Comprehensive Analysis of Factors Associated with New Episode of Postoperative Atrial Fibrillation after Coronary Artery Bypass Graft Surgery
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neumann, F.; Sousa-Uva, M.; Ahlsson, A.; Alfonso, F.; Banning, A.P.; Benedetto, U.; Byrne, R.A.; Collet, J.P.; Falk, V.; Head, S.J.; et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019, 40, 87–165. [Google Scholar] [CrossRef]
- Dimeling, G.; Bakaeen, L.; Khatri, J.; Bakaeen, F.G. CABG: When, why, and how? Clevel. Clin. J. Med. 2021, 88, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Romano E Silva, A.C.; Dias, G.M.; de Carvalho, J.J.; De Lorenzo, A.; Kasal, D.A.B. Research proposal: Inflammation and oxidative stress in coronary artery bypass surgery graft: Comparison between diabetic and non-diabetic patients. BMC Res. Notes 2018, 11, 635. [Google Scholar] [CrossRef] [PubMed]
- Gallinoro, E.; D’Elia, S.; Prozzo, D.; Lioncino, M.; Natale, F.; Golino, P.; Cimmino, G. Cognitive Function and Atrial Fibrillation: From the Strength of Relationship to the Dark Side of Prevention. Is There a Contribution from Sinus Rhythm Restoration and Maintenance? Medicina 2019, 55, 587. [Google Scholar] [CrossRef] [PubMed]
- Cole, O.M.; Tosif, S.; Shaw, M.; Lip, G.Y.H. Acute Kidney Injury and Postoperative Atrial Fibrillation in Patients Undergoing Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2020, 34, 1783–1790. [Google Scholar] [CrossRef] [PubMed]
- Thorén, E.; Wernroth, M.L.; Christersson, C.; Grinnemo, K.H.; Jidéus, L.; Ståhle, E. Compared with matched controls, patients with postoperative atrial fibrillation (POAF) have increased long-term AF after CABG, and POAF is further associated with increased ischemic stroke, heart failure and mortality even after adjustment for AF. Clin. Res. Cardiol. 2020, 109, 1232–1242. [Google Scholar] [CrossRef]
- Oktay, V.; Baydar, O.; Sinan, Ü.Y.; Koçaş, C.; Abacı, O.; Yıldız, A.; Yiğit, Z.; Yıldız, C.E.; Hatemi, A.; Çetin, G.; et al. The effect of oxidative stress related with ischemia-reperfusion damage on the pathogenesis of atrial fibrillation developing after coronary artery bypass graft surgery. Turk Kardiyol. Dern. Ars. 2014, 42, 419–425. [Google Scholar] [CrossRef]
- Ismail, M.F.; El-Mahrouk, A.F.; Hamouda, T.H.; Radwan, H.; Haneef, A.; Jamjoom, A.A. Factors influencing postoperative atrial fibrillation in patients undergoing on-pump coronary artery bypass grafting, single center experience. J. Cardiothorac. Surg. 2017, 12, 40. [Google Scholar] [CrossRef]
- Mortazavi, S.H.; Oraii, A.; Goodarzynejad, H.; Bina, P.; Jalali, A.; Ahmadi Tafti, S.H.; Bagheri, J.; Sadeghian, S. Utility of the CHA2DS2-VASc Score in Prediction of Postoperative Atrial Fibrillation After Coronary Artery Bypass Graft Surgery. J. Cardiothorac. Vasc. Anesth. 2022, 36, 1304–1309. [Google Scholar] [CrossRef]
- Hidayet, Ş.; Yağmur, J.; Bayramoğlu, A.; Taşolar, M.H.; Kurtoğlu, E.; Özyalın, F. Prediction of postoperative atrial fibrillation with left atrial mechanical functions and NT-pro ANP levels after coronary artery bypass surgery: A three-dimensional echocardiography study. Echocardiography 2018, 35, 661–666. [Google Scholar] [CrossRef]
- Hung, L.T.; Alshareef, A.; Al-Ahdal, T.M.A.; Anh, P.T.T.; Huan, D.Q.; Do Van Trang Zia, S.; Van Sy, H.; Huy, N.T. Predicting atrial fibrillation after cardiac surgery using a simplified risk index. J. Electrocardiol. 2021, 67, 45–49. [Google Scholar] [CrossRef] [PubMed]
- Jakubová, M.; Mitro, P.; Stančák, B.; Sabol, F.; Kolesár, A.; Cisarik, P.; Nagy, V. The occurrence of postoperative atrial fibrillation according to different surgical settings in cardiac surgery patients. Interact. Cardiovasc. Thorac. Surg. 2012, 15, 1007–1012. [Google Scholar] [CrossRef] [PubMed]
- Dalos, D.; Haaser, S.S.; Hofer, F.; Kazem, N.; Koller, L.; Hammer, A.; Steinlechner, B.; Laufer, G.; Hengstenberg, C.; Niessner, A.; et al. The impact of left atrial mechanics on adverse events and clinical outcome after cardiac surgery. Eur. J. Cardiothorac. Surg. 2022, 62, ezac275. [Google Scholar] [CrossRef]
- Hernández-Romero, D.; Vílchez, J.A.; Lahoz, Á.; Romero-Aniorte, A.I.; Orenes-Piñero, E.; Caballero, L.; Jara-Rubio, R.; Arribas, J.M.; García-Alberola, A.; Valdés, M.; et al. High-sensitivity troponin T as a biomarker for the development of atrial fibrillation after cardiac surgery. Eur. J. Cardiothorac. Surg. 2014, 45, 733–738. [Google Scholar] [CrossRef]
- Narducci, M.L.; Pelargonio, G.; Rio, T.; Leo, M.; Di Monaco, A.; Musaico, F.; Pazzano, V.; Trotta, F.; Liuzzo, G.; Severino, A.; et al. Predictors of postoperative atrial fibrillation in patients with coronary artery disease undergoing cardiopulmonary bypass: A possible role for myocardial ischemia and atrial inflammation. J. Cardiothorac. Vasc. Anesth. 2014, 28, 512–519. [Google Scholar] [CrossRef]
- Cabrera-Bueno, F.; Medina-Palomo, C.; Ruiz-Salas, A.; Flores, A.; Rodríguez-Losada, N.; Barrera, A.; Jiménez-Navarro, M.; Alzueta, J. Serum levels of interleukin-2 predict the recurrence of atrial fibrillation after pulmonary vein ablation. Cytokine 2015, 73, 74–78. [Google Scholar] [CrossRef]
- Weymann, A.; Popov, A.F.; Sabashnikov, A.; Ali-Hasan-Al-Saegh, S.; Ryazanov, M.; Tse, G.; Mirhosseini, S.J.; Liu, T.; Lotfaliani, M.; Sedaghat, M.; et al. Baseline and postoperative levels of C-reactive protein and interleukins as inflammatory predictors of atrial fibrillation following cardiac surgery: A systematic review and meta-analysis. Kardiol. Pol. 2018, 76, 440–451. [Google Scholar] [CrossRef]
- Bjorgvinsdottir, L.; Arnar, D.O.; Indridason, O.S.; Heidarsdottir, R.; Skogstrand, K.; Torfason, B.; Hougaard, D.M.; Palsson, R.; Skuladottir, G.V. Do high levels of n-3 polyunsaturated fatty acids in cell membranes increase the risk of postoperative atrial fibrillation? Cardiology 2013, 126, 107–114. [Google Scholar] [CrossRef]
- Bening, C.; Mazalu, E.A.; Yaqub, J.; Alhussini, K.; Glanowski, M.; Kottmann, T.; Leyh, R. Atrial contractility and fibrotic biomarkers are associated with atrial fibrillation after elective coronary artery bypass grafting. J. Thorac. Cardiovasc. Surg. 2020, 159, 515–523. [Google Scholar] [CrossRef]
- Korantzopoulos, P.; Letsas, K.; Fragakis, N.; Tse, G.; Liu, T. Oxidative stress and atrial fibrillation: An update. Free Radic. Res. 2018, 52, 1199–1209. [Google Scholar] [CrossRef]
- Montaigne, D.; Marechal, X.; Lefebvre, P.; Modine, T.; Fayad, G.; Dehondt, H.; Hurt, C.; Coisne, A.; Koussa, M.; Remy-Jouet, I.; et al. Mitochondrial dysfunction as an arrhythmogenic substrate: A translational proof-of-concept study in patients with metabolic syndrome in whom post-operative atrial fibrillation develops. J. Am. Coll. Cardiol. 2013, 62, 1466–1473. [Google Scholar] [CrossRef] [PubMed]
- Harris, W.S.; Masson, S.; Barlera, S.; Milani, V.; Pileggi, S.; Franzosi, M.G.; Marchioli, R.; Tognoni, G.; Tavazzi, L.; Latini, R.; et al. Red blood cell oleic acid levels reflect olive oil intake while omega-3 levels reflect fish intake and the use of omega-3 acid ethyl esters: The Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto Miocardico-Heart Failure trial. Nutr. Res. 2016, 36, 989–994. [Google Scholar] [CrossRef] [PubMed]
- Sandesara, C.M.; Chung, M.K.; Van Wagoner, D.R.; Barringer, T.A.; Allen, K.; Ismail, H.M.; Zimmerman, B.; Olshansky, B. A Randomized, Placebo-Controlled Trial of Omega-3 Fatty Acids for Inhibition of Supraventricular Arrhythmias After Cardiac Surgery: The FISH Trial. J. Am. Heart Assoc. 2012, 1, e000547. [Google Scholar] [CrossRef] [PubMed]
Indicators | Group 1 (n = 111) | Group 2 (n = 47) | p-Value |
---|---|---|---|
Male, n (%) | 91 (82.0) | 40 (84.4) | 0.8 |
Age, years | 62.0 (56.0; 66.0) | 65.0 (61.0; 70.0) * | 0.008 |
Smokers, n (%) | 75 (67.6) | 33 (70.2) | 0.74 |
Body mass index > 30, n (%) | 53 (47.7) | 21 (44.7) | 0.72 |
History of myocardial infarction, n (%) | 71 (64.0) | 30 (63.8) | 0.99 |
History of CAD, months | 15.5 (8.0; 72.0) | 60.0 (13.5; 138.0) * | 0.01 |
Hypertension, n (%) | 110 (99.1) | 47 (100.0) | 0.66 |
Diabetes mellitus, n (%) | 17 (15.3) | 10 (21.3) | 0.36 |
Transient ischemic attack/stroke, n (%) | 9 (8.1) | 4 (8.5) | 0.58 |
Peripheral artery disease, n (%) | 110 (99.0) | 46 (98.0) | 0.88 |
COPD, n (%) | 86 (77.5) | 39 (83.0) | 0.57 |
Chronic kidney disease, n (%) | 14 (12.6) | 5 (10.6) | 0.8 |
Medical treatment before surgery: | |||
β blockers, n (%) | 89 (80.2) | 38 (81.3) | 0.9 |
angiotensin-converting enzyme inhibitors/angiotensin receptor blockers, n (%) | 78 (70.3) | 34 (72.3) | 0.79 |
calcium channel blockers, n (%) | 33 (29.7) | 15 (31.9) | 0.78 |
nitrates, n (%) | 49 (44.1) | 25 (53.2) | 0.3 |
diuretics, n (%) | 12 (10.8) | 6 (12.8) | 0.86 |
atorvastatin, n (%) | 63 (56.8) | 19 (40.4) | 0.06 |
aspirin, n (%) | 92 (83.0) | 34 (72.3) | 0.13 |
clopidogrel, n (%) | 47 (42.3) | 16 (34.0) | 0.33 |
Indicators | Group 1 (n = 111) | Group 2 (n = 47) | p-Value |
---|---|---|---|
Left atrial diameter, mm | 38.0 (36.0; 40.0) | 44.0 (40.5; 46.0) * | <0.001 |
Left atrial volume, mL | 44.1 (41.9; 45.4) | 55.9 (48.1; 63.1) * | <0.001 |
Left ventricular end-systolic dimension, (mm) | 34.0 (30.0; 40.0) | 36.5 (32.0; 41.0) | 0.19 |
Left ventricular end-diastolic dimension, (mm) | 52.0 (48.0; 56.0) | 53.0 (48.5; 59.5) | 0.19 |
Left ventricular end-systolic volume, (mL) | 51.0 (39.0; 65.0) | 53.0 (44.0; 62.0) | 0.5 |
Left ventricular end-diastolic volume, (mL) | 123.0 (97.0; 137.0) | 132.0 (113.0; 151.0) | 0.19 |
Left ventricular ejection fraction, % | 59.5 (50.0; 65.0) | 58.0 (47.5; 62.0) | 0.26 |
Glomerular filtration rate, mL/min/1.73 m2 (CKD-EPI) | 74.0 (65.0; 86.0) | 78.5 (66.0; 87.0) | 0.44 |
EuroScore risk | 1.1 (0.88; 2.3) | 1.5 (1.03; 2.3) | 0.098 |
Left coronary artery stenosis ≥ 50%, n (%) | 17 (15.3) | 13 (27.7) | 0.07 |
Number of grafts | |||
1, n (%) | 10 (9.1) | 1 (2.1) | 0.1 |
2, n (%) | 36 (32.4) | 15 (31.9) | 0.95 |
3, n (%) | 54 (48.6) | 27 (57.4) | 0.31 |
4, n (%) | 11 (9.9) | 4 (8.5) | 0.52 |
Off-pump, n (%) | 9 (15.3) | 2 (9.1) | 0.12 |
Time of extracorporeal circulation, min | 58.0 (46.0; 69.0) | 62.0 (50.0; 70.0) | 0.3 |
Aortic cross-clamping time, min | 33.0 (25.0; 42.0) | 37.0 (30.0; 40.0) | 0.6 |
Time of ischemia, min | 13.0 (7.0; 18.0) | 13.0 (9.0; 19.0) | 0.4 |
Time of lung mechanical ventilation, min | 525.0 (405.0; 655.0) | 580.0 (465.0; 728.0) | 0.068 |
Indicators | Group 1 (n = 111) | Group 2 (n = 47) | ||
---|---|---|---|---|
Before Operation | After Operation | Before Operation | After Operation | |
IL-6, pg/mL | 3.6 (2.6; 15.6) | 20.1 (10.6; 50.8) # | 5.5 (3.5; 46.0) * | 32.7 (23.8; 73.0) **, ## |
IL-8, pg/mL | 1.7 (1.2; 2.7) | 5.9 (3.9; 8.8) # | 1.7 (1.1; 3.5) | 13.2 (10.5; 15.3) **, ## |
NT-proBNP, pg/mL | 113.6 (24.4; 271.1) | 424.0 (202.3; 532.5) # | 101.9 (40.05; 206.0) | 473.0 (253.0; 868.0) ## |
Troponin I, mkg/L | - | 1.6 (1.1; 3.0) | - | 2.0 (0.94; 2.5) |
CRP, g/L | 0.8 (0.3; 1.6) | 4.7 (4.2; 5.5) # | 1.2 (0.2; 2.7) | 4.5 (4.2; 6.1) ## |
SOD of plazma, U/g | 1775.8 (924.8; 4718.8) | 1098.3 (514.8; 2197.5) # | 2751.8 (1563.0; 3949.8) * | 2267.6 (1542.4; 3299.8) **,## |
RG, μmoL/g Hb | 0.33 (0.20; 0.40) | 0.27 (0.21; 0.32) # | 0.27 (0.19; 0.31) * | 0.15 (0.13; 0.18) **,## |
GPO, mmoL/g Hb | 4.08 (3.26; 4.60) | 4.18 (3.76; 4.73) | 3.17 (2.68; 3.53) * | 2.99 (2.93; 3.99) ** |
GR, mmoL/g Hb | 21.22 (18.99; 25.40) | 21.06 (19.34; 24.53) | 17.00 (15.78; 18.67) * | 16.35 (14.96; 16.72) **,## |
MDA, μmoL/g Hb | 0.32 (0.26; 0.38) | 0.37 (0.24; 0.48) # | 0.33 (0.22; 0.44) | 1.98 (1.32; 2.38) **,## |
NO, μmoL/g Hb | 40.6 (30.4; 45.2) | 36.0 (30.8; 47.9) | 31.8 (25.8; 52.2) | 50.8 (39.5; 70.1) **,## |
MMP-9/mg of plasma protein | 14,171.6 (12,165.9; 20,412.9) | 17,625.2 (12,217.3; 22,325.3) | 23,914.6 (17,524.9; 31,799.7) * | 45,015.7 (38,495.8; 66,652.7) **,## |
Eicosapentaenoic acid (C 20:5), % | 0.72 (0.51; 1.05) | 0.72 (0.48; 0.94) | 0.27 (0.00; 0.89) | 0.00 (0.00; 0.21) **,# |
Docosahexaenoic acid (C 22:6), % | 5.93 (3.38; 6.57) | 5.01 (3.45; 6.57) | 2.52 (0.63; 4.52) * | 0.30 (0.19; 0.83) **,# |
Omega-3 index, % | 5.38 (4.10; 7.62) | 5.01 (3.91; 7.2) | 2.01 (0.75; 5.50) * | 0.36 (0.15; 1.06) **,# |
Missing values | Group 1 | (n = 44) | Group 2 | (n = 18) |
Indicators | AUC | Se, % | Sp, % | +LR | −LR | p-Value |
---|---|---|---|---|---|---|
Age >62 years | 0.75 | 77 | 62 | 2.03 | 0.37 | <0.001 |
Stable angina III-IV | 0.6 | 73 | 48 | 1.4 | 0.57 | 0.02 |
NYHA III | 0.63 | 34 | 94 | 5.68 | 0.7 | 0.001 |
Period of CAD >20 months | 0.62 | 68 | 54 | 1.48 | 0.59 | 0.03 |
Left atrium >41 mm | 0.86 | 73 | 89 | 6.61 | 0.33 | <0.001 |
IL-6 after CABG >22.7 pg/mL | 0.68 | 81.8 | 60 | 2.1 | 0.03 | <0.001 |
IL-8 after CABG >9.67 pg/ml | 0.72 | 81.8 | 66 | 2.41 | 0.28 | <0.001 |
SOD in plazma after CABG >1100.5 U/g | 0.77 | 97.7 | 52 | 2.04 | 0.04 | <0.001 |
RG after CABG ≤0.194 μmoL/g Hb | 0.88 | 93.2 | 75 | 3.73 | 0.091 | <0.001 |
GPO before CABG ≤18.7 mmoL/g Hb | 0.915 | 84 | 86 | 6.01 | 0.18 | <0.001 |
GPO after CABG ≤17.36 mmoL/g Hb | 0.92 | 91 | 88 | 6.4 | 0.12 | <0.001 |
GR before CABG ≤3.6 mmoL/g Hb | 0.73 | 93.2 | 59 | 2.3 | 0.12 | <0.001 |
GR after CABG ≤2.99 mmoL/g Hb | 0.81 | 56.8 | 95 | 5.8 | 0.43 | <0.001 |
MDA after CABG >1.25 μmoL/g Hb | 0.9 | 81.8 | 85 | 5.5 | 0.21 | <0.001 |
MMP-9 after CABG >34,140.3/mg of plasma protein | 0.99 | 93.2 | 94 | 4.5 | 0.1 | <0.001 |
NO after CABG >36.4 μmoL/g Hb | 0.6 | 84.1 | 50 | 1.68 | 0.32 | 0.04 |
Omega-3 index before CABG ≤2.6% | 0.81 | 65.9 | 90 | 6.6 | 0.38 | <0.001 |
Omega-3 index after CABG ≤1.59% | 0.84 | 68.6 | 92 | 6.8 | 0.27 | <0.001 |
Indicators | Univariate Regression Analysis | Multivariate Regression Analysis | ||||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | OR | 95% CI | p-Value | |
age >62 years | 2.1 | 1.04–4.6 | 0.03 | |||
stable angina III-IV class | 1.6 | 0.98–2.6 | 0.05 | |||
NYHA III | 3.6 | 2.3–5.7 | 0.001 | |||
history of CAD >20 months | 2.9 | 1.4–6.2 | 0.004 | |||
left atrium diameter >41 mm | 5.3 | 2.2–8.5 | <0.001 | 4.3 | 2.0–9.7 | <0.001 |
IL-6 postoperative levels >22.07 pg/mL | 3.4 | 2.3–7.3 | 0.001 | 3.0 | 1.4–8.2 | 0.006 |
IL-8 postoperative levels >9.67 pg/mL | 2.8 | 1.8–4.7 | <0.001 | 2.3 | 1.2–7.3 | 0.006 |
SOD postoperative levels in plasma >1100.5 U/g | 4.7 | 1.4–7.7 | <0.001 | 3.2 | 1.4–9.2 | 0.03 |
RG postoperative levels ≤0.194 micromole/g of hemoglobin | 2.4 | 1.3–4.9 | 0.001 | 1.9 | 1.2–6.3 | <0.001 |
GPO preoperative levels ≤18.7 millimole/g of hemoglobin | 1.6 | 1.1–5.8 | 0.001 | |||
GPO postoperative levels ≤17.36 millimole/g of hemoglobin | 2.7 | 1.2–6.2 | <0.001 | 2.2 | 1.1–8.2 | <0.001 |
GR preoperative levels ≤3.6 millimole/g of hemoglobin | 1.7 | 1.1–4.9 | 0.001 | |||
GR postoperative levels ≤2.99 millimole/g of hemoglobin | 2.9 | 1.2–3.9 | <0.001 | 2.3 | 1.1–5.7 | <0.001 |
MDA postoperative levels >1.25 micromole/g of hemoglobin | 2.5 | 1.5–5.7 | <0.001 | 2.0 | 1.2–7.9 | <0.001 |
MMP-9 postoperative levels >34,140.3/mg of plasma protein | 1.7 | 1.05–4.1 | 0.01 | 1.2 | 1.01–5.1 | 0.001 |
NO postoperative levels in plasma >36.4 micromole/l | 2.1 | 1.4–3.8 | <0.001 | 1.5 | 1.1–5.9 | <0.001 |
omega-3 index preoperative levels ≤2.6% | 1.8 | 1.2–5.1 | <0.001 | |||
omega-3 index postoperative levels ≤1.59% | 3.1 | 1.9–6.2 | <0.001 | 2.6 | 1.5–9.1 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rubanenko, O.; Rubanenko, A.; Davydkin, I. Comprehensive Analysis of Factors Associated with New Episode of Postoperative Atrial Fibrillation after Coronary Artery Bypass Graft Surgery. Life 2023, 13, 2035. https://doi.org/10.3390/life13102035
Rubanenko O, Rubanenko A, Davydkin I. Comprehensive Analysis of Factors Associated with New Episode of Postoperative Atrial Fibrillation after Coronary Artery Bypass Graft Surgery. Life. 2023; 13(10):2035. https://doi.org/10.3390/life13102035
Chicago/Turabian StyleRubanenko, Olesya, Anatoly Rubanenko, and Igor Davydkin. 2023. "Comprehensive Analysis of Factors Associated with New Episode of Postoperative Atrial Fibrillation after Coronary Artery Bypass Graft Surgery" Life 13, no. 10: 2035. https://doi.org/10.3390/life13102035
APA StyleRubanenko, O., Rubanenko, A., & Davydkin, I. (2023). Comprehensive Analysis of Factors Associated with New Episode of Postoperative Atrial Fibrillation after Coronary Artery Bypass Graft Surgery. Life, 13(10), 2035. https://doi.org/10.3390/life13102035