efect on human health and nutrition. J. Food Sci. 2006, 71, 13–21. [Google Scholar] [CrossRef]
- Behera, S.; Chauhan, V.B.S.; Pati, K.; Bansode, V.; Nedunchezhiyan, M.; Verma, A.K.; Naik, S.K. Biology and biotechnological aspect of sweet potato (Ipomoea batatas Lam.): A commercially important tuber crop. Planta 2022, 256, 1–15. [Google Scholar] [CrossRef]
- Meira, M.; Pereira, S.E.; David, J.M.; David, J.P. Review of the genus Ipomoea: Traditional uses, chemistry and biological activities. Rev. Bras. Farm. 2012, 22, 682–713. [Google Scholar] [CrossRef] [Green Version]
- Hermes, D.; Dudek, D.N.; Maria, M.; Horta, L.P.; Lima, E.N.; Fatima, A. In vivo wound healing and antiulcer properties of white sweet potato (Ipomoea batatas Lam.). J. Adv. Res. 2013, 4, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Mohanraj, R.; Sivasankar, S. Sweet potato (Ipomoea batatas Lam.)—A valuable medicinal food: A review. J. Med. Food 2014, 17, 733–741. [Google Scholar] [CrossRef]
- Ludvik, B.; Neufer, B.; Pacini, G. Efcacy of Ipomoea batatas ‘Caiapo’ on diabetes control in type 2 diabetic subjects treated with diet. Diabetes Care 2004, 27, 436–440. [Google Scholar] [CrossRef] [Green Version]
- Abel, C.; Busia, K. An exploratory ethnobotanical study of the practice of herbal medicine by the Akan peoples of Ghana. Altern. Med. Rev 2005, 10, 112–122. [Google Scholar] [PubMed]
- Emmanuel, N. Ethno medicines used for the treatment of prostatic disease in Foumban Cameroon. Afr. J. Pharm. Pharm. 2010, 4, 793–805. [Google Scholar]
- Pochapski, M.T.; Fosquiera, E.C.; Esmerino, L.A.; Dos-Santos, E.B.; Farago, P.V.; Santos, F.A.; Groppo, F.C. Phytochemical screening, antioxidant, and antimicrobial activities of crude leave extract from Ipomoea batatas (L.) Lam. Phcog. Mag. 2011, 7, 165–170. [Google Scholar] [PubMed] [Green Version]
- Milind, M.P. Sweet potato as a super food. Int. J. Res. Ayurveda Pharm. 2015, 6, 557–562. [Google Scholar] [CrossRef]
- Ferrari, M.D.; Guigou, M.; Lareo, C. Energy consumption evaluation of fuel bioethanol production from sweet potato. Bioresour. Technol. 2013, 136, 377–384. [Google Scholar] [CrossRef]
- Wang, M.; Shi, Y.; Xia, X.; Li, D.; Chen, Q. Life-cycle energy efficiency and environmental impacts of bioethanol production from sweet potato. Bioresour. Technol. 2013, 133, 285–292. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, C.; Shen, Y.; Ding, T.; Ma, D.; Hua, Z.; Sun, D. Starch saccharification and fermentation of uncooked sweet potato roots for fuel ethanol production. Bioresour. Technol. 2013, 128, 835–838. [Google Scholar] [CrossRef]
- Akomeah, B.; Quain, M.D.; Ramesh, S.A.; Anand, L.; Rodrıguez, L.C.M. Common garden experiment reveals altered nutritional values and DNA methylation profiles in micropropagated three elite Ghanaian sweet potato genotypes. PLoS ONE 2019, 14, e0208214. [Google Scholar] [CrossRef] [Green Version]
- Gaba, V.; Singer, S. Propagation of Sweet Potatoes, in Situ Germplasm Conservation and Conservation by Tissue Culture. In The Sweet Potato; Loebenstein, G., Thottappilly, G., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 65–80. [Google Scholar]
- Liao, C.H.; Chung, M.L. Shoot tip culture and virus indexing in sweet potato. J. Agric. Res. China 1979, 28, 139–144. [Google Scholar]
- Frison, E.A.; Ng, S.Y.C. Tissue culture and distribution of diseasesfree sweet potato material. Int. Inst. Trop. Agric. (ITTA) Annu. Rep. 1981, 1981, 74–75. [Google Scholar]
- Kuo, C.G.; Shen, B.J.; Shen, M.J.; Green, S.K.; Lee, D.D. Virus-free sweet potato storage roots derived from meristem-tips and leafcuttings. Sci. Hort. 1985, 26, 231–240. [Google Scholar] [CrossRef]
- Dodds, J.H.; Merzdorf, C.; Zambrano, V.; Sigtleilas, C.; Jaynes, J. Potential use of Agrobacterium-mediated transfer to confer insect resistance in sweet potato. In Sweet Potato Pest Management, a Global Perspective; Jansson, R., Raman, K.V., Eds.; Westview Press: Boulder, CL, USA, 1991; pp. 203–220. [Google Scholar]
- Zamora, S.; Gruezo, K. Meristem culture of sweet potato (Ipomoea batatas Lam.). Plant Genet. Resour. Newsl. 1993, 91, 25–28. [Google Scholar]
- Mukherjee, A. Effect of NaCl on in vitro propagation of sweet potato (Ipomoea batatas Lam.). Appl. Biochem. Biotechnol. 2002, 102, 431–441. [Google Scholar] [CrossRef] [PubMed]
- Gong, Y.; Gao, F.; Tang, K. In vitro high frequency direct root and shoot regeneration in sweet potato using the ethylene inhibitor silver nitrate. South Afr. J. Bot. 2005, 71, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Matimati, I.; Hungwe, E.; Murungu, F.S. Vegetative growth and tuber yields of micropropagated and farm-retained sweet potato (Ipomea batatas) cultivars. J. Agron. 2005, 4, 156–160. [Google Scholar] [CrossRef]
- Yang, X. Rapid production of virus free plantlets by shoot tip culture in vitro of purple coloured sweet potato (Ipomoea batatas Lam.). Pak. J. Bot. 2010, 42, 2069–2075. [Google Scholar]
- Dugassa, G.; Feyissa, T. In vitro production of virus free sweet potato (Ipomoea batatas Lam.) by meristem culture and thermotherapy. Ethio. J. Sci. 2011, 34, 17–28. [Google Scholar]
- Oggero, K.O.; Mburugu, G.N.; Mwangi, M.; Ngugi, M.M.; Ombori, O. Low cost tissue culture technology in the regeneration of sweet potato (Ipomoea batatas Lam). Res. J. Biol. 2012, 2, 71–78. [Google Scholar]
- Dolinski, R.; Olek, A. Micropropagation of sweet potato (Ipomoea batatas (L.) Lam.) from node explants. Acta Sci. Pol. Hortorum. Cultus 2013, 12, 117–127. [Google Scholar]
- Addae-Frimpomaah, F. Regeneration of three sweet potato (Ipomoea batatas Lam.) accessions in Ghana via, meristem and nodal culture. Int. J. Plant Breed Genet. 2014, 8, 121–138. [Google Scholar] [CrossRef]
- Ndagijimana, V.; Kahia, J.; Asiimwe, T.; Sallah, P.Y.; Waweru, B.; Mushimiyimana, I.; Ndirigwe, J.; Kirimi, S.; Shumbusha, D.; Njenga, P.; et al. In vitro efects of gibberellic acid and sucrose concentration on micropropagation of two elite sweet potato cultivars in Rwanda. Int. J. Biotechnol. Mol. Biol. Res. 2014, 5, 1–6. [Google Scholar]
- Vettorazzi, R.G.; Carvalho, V.S.; Sudre, C.P.; Rodrigues, R. Developing an in vitro optimized protocol to sweet potato landraces conservation. Acta Sci. Agron. 2017, 39, 359–367. [Google Scholar] [CrossRef] [Green Version]
- Alula, K.; Zeleke, H.; Manikandan, M. In vitro propagation of sweet potato (Ipomoea batatas Lam.) through apical meristem culture. J. Pharm. Phytochem. 2018, 7, 2386–2392. [Google Scholar]
- Arif, N.; Bahari. Shoot multiplication media formulation of purple sweet potato (Ipomoea batatas Lam.) using photoautotrophic techniques. J. Pharm. Biol. Sci. 2019, 14, 7–12. [Google Scholar]
- Beyene, B.; Menamo, T.; Haile, G. Protocol optimization for in vitro propagation of Kulfo orange fesh sweet potato (Ipomoea batatas) variety using shoot tip culture. Afr. J. Biotechnol. 2020, 14, 395–401. [Google Scholar]
- Karan, Y.B.; Ozdemir, S. The effect of diferent media on in vitro micropropagation in sweet potatoes. Turk. J. Agric. Food Sci. Technol. 2021, 9, 1647–1652. [Google Scholar]
- Teixeira, J.A.; Giang, D.T.T.; Tanaka, M. Sweet potato: From glass to greenhouse. Acta Hortic. 2007, 748, 247–257. [Google Scholar] [CrossRef]
- Mvuria, J.M.; Ombori, O. Low cost macronutrients in the micropropagation of selected sweet potato [Ipomoea batatas Lam.] varieties. J. Agric. Environ. Sci. 2014, 3, 89–101. [Google Scholar]
- Marzouk, N.M.; El-Beltagy, A.S.; El-Behairy, U.A.; Abou-Hussein, S.D.; El-Bedewy, R.; El-Abd, S.O. Performance of selected sweet potato germplasms under Egyptian conditions. Aust. J. Basic Appl. Sci. 2011, 5, 18–21. [Google Scholar]
- Teow, C.C.; Truong, V.D.; McFeeters, R.F.; Thompson, R.L.; Pecota, K.V.; Yencho, G.C. Antioxidant activities, phenolic and β-carotene contents of sweet potato genotypes with varying flesh colours. Food Chem. 2007, 103, 829–838. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Yang, Y.T.; Xiao, P.; Yang, Q.C. Effects of LED light quality R/B to growth of sweet potato plantlets in vitro and energy consumptions of lighting. In Proceedings of the VI International Symposium on Light in Horticulture, Tsukuba, Japan, 15–19 November 2009; pp. 403–407. [Google Scholar]
- Doğan, M. Influence of Different Concentrations of Murashige and Skoog Medium on Multiple Shoot Regeneration of Staurogyne repens (Nees) Kuntze. J. Eng. Technol. Appl. Sci. 2022, 7, 61–67. [Google Scholar] [CrossRef]
- Shulgina, A.A.; Kalashnikova, E.A.; Tarakanov, I.G.; Kirakosyan, R.N.; Cherednichenko, M.Y.; Polivanova, O.B.; Baranova, E.N.; Khaliluev, M.R. Influence of Light Conditions and Medium Composition on Morphophysiological Characteristics of Stevia rebaudiana Bertoni In Vitro and In Vivo. Horticulturae 2021, 7, 195. [Google Scholar] [CrossRef]
- Kalashnikova, E.A.; Kirakosyan, R.N. Modern Aspects of Biotechnology; RGAU-MSHA: Moscow, Russia, 2016; 145p. [Google Scholar]
- Abubakar, A.S.; Yahaya, S.U.; Shaibu, A.S. In vitro propagation of sweet potato (Ipomoea batatas (L.) Lam.) cultivars. Agric. Sci. Dig. 2018, 38, 17–21. [Google Scholar] [CrossRef] [Green Version]
- Shaibu, A.S.; Abubakar, A.S.; Lawan, Z.M.; Ibrahim, A.K.; Rabiu, H.M.; Muhammad, A.I. Media optimization and effect of surface sterilization timing on in vitro propagation of Sweet potato. In Proceedings of the 2nd International Conference on Drylands, Kano, Nigeria, 12–16 December 2016. [Google Scholar]
- El-Afifi, S.T.; Zaghloul, M.M.; El Saady, W.A.; Mosaad, F.S. Using tissue culture technique in micropropagation of sweet potato (Ipomoea batatas). J. Plant Prod. Mansoura Univ. 2012, 3, 2201–2209. [Google Scholar] [CrossRef]
- Fadel, D.; Kintzios, S.; Economou, A.S.; Moschopoulou, G.; Constantinidou, H.I.A. Effect of different strength of medium on organogenesis, phenolic accumulation and antioxidant activity of spearmint (Mentha spicata L.). Open Hortic. J. 2010, 3, 31–35. [Google Scholar] [CrossRef]
- Naik, P.M.; Godbole, M.; Nagella, P.; Murthy, H.N. Influence of different media, medium strength and carbon sources on adventitious shoot cultures and production of bacoside A in Bacopa monnieri L. Ceylon J. Sci. 2017, 46, 97–104. [Google Scholar] [CrossRef] [Green Version]
- Cortés-Olmos, C.; Gurrea-Ysasi, G.; Prohens, J.; Rodríguez-Burruezo, A.; Fita, A. In vitro germination and growth protocols of the ornamental Lophophora williamsii (Lem.) Coult. as a tool for protecting endangered wild populations. Sci. Hortic. 2018, 237, 120–127. [Google Scholar] [CrossRef]
- Tarakanov, I.G.; Yakovleva, O.S. Effect of light quality on the physiological characteristics and production process of eugenol basil (Ocimum gratissimum L.). Nat. Sci. 2012, 3, 95–97. [Google Scholar]
- Kim, S.J.; Hahn, E.J.; Heo, J.W.; Paek, K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Hort. Sci. 2014, 101, 143–151. [Google Scholar] [CrossRef]
- Kirakosyan, R.N.; Sumin, A.V.; Polupanova, A.A.; Pankova, M.G.; Degtyareva, I.S.; Sleptsov, N.N.; Khuat, Q.V. Influence of Plant Growth Regulators and Artificial Light on the Growth and Accumulation of Inulin of Dedifferentiated Chicory (Cichorium intybus L.) Callus Cells. Life 2022, 12, 1524. [Google Scholar] [CrossRef] [PubMed]
Plant Growth Regulator, mg/L | Number of Shoots per Explant | Shoot Length | Number of Leaves per Shoot | Number of Roots per Shoot | Root Length | |
---|---|---|---|---|---|---|
Cytokinin | Auxin | (cm) | (cm) | |||
BAP, 0.5 mg/L | IAA, 0.5 mg/L | 3.2 ± 0.2 1 d | 5.2 ± 0.2 b | 8.0 ± 0.3 b | 2.02 ± 0.12 a | 8.95 ± 0.75 a |
BAP, 1.0 mg/L | 1.8 ± 0.5 b | 4.0 ± 0.2 c | 6.6 ± 0.3 c | 1.51 ± 0.51 ab | 8.06 ± 1.02 abc | |
BAP, 2.0 mg/L | 1.6 ± 0.3 b | 3.0 ± 0.1 d | 3.0 ± 0.1 d | 0.86 ± 0.26 bc | 7.68 ± 0.65 bc | |
Kn, 0.5 mg/L | 3.9 ± 0.1 d | 6.1 ± 0.3 a | 9.2 ± 0.4 a | 1.98 ± 0.07 a | 8.52 ± 0.38 ab | |
Kn, 1.0 mg/L | 2.6 ± 0.1 c | 4.3 ± 0.2 c | 5.1 ± 0.2 c | 1.35 ± 0.36 abc | 8.01 ± 0.52 abc | |
Kn, 2.0 mg/L | 2.0 ± 0.4 bc | 3.3 ± 0.2 d | 2.9 ± 0.1 d | 1.01 ± 0.65 bc | 7.51 ± 0.36 bc | |
TDZ, 0.1 mg/L | 1.5 ± 0.2 b | 2.6 ± 0.1 de | 3.0 ± 0.1 de | 1.25 ± 0.14 bc | 7.23 ± 0.45 c | |
TDZ, 1.0 mg/L | 0.8 ± 0.1 a | 0.7 ± 0.1 f | 2.5 ± 0.1 f | 0.65 ± 0.43 c | 5.86 ± 0.14 d |
Medium Type | Light Treatment | Number of Shoots per Explant | Shoot Length, (cm) | Number of Roots | Root Length, (cm) |
---|---|---|---|---|---|
PGRs-free MS medium | Control | 1 | 4.06 ± 1.32 1 e | 3.75 ± 0.15 c | 10.25 ± 0.69 c |
R 70%: B 30% | 1 | 2.95 ± 0.54 d | 3.25 ± 0.16 b | 9.75 ± 0.60 c | |
R 30%: B 70% | 1 | 1.80 ± 0.12 d | 5.25 ± 0.25 d | 9.87 ± 0.63 c | |
Distilled water and agar 0.8% | Control | 1 | 0.72 ± 0.10 a | 2.25 ± 0.11 a | 7.62 ± 0.38 b |
R 70%: B 30% | 1 | 1.33 ± 0.10 c | 2.33 ± 0.15 a | 7.33 ± 0.33 ab | |
R 30%: B 70% | 1 | 0.95 ± 0.10 b | 5.67 ± 0.38 d | 6.83 ± 0.30 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirakosyan, R.N.; Kalashnikova, E.A.; Abubakarov, H.G.; Sleptsov, N.N.; Dudina, Y.A.; Temirbekova, S.K.; Khuat, Q.V.; Trukhachev, V.I.; Sumin, A.V. Influence of Mineral Treatment, Plant Growth Regulators and Artificial Light on the Growth of Jewel Sweet Potato (Ipomoea batatas Lam. cv. Jewel) In Vitro. Life 2023, 13, 52. https://doi.org/10.3390/life13010052
Kirakosyan RN, Kalashnikova EA, Abubakarov HG, Sleptsov NN, Dudina YA, Temirbekova SK, Khuat QV, Trukhachev VI, Sumin AV. Influence of Mineral Treatment, Plant Growth Regulators and Artificial Light on the Growth of Jewel Sweet Potato (Ipomoea batatas Lam. cv. Jewel) In Vitro. Life. 2023; 13(1):52. https://doi.org/10.3390/life13010052
Chicago/Turabian StyleKirakosyan, Rima N., Elena A. Kalashnikova, Halid G. Abubakarov, Nikolay N. Sleptsov, Yuliya A. Dudina, Sulukhan K. Temirbekova, Quyet V. Khuat, Vladimir I. Trukhachev, and Anton V. Sumin. 2023. "Influence of Mineral Treatment, Plant Growth Regulators and Artificial Light on the Growth of Jewel Sweet Potato (Ipomoea batatas Lam. cv. Jewel) In Vitro" Life 13, no. 1: 52. https://doi.org/10.3390/life13010052
APA StyleKirakosyan, R. N., Kalashnikova, E. A., Abubakarov, H. G., Sleptsov, N. N., Dudina, Y. A., Temirbekova, S. K., Khuat, Q. V., Trukhachev, V. I., & Sumin, A. V. (2023). Influence of Mineral Treatment, Plant Growth Regulators and Artificial Light on the Growth of Jewel Sweet Potato (Ipomoea batatas Lam. cv. Jewel) In Vitro. Life, 13(1), 52. https://doi.org/10.3390/life13010052