Omega-3-Enriched Diet Improves Metabolic Profile in Prdx6-Deficient Mice Exposed to Microgravity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Models
2.2. Normal and Omega-3 Diet
2.3. Antiorthostatic Suspension
2.4. Glucose Tolerance Tests and Measurement of Insulin Levels
2.5. Western Blot Assay
2.6. Gene Expression Analysis
2.7. Statistical Analysis
3. Results
3.1. Omega-3-Enriched Diet Improves Glucose Tolerance and Insulin Secretion in Microgravity Conditions
3.2. Omega-3-Enriched Diet Promotes Insulin Signaling and Blunts Gluconeogenic Enzyme Expression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- NASA. NASA Science. Available online: https://science.nasa.gov/ (accessed on 1 October 2023).
- NASA. Commercial Space Flights. Available online: https://www.nasa.gov/news-release/nasa-selects-companies-to-develop-commercial-destinations-in-space/ (accessed on 1 October 2023).
- Strollo, F.; Gentile, S.; Pipicelli, A.M.V.; Mambro, A.; Monici, M.; Magni, P. Space Flight-Promoted Insulin Resistance as a Possible Disruptor of Wound Healing. Front. Bioeng. Biotechnol. 2022, 10, 868999. [Google Scholar] [CrossRef] [PubMed]
- Vinken, M. Hepatology in space: Effects of spaceflight and simulated microgravity on the liver. Liver Int. 2022, 42, 2599–2606. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Shi, J.; Wang, J.; Hao, J.; Pang, X.; Huang, X.; Chen, X.; Li, Y.; Jin, R.; et al. Intestinal microbiota contributes to altered glucose metabolism in simulated microgravity mouse model. FASEB J. 2019, 33, 10140–10151. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liu, S.; Ferguson, S.; Wang, L.; Klepcyk, P.; Yun, J.S.; Friedman, J.E. Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J. Biol. Chem. 2002, 277, 23301–23307. [Google Scholar] [CrossRef]
- Huang, X.; Liu, G.; Guo, J.; Su, Z. The PI3K/AKT pathway in obesity and type 2 diabetes. Int. J. Biol. Sci. 2018, 14, 1483–1496. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.D.; Wu, F.; Zhang, L.Y.; Zhao, Y.C.; Wang, C.C.; Xue, C.H.; Yanagita, T.; Zhang, T.T.; Wang, Y.M. Effects of dietary n-3 PUFA levels in early life on susceptibility to high-fat-diet-induced metabolic syndrome in adult mice. J. Nutr. Biochem. 2021, 89, 108578. [Google Scholar] [CrossRef]
- Zwart, S.R.; Pierson, D.; Mehta, S.; Gonda, S.; Smith, S.M. Capacity of omega-3 fatty acids or eicosapentaenoic acid to counteract weightlessness-induced bone loss by inhibiting NF-kappaB activation: From cells to bed rest to astronauts. J. Bone Min. Res. 2010, 25, 1049–1057. [Google Scholar] [CrossRef]
- Morey-Holton, E.R.; Globus, R.K. Hindlimb unloading rodent model: Technical aspects. J. Appl. Physiol. (1985) 2002, 92, 1367–1377. [Google Scholar] [CrossRef]
- Pacifici, F.; Arriga, R.; Sorice, G.P.; Capuani, B.; Scioli, M.G.; Pastore, D.; Donadel, G.; Bellia, A.; Caratelli, S.; Coppola, A.; et al. Peroxiredoxin 6, a novel player in the pathogenesis of diabetes. Diabetes 2014, 63, 3210–3220. [Google Scholar] [CrossRef]
- Pacifici, F.; Della-Morte, D.; Piermarini, F.; Arriga, R.; Scioli, M.G.; Capuani, B.; Pastore, D.; Coppola, A.; Rea, S.; Donadel, G.; et al. Prdx6 Plays a Main Role in the Crosstalk Between Aging and Metabolic Sarcopenia. Antioxidants 2020, 9, 329. [Google Scholar] [CrossRef]
- The University of New Mexico. Available online: https://news.unm.edu/news/left-in-the-dust-the-first-golden-age-of-citizen-travel-to-outer-space (accessed on 7 October 2023).
- Arriga, R.; Pacifici, F.; Capuani, B.; Coppola, A.; Orlandi, A.; Scioli, M.G.; Pastore, D.; Andreadi, A.; Sbraccia, P.; Tesauro, M.; et al. Peroxiredoxin 6 Is a Key Antioxidant Enzyme in Modulating the Link between Glycemic and Lipogenic Metabolism. Oxid. Med. Cell. Longev. 2019, 2019, 9685607. [Google Scholar] [CrossRef]
- Rea, S.; Della-Morte, D.; Pacifici, F.; Capuani, B.; Pastore, D.; Coppola, A.; Arriga, R.; Andreadi, A.; Donadel, G.; Di Daniele, N.; et al. Insulin and Exendin-4 Reduced Mutated Huntingtin Accumulation in Neuronal Cells. Front. Pharmacol. 2020, 11, 779. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- El-Fayoumi, S.H.; Mahmoud, A.A.A.; Fahmy, A.; Ibrahim, I. Effect of omega-3 fatty acids on glucose homeostasis: Role of free fatty acid receptor 1. Naunyn Schmiedebergs Arch. Pharmacol. 2020, 393, 1797–1808. [Google Scholar] [CrossRef] [PubMed]
- Quinn, P.G.; Yeagley, D. Insulin regulation of PEPCK gene expression: A model for rapid and reversible modulation. Curr. Drug Targets Immune Endocr. Metab. Disord. 2005, 5, 423–437. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Valades, A.G.; Vidal-Alabro, A.; Molas, M.; Boada, J.; Bermudez, J.; Bartrons, R.; Perales, J.C. Overcoming diabetes-induced hyperglycemia through inhibition of hepatic phosphoenolpyruvate carboxykinase (GTP) with RNAi. Mol. Ther. 2006, 13, 401–410. [Google Scholar] [CrossRef] [PubMed]
- Chaloulakou, S.; Poulia, K.A.; Karayiannis, D. Physiological Alterations in Relation to Space Flight: The Role of Nutrition. Nutrients 2022, 14, 4896. [Google Scholar] [CrossRef]
- Gao, R.; Chilibeck, P.D. Nutritional interventions during bed rest and spaceflight: Prevention of muscle mass and strength loss, bone resorption, glucose intolerance, and cardiovascular problems. Nutr. Res. 2020, 82, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Gambara, G.; Salanova, M.; Ciciliot, S.; Furlan, S.; Gutsmann, M.; Schiffl, G.; Ungethuem, U.; Volpe, P.; Gunga, H.C.; Blottner, D. Microgravity-Induced Transcriptome Adaptation in Mouse Paraspinal longissimus dorsi Muscle Highlights Insulin Resistance-Linked Genes. Front. Physiol. 2017, 8, 279. [Google Scholar] [CrossRef]
- Nakae, J.; Kitamura, T.; Silver, D.L.; Accili, D. The forkhead transcription factor Foxo1 (Fkhr) confers insulin sensitivity onto glucose-6-phosphatase expression. J. Clin. Investig. 2001, 108, 1359–1367. [Google Scholar] [CrossRef]
- Vitry, G.; Finch, R.; McStay, G.; Behesti, A.; Dejean, S.; Larose, T.; Wotring, V.; da Silveira, W.A. Muscle atrophy phenotype gene expression during spaceflight is linked to a metabolic crosstalk in both the liver and the muscle in mice. iScience 2022, 25, 105213. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, J.; Periyakaruppan, A.; Sarkar, S.; Ramesh, G.T.; Sharma, S.C. Effect of Simulated Microgravity on the Activity of Regulatory Enzymes of Glycolysis and Gluconeogenesis in Mice Liver. Microgravity Sci. Technol. 2014, 25, 303–309. [Google Scholar] [CrossRef]
- Romanatto, T.; Fiamoncini, J.; Wang, B.; Curi, R.; Kang, J.X. Elevated tissue omega-3 fatty acid status prevents age-related glucose intolerance in fat-1 transgenic mice. Biochim. Biophys. Acta 2014, 1842, 186–191. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacifici, F.; Andreadi, A.; Arriga, R.; Pastore, D.; Capuani, B.; Bonanni, R.; Della-Morte, D.; Bellia, A.; Lauro, D.; Donadel, G. Omega-3-Enriched Diet Improves Metabolic Profile in Prdx6-Deficient Mice Exposed to Microgravity. Life 2023, 13, 2245. https://doi.org/10.3390/life13122245
Pacifici F, Andreadi A, Arriga R, Pastore D, Capuani B, Bonanni R, Della-Morte D, Bellia A, Lauro D, Donadel G. Omega-3-Enriched Diet Improves Metabolic Profile in Prdx6-Deficient Mice Exposed to Microgravity. Life. 2023; 13(12):2245. https://doi.org/10.3390/life13122245
Chicago/Turabian StylePacifici, Francesca, Aikaterini Andreadi, Roberto Arriga, Donatella Pastore, Barbara Capuani, Roberto Bonanni, David Della-Morte, Alfonso Bellia, Davide Lauro, and Giulia Donadel. 2023. "Omega-3-Enriched Diet Improves Metabolic Profile in Prdx6-Deficient Mice Exposed to Microgravity" Life 13, no. 12: 2245. https://doi.org/10.3390/life13122245
APA StylePacifici, F., Andreadi, A., Arriga, R., Pastore, D., Capuani, B., Bonanni, R., Della-Morte, D., Bellia, A., Lauro, D., & Donadel, G. (2023). Omega-3-Enriched Diet Improves Metabolic Profile in Prdx6-Deficient Mice Exposed to Microgravity. Life, 13(12), 2245. https://doi.org/10.3390/life13122245