Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It
Abstract
:1. Introduction
2. Would a Xeno Biochemistry Use Amino Acids?
3. Would a Xeno Biochemistry Use Monosubstituted L-α-Amino Acids?
3.1. α-Amino Acids versus Longer Backbones
3.2. L- vs. D-Stereochemistry
Would a Xeno-Biochemistry Use L-Amino Acids?
3.3. Monosubstitution
4. Would a Xeno Biochemistry Use Different Side-Chains?
4.1. Clues from De Novo Protein Design: Altering the Functional Units of Life as We Know It
4.2. Clues from Prebiotic Chemistry: Bridging the Gap between Life and the Non-Living Universe
4.3. Clues from Molecular Evolutionary Biology: Natural Selection Guiding Alphabet Design
5. Discussion
5.1. Would Xeno Biochemistry Use Amino Acids?
5.2. Would a Xeno Biochemistry Use Monosubstituted L-α-Amino Acids?
5.3. Would a Xeno Biochemistry Use Different Side Chains?
5.4. What Tractable Questions Would Represent Progress for Xeno Amino Acid Science?
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Böck, A.; Forchhammer, K.; Heider, J.; Leinfelder, W.; Sawers, G.; Veprek, B.; Zinoni, F. Selenocysteine: The 21st Amino Acid. Mol. Microbiol. 1991, 5, 515–520. [Google Scholar] [CrossRef] [PubMed]
- Rother, M.; Krzycki, J.A. Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea. Archaea 2010, 2010, e453642. [Google Scholar] [CrossRef] [PubMed]
- Kivenson, V.; Paul, B.G.; Valentine, D.L. An Ecological Basis for Dual Genetic Code Expansion in Marine Deltaproteobacteria. Front. Microbiol. 2021, 12, 680620. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Evans, P.N.; Gagen, E.J.; Woodcroft, B.J.; Hedlund, B.P.; Woyke, T.; Hugenholtz, P.; Rinke, C. Recoding of Stop Codons Expands the Metabolic Potential of Two Novel Asgardarchaeota Lineages. ISME Commun. 2021, 1, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brugère, J.-F.; Atkins, J.F.; O’Toole, P.W.; Borrel, G. Pyrrolysine in Archaea: A 22nd Amino Acid Encoded through a Genetic Code Expansion. Emerg. Top. Life Sci. 2018, 2, 607–618. [Google Scholar] [CrossRef] [PubMed]
- Ambrogelly, A.; Gundllapalli, S.; Herring, S.; Polycarpo, C.; Frauer, C.; Söll, D. Pyrrolysine Is Not Hardwired for Cotranslational Insertion at UAG Codons. Proc. Natl. Acad. Sci. USA 2007, 104, 3141–3146. [Google Scholar] [CrossRef]
- Budisa, N.; Kubyshkin, V.; Schmidt, M. Xenobiology: A Journey towards Parallel Life Forms. ChemBioChem 2020, 21, 2228–2231. [Google Scholar] [CrossRef]
- Young, T.S.; Schultz, P.G. Beyond the Canonical 20 Amino Acids: Expanding the Genetic Lexicon. J. Biol. Chem. 2010, 285, 11039–11044. [Google Scholar] [CrossRef]
- Opuu, V.; Simonson, T. Enzyme redesign and genetic code expansion. Protein Eng. Des. Sel. 2023; ahead of print. [Google Scholar] [CrossRef]
- Weber, A.L.; Miller, S.L. Reasons for the Occurrence of the Twenty Coded Protein Amino Acids. J. Mol. Evol. 1981, 17, 273–284. [Google Scholar] [CrossRef]
- Preiner, M.; Asche, S.; Becker, S.; Betts, H.C.; Boniface, A.; Camprubi, E.; Chandru, K.; Erastova, V.; Garg, S.G.; Khawaja, N.; et al. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life 2020, 10, 20. [Google Scholar] [CrossRef]
- Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 780. [Google Scholar] [CrossRef] [PubMed]
- Bendia, A.G.; Araujo, G.G.; Pulschen, A.A.; Contro, B.; Duarte, R.T.D.; Rodrigues, F.; Galante, D.; Pellizari, V.H. Surviving in Hot and Cold: Psychrophiles and Thermophiles from Deception Island Volcano, Antarctica. Extremophiles 2018, 22, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Fredrickson, J.K.; Zachara, J.M.; Balkwill, D.L.; Kennedy, D.; Li, S.-M.W.; Kostandarithes, H.M.; Daly, M.J.; Romine, M.F.; Brockman, F.J. Geomicrobiology of High-Level Nuclear Waste-Contaminated Vadose Sediments at the Hanford Site, Washington State. Appl. Environ. Microbiol. 2004, 70, 4230–4241. [Google Scholar] [CrossRef]
- Baker, B.J.; Banfield, J.F. Microbial Communities in Acid Mine Drainage. FEMS Microbiol. Ecol. 2003, 44, 139–152. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Shibuya, M.; Kinoshita, I.; Yatabe, J.; Narumi, I.; Shibata, H.; Hayashi, R.; Fujiwara, D.; Murano, Y.; Hashimoto, H.; et al. DNA Damage and Survival Time Course of Deinococcal Cell Pellets during 3 Years of Exposure to Outer Space. Front. Microbiol. 2020, 11, 2050. [Google Scholar] [CrossRef] [PubMed]
- Danko, D.C.; Sierra, M.A.; Benardini, J.N.; Guan, L.; Wood, J.M.; Singh, N.; Seuylemezian, A.; Butler, D.J.; Ryon, K.; Kuchin, K.; et al. A Comprehensive Metagenomics Framework to Characterize Organisms Relevant for Planetary Protection. Microbiome 2021, 9, 82. [Google Scholar] [CrossRef]
- Miller, S.L. A Production of Amino Acids under Possible Primitive Earth Conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [PubMed]
- Miller, S.L.; Urey, H.C. Organic Compound Synthesis on the Primitive Earth. Science 1959, 130, 245–251. [Google Scholar] [CrossRef]
- Cleaves, H.J., II. The Origin of the Biologically Coded Amino Acids. J. Theor. Biol. 2010, 263, 490–498. [Google Scholar] [CrossRef]
- Kebukawa, Y.; Chan, Q.H.S.; Tachibana, S.; Kobayashi, K.; Zolensky, M.E. One-Pot Synthesis of Amino Acid Precursors with Insoluble Organic Matter in Planetesimals with Aqueous Activity. Sci. Adv. 2017, 3, e1602093. [Google Scholar] [CrossRef]
- Magrino, T.; Pietrucci, F.; Saitta, A.M. Step by Step Strecker Amino Acid Synthesis from Ab Initio Prebiotic Chemistry. J. Phys. Chem. Lett. 2021, 12, 2630–2637. [Google Scholar] [CrossRef]
- Pietrucci, F.; Aponte, J.C.; Starr, R.; Pérez-Villa, A.; Elsila, J.E.; Dworkin, J.P.; Saitta, A.M. Hydrothermal Decomposition of Amino Acids and Origins of Prebiotic Meteoritic Organic Compounds. ACS Earth Space Chem. 2018, 2, 588–598. [Google Scholar] [CrossRef]
- Kvenvolden, K.A.; Lawless, J.G.; Ponnamperuma, C. Nonprotein Amino Acids in the Murchison Meteorite. Proc. Natl. Acad. Sci. USA 1971, 68, 486–490. [Google Scholar] [CrossRef]
- Burton, A.S.; Stern, J.C.; Elsila, J.E.; Glavin, D.P.; Dworkin, J.P. Understanding Prebiotic Chemistry through the Analysis of Extraterrestrial Amino Acids and Nucleobases in Meteorites. Chem. Soc. Rev. 2012, 41, 5459–5472. [Google Scholar] [CrossRef] [PubMed]
- Glavin, D.P.; Callahan, M.P.; Dworkin, J.P.; Elsila, J.E. The Effects of Parent Body Processes on Amino Acids in Carbonaceous Chondrites. Meteorit. Planet. Sci. 2010, 45, 1948–1972. [Google Scholar] [CrossRef]
- Pizzarello, S.; Shock, E. The Organic Composition of Carbonaceous Meteorites: The Evolutionary Story Ahead of Biochemistry. Cold Spring Harb. Perspect. Biol. 2010, 2, a002105. [Google Scholar] [CrossRef]
- Elsila, J.E.; Aponte, J.C.; Blackmond, D.G.; Burton, A.S.; Dworkin, J.P.; Glavin, D.P. Meteoritic Amino Acids: Diversity in Compositions Reflects Parent Body Histories. ACS Cent. Sci. 2016, 2, 370–379. [Google Scholar] [CrossRef]
- Simkus, D.N.; Aponte, J.C.; Elsila, J.E.; Hilts, R.W.; McLain, H.L.; Herd, C.D.K. New Insights into the Heterogeneity of the Tagish Lake Meteorite: Soluble Organic Compositions of Variously Altered Specimens. Meteorit. Planet. Sci. 2019, 54, 1283–1302. [Google Scholar] [CrossRef]
- Koga, T.; Naraoka, H. A New Family of Extraterrestrial Amino Acids in the Murchison Meteorite. Sci. Rep. 2017, 7, 636. [Google Scholar] [CrossRef]
- Naraoka, H.; Takano, Y.; Dworkin, J.P. Soluble Organic Molecules in Samples of the Carbonaceous Asteroid (162173) Ryugu. Science 2023, 379, eabn9033. [Google Scholar] [CrossRef]
- Parker, G.A. The Reproductive Behaviour and the Nature of Sexual Selection in Scatophaga stercoraria L. (Diptera: Scatophagidae): II. The Fertilization Rate and the Spatial and Temporal Relationships of Each Sex Around the Site of Mating and Oviposition. J. Anim. Ecol. 1970, 39, 205–228. [Google Scholar] [CrossRef]
- Aponte, J.C.; Elsila, J.E.; Hein, J.E.; Dworkin, J.P.; Glavin, D.P.; McLain, H.L.; Parker, E.T.; Cao, T.; Berger, E.L.; Burton, A.S. Analysis of Amino Acids, Hydroxy Acids, and Amines in CR Chondrites. Meteorit. Planet. Sci. 2020, 55, 2422–2439. [Google Scholar] [CrossRef] [PubMed]
- Deamer, D. The Role of Lipid Membranes in Life’s Origin. Life 2017, 7, 5. [Google Scholar] [CrossRef] [PubMed]
- Todd, Z.R.; Cohen, Z.R.; Catling, D.C.; Keller, S.L.; Black, R.A. Growth of Prebiotically Plausible Fatty Acid Vesicles Proceeds in the Presence of Prebiotic Amino Acids, Dipeptides, Sugars, and Nucleic Acid Components. Langmuir 2022, 38, 15106–15112. [Google Scholar] [CrossRef] [PubMed]
- Okamura, H.; Becker, S.; Tiede, N.; Wiedemann, S.; Feldmann, J.; Carell, T. A One-Pot, Water Compatible Synthesis of Pyrimidine Nucleobases under Plausible Prebiotic Conditions. Chem. Commun. 2019, 55, 1939–1942. [Google Scholar] [CrossRef] [PubMed]
- Oró, J. Mechanism of Synthesis of Adenine from Hydrogen Cyanide under Possible Primitive Earth Conditions. Nature 1961, 191, 1193–1194. [Google Scholar] [CrossRef] [PubMed]
- Engelhart, A.E.; Hud, N.V. Primitive Genetic Polymers. Cold Spring Harb. Perspect. Biol. 2010, 2, a002196. [Google Scholar] [CrossRef]
- Fine, J.L.; Pearlman, R.E. On the Origin of Life: An RNA-Focused Synthesis and Narrative. RNA 2023, rna.079598.123. [Google Scholar] [CrossRef]
- Orgel, L.E. Prebiotic Chemistry and the Origin of the RNA World. Crit. Rev. Biochem. Mol. Biol. 2004, 39, 99–123. [Google Scholar] [CrossRef]
- Meringer, M.; Cleaves, H.J.; Freeland, S.J. Beyond Terrestrial Biology: Charting the Chemical Universe of α-Amino Acid Structures. J. Chem. Inf. Model. 2013, 53, 2851–2862. [Google Scholar] [CrossRef] [PubMed]
- Boutlerow, M.A. Formation Synthétique d’une Substance Sucrée. CR Acad. Sci. 1861, 53, 145–147. [Google Scholar]
- Ricardo, A.; Carrigan, M.A.; Olcott, A.N.; Benner, S.A. Borate Minerals Stabilize Ribose. Science 2004, 303, 196. [Google Scholar] [CrossRef] [PubMed]
- Decker, P.; Schweer, H.; Pohlamnn, R. Bioids: X. Identification of Formose Sugars, Presumable Prebiotic Metabolites, Using Capillary Gas Chromatography/Gas Chromatography—Mas Spectrometry of n-Butoxime Trifluoroacetates on OV-225. J. Chromatogr. A 1982, 244, 281–291. [Google Scholar] [CrossRef]
- Shapiro, R. Prebiotic Ribose Synthesis: A Critical Analysis. Orig. Life Evol. Biosph. 1988, 18, 71–85. [Google Scholar] [CrossRef]
- Asplund, M.; Grevesse, N.; Sauval, A.J. The new solar abundances—Part I: The observations. In Communications in Asteroseismology; Verlag der Österreichischen Akademie der Wissenschaften: Wien, Austria, 2006. [Google Scholar] [CrossRef]
- Pasek, M.A. Rethinking Early Earth Phosphorus Geochemistry. Proc. Natl. Acad. Sci. USA 2008, 105, 853–858. [Google Scholar] [CrossRef]
- Jerome, C.A.; Kim, H.-J.; Mojzsis, S.J.; Benner, S.A.; Biondi, E. Catalytic Synthesis of Polyribonucleic Acid on Prebiotic Rock Glasses. Astrobiology 2022, 22, 629–636. [Google Scholar] [CrossRef]
- Schuster, G.B.; Cafferty, B.J.; Karunakaran, S.C.; Hud, N.V. Water-Soluble Supramolecular Polymers of Paired and Stacked Heterocycles: Assembly, Structure, Properties, and a Possible Path to Pre-RNA. J. Am. Chem. Soc. 2021, 143, 9279–9296. [Google Scholar] [CrossRef]
- Green, N.J.; Xu, J.; Sutherland, J.D. Illuminating Life’s Origins: UV Photochemistry in Abiotic Synthesis of Biomolecules. J. Am. Chem. Soc. 2021, 143, 7219–7236. [Google Scholar] [CrossRef]
- Kim, S.C.; O’flaherty, D.K.; Giurgiu, C.; Zhou, L.; Szostak, J.W. The Emergence of RNA from the Heterogeneous Products of Prebiotic Nucleotide Synthesis. J. Am. Chem. Soc. 2021, 143, 3267–3279. [Google Scholar] [CrossRef]
- Forsythe, J.G.; Yu, S.; Mamajanov, I.; Grover, M.A.; Krishnamurthy, R.; Fernández, F.M.; Hud, N.V. Ester-Mediated Amide Bond Formation Driven by Wet–Dry Cycles: A Possible Path to Polypeptides on the Prebiotic Earth. Angew. Chem. Int. Ed. 2015, 54, 9871–9875. [Google Scholar] [CrossRef]
- Anastasi, C.; Buchet, F.F.; Crowe, M.A.; Parkes, A.L.; Powner, M.W.; Smith, J.M.; Sutherland, J.D. RNA: Prebiotic Product, or Biotic Invention? Chem. Biodivers. 2007, 4, 721–739. [Google Scholar] [CrossRef] [PubMed]
- Freeland, S. Undefining Life’s Biochemistry: Implications for Abiogenesis. J. R. Soc. Interface 2022, 19, 20210814. [Google Scholar] [CrossRef] [PubMed]
- Croswell, K. The Alchemy of the Heavens; Oxford University Press: Oxford, UK, 1996. [Google Scholar]
- Kitadai, N.; Maruyama, S. Origins of Building Blocks of Life: A Review. Geosci. Front. 2018, 9, 1117–1153. [Google Scholar] [CrossRef]
- Furukawa, Y.; Chikaraishi, Y.; Ohkouchi, N.; Ogawa, N.O.; Glavin, D.P.; Dworkin, J.P.; Abe, C.; Nakamura, T. Extraterrestrial Ribose and Other Sugars in Primitive Meteorites. Proc. Natl. Acad. Sci. USA 2019, 116, 24440–24445. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.C.-Y.; Pearce, B.K.; Pudritz, R.E.; Lee, D. Meteoritic Abundances of Fatty Acids and Potential Reaction Pathways in Planetesimals. Icarus 2019, 319, 685–700. [Google Scholar] [CrossRef]
- Oba, Y.; Takano, Y.; Furukawa, Y.; Koga, T.; Glavin, D.P.; Dworkin, J.P.; Naraoka, H. Identifying the Wide Diversity of Extraterrestrial Purine and Pyrimidine Nucleobases in Carbonaceous Meteorites. Nat. Commun. 2022, 13, 2008. [Google Scholar] [CrossRef]
- Frenkel-Pinter, M.; Jacobson, K.C.; Eskew-Martin, J.; Forsythe, J.G.; Grover, M.A.; Williams, L.D.; Hud, N.V. Differential Oligomerization of Alpha versus Beta Amino Acids and Hydroxy Acids in Abiotic Proto-Peptide Synthesis Reactions. Life 2022, 12, 265. [Google Scholar] [CrossRef]
- Guo, R.; McGrath, J.E. 5.17—Aromatic Polyethers, Polyetherketones, Polysulfides, and Polysulfones. In Polymer Science: A Comprehensive Reference; Matyjaszewski, K., Möller, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 377–430. [Google Scholar] [CrossRef]
- Robinson, B.A.; Tester, J.W. Kinetics of Alkaline Hydrolysis of Organic Esters and Amides in Neutrally-Buffered Solution. Int. J. Chem. Kinet. 1990, 22, 431–448. [Google Scholar] [CrossRef]
- Irion, R. Astrobiologists Try to “Follow the Water to Life”. Science 2002, 296, 647–648. [Google Scholar] [CrossRef]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663–708. [Google Scholar] [CrossRef]
- McKay, C.P.; Smith, H.D. Possibilities for Methanogenic Life in Liquid Methane on the Surface of Titan. Icarus 2005, 178, 274–276. [Google Scholar] [CrossRef]
- Budisa, N.; Schulze-Makuch, D. Supercritical Carbon Dioxide and Its Potential as a Life-Sustaining Solvent in a Planetary Environment. Life 2014, 4, 331–340. [Google Scholar] [CrossRef]
- Finney, J.L. Water? What’s so Special about It? Phil Trans. R. Soc. Lond. B 2004, 359, 1145–1165. [Google Scholar] [CrossRef]
- Lynden-Bell, R.M.; Morris, S.C.; Barrow, J.D.; Finney, J.L.; Harper, C. (Eds.) Water and Life: The Unique Properties of H2O; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Mottl, M.J.; Glazer, B.T.; Kaiser, R.I.; Meech, K.J. Water and Astrobiology. Geochemistry 2007, 67, 253–282. [Google Scholar] [CrossRef]
- Lelais, G.; Seebach, D. Beta2-Amino Acids-Syntheses, Occurrence in Natural Products, and Components of Beta-Peptides1,2. Biopolymers 2004, 76, 206–243. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Dou, N.; Zhang, H.; Wu, C. The Versatile GABA in Plants. Plant Signal. Behav. 2021, 16, 1862565. [Google Scholar] [CrossRef] [PubMed]
- Sigel, E.; Steinmann, M.E. Structure, Function, and Modulation of GABA(A) Receptors. J. Biol. Chem. 2012, 287, 40224–40231. [Google Scholar] [CrossRef] [PubMed]
- Cox, P.A.; Banack, S.A.; Murch, S.J.; Rasmussen, U.; Tien, G.; Bidigare, R.R.; Metcalf, J.S.; Morrison, L.F.; Codd, G.A.; Bergman, B. Diverse Taxa of Cyanobacteria Produce β-N-Methylamino-l-Alanine, a Neurotoxic Amino Acid. Proc. Natl. Acad. Sci. USA 2005, 102, 5074–5078. [Google Scholar] [CrossRef] [PubMed]
- Vega, A.; Bell, E.A. α-Amino-β-Methylaminopropionic Acid, a New Amino Acid from Seeds of Cycas Circinalis. Phytochemistry 1967, 6, 759–762. [Google Scholar] [CrossRef]
- Kiss, L.; Mándity, I.M.; Fülöp, F. Highly Functionalized Cyclic β-Amino Acid Moieties as Promising Scaffolds in Peptide Research and Drug Design. Amino Acids 2017, 49, 1441–1455. [Google Scholar] [CrossRef] [PubMed]
- Legrand, B.; Maillard, L.T. α,β-Unsaturated γ-Peptide Foldamers. ChemPlusChem 2021, 86, 629–645. [Google Scholar] [CrossRef]
- Nagata, M.; Watanabe, M.; Doi, R.; Uemura, M.; Ochiai, N.; Ichinose, W.; Fujiwara, K.; Sato, Y.; Kameda, T.; Takeuchi, K.; et al. Helix-Forming Aliphatic Homo-δ-Peptide Foldamers Based on the Conformational Restriction Effects of Cyclopropane. Org. Biomol. Chem. 2023, 21, 970–980. [Google Scholar] [CrossRef]
- Forsythe, J.G.; English, S.L.; Simoneaux, R.E.; Weber, A.L. Synthesis of β-Peptide Standards for Use in Model Prebiotic Reactions. Orig. Life Evol. Biosph. 2018, 48, 201–211. [Google Scholar] [CrossRef] [PubMed]
- Fülöp, F.; Martinek, T.A.; Tóth, G.K. Application of Alicyclic β-Amino Acids in Peptide Chemistry. Chem. Soc. Rev. 2006, 35, 323–334. [Google Scholar] [CrossRef]
- Steer, D.; Lew, R.; Perlmutter, P.; Smith, A.; Aguilar, M.-I. Beta-Amino Acids: Versatile Peptidomimetics. Curr. Med. Chem. 2002, 9, 811–822. [Google Scholar] [CrossRef]
- Levin, S.R.; Scott, T.W.; Cooper, H.S.; West, S.A. Darwin’s Aliens. Int. J. Astrobiol. 2019, 18, 1–9. [Google Scholar] [CrossRef]
- Burton, A.S.; Berger, E.L. Insights into Abiotically-Generated Amino Acid Enantiomeric Excesses Found in Meteorites. Life 2018, 8, 14. [Google Scholar] [CrossRef]
- Cronin, J.R.; Pizzarello, S. Amino Acids in Meteorites. Adv. Space Res. 1983, 3, 5–18. [Google Scholar] [CrossRef]
- Ashe, K.; Fernández-García, C.; Corpinot, M.K.; Coggins, A.J.; Bučar, D.-K.; Powner, M.W. Selective Prebiotic Synthesis of Phosphoroaminonitriles and Aminothioamides in Neutral Water. Commun. Chem. 2019, 2, 23. [Google Scholar] [CrossRef]
- Strecker, A. Ueber Die Künstliche Bildung Der Milchsäure Und Einen Neuen, Dem Glycocoll Homologen Körper—Strecker—1850—Justus Liebigs Annalen Der Chemie—Wiley Online Library. Justus Liebigs Ann. Der Chem. 1850, 75, 27–45. [Google Scholar] [CrossRef]
- Masamba, W. Petasis vs. Strecker Amino Acid Synthesis: Convergence, Divergence and Opportunities in Organic Synthesis. Molecules 2021, 26, 1707. [Google Scholar] [CrossRef] [PubMed]
- Grishin, D.V.; Zhdanov, D.D.; Pokrovskaya, M.V.; Sokolov, N.N. D-Amino Acids in Nature, Agriculture and Biomedicine. All Life 2020, 13, 11–22. [Google Scholar] [CrossRef]
- Sasabe, J.; Suzuki, M. Distinctive Roles of D-Amino Acids in the Homochiral World: Chirality of Amino Acids Modulates Mammalian Physiology and Pathology. Keio J. Med. 2019, 68, 1–16. [Google Scholar] [CrossRef]
- Heck, S.D.; Siok, C.J.; Krapcho, K.J.; Kelbaugh, P.R.; Thadeio, P.F.; Welch, M.J.; Williams, R.D.; Ganong, A.H.; Kelly, M.E.; Lanzetti, A.J.; et al. Functional Consequences of Posttranslational Isomerization of Ser46 in a Calcium Channel Toxin. Science 1994, 266, 1065–1068. [Google Scholar] [CrossRef] [PubMed]
- Wolosker, H.; Dumin, E.; Balan, L.; Foltyn, V.N. D-Amino Acids in the Brain: D-Serine in Neurotransmission and Neurodegeneration. FEBS J. 2008, 275, 3514–3526. [Google Scholar] [CrossRef]
- D’Aniello, A.; D’Onofrio, G.; Pischetola, M.; D’Aniello, G.; Vetere, A.; Petrucelli, L.; Fisher, G.H. Biological Role of D-Amino Acid Oxidase and D-Aspartate Oxidase. Effects of D-Amino Acids. J. Biol. Chem. 1993, 268, 26941–26949. [Google Scholar] [CrossRef]
- Pollegioni, L.; Piubelli, L.; Sacchi, S.; Pilone, M.S.; Molla, G. Physiological Functions of D-Amino Acid Oxidases: From Yeast to Humans. Cell. Mol. Life Sci. 2007, 64, 1373–1394. [Google Scholar] [CrossRef]
- Maruyama, C.; Hamano, Y. The Assembly-Line Enzymology of Nonribosomal Peptide Biosynthesis. Methods Mol. Biol. 2023, 2670, 3–16. [Google Scholar] [CrossRef]
- Vollmer, W.; Blanot, D.; de Pedro, M.A. Peptidoglycan Structure and Architecture. FEMS Microbiol. Rev. 2008, 32, 149–167. [Google Scholar] [CrossRef]
- Evans, A.C.; Meinert, C.; Giri, C.; Goesmann, F.; Meierhenrich, U.J. Chirality, Photochemistry and the Detection of Amino Acids in Interstellar Ice Analogues and Comets. Chem. Soc. Rev. 2012, 41, 5447–5458. [Google Scholar] [CrossRef]
- Davankov, V.A. Inherent Homochirality of Primary Particles and Meteorite Impacts as Possible Source of Prebiotic Molecular Chirality. Russ. J. Phys. Chem. 2009, 83, 1247–1256. [Google Scholar] [CrossRef]
- Jorissen, A.; Cerf, C. Asymmetric Photoreactions as the Origin of Biomolecular Homochirality: A Critical Review. Orig. Life Evol. Biosph. 2002, 32, 129–142. [Google Scholar] [CrossRef] [PubMed]
- Kawasaki, T.; Sato, M.; Ishiguro, S.; Saito, T.; Morishita, Y.; Sato, I.; Nishino, H.; Inoue, Y.; Soai, K. Enantioselective Synthesis of Near Enantiopure Compound by Asymmetric Autocatalysis Triggered by Asymmetric Photolysis with Circularly Polarized Light. J. Am. Chem. Soc. 2005, 127, 3274–3275. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S.F.; Sasselov, D.D. On the Origins of Life’s Homochirality: Inducing Enantiomeric Excess with Spin-Polarized Electrons. Proc. Natl. Acad. Sci. USA 2022, 119, e2204765119. [Google Scholar] [CrossRef] [PubMed]
- Pasteur, M.L. Translations: On the Origin of Ferments. New Experiments Relative to so-Termed Spontaneous Generation. J. Cell Sci. 1860, s1–s8, 255–259. [Google Scholar] [CrossRef]
- Weissbuch, I.; Lahav, M. Crystalline Architectures as Templates of Relevance to the Origins of Homochirality. Chem. Rev. 2011, 111, 3236–3267. [Google Scholar] [CrossRef] [PubMed]
- Noorduin, W.L.; Bode, A.A.C.; van der Meijden, M.; Meekes, H.; van Etteger, A.F.; van Enckevort, W.J.P.; Christianen, P.C.M.; Kaptein, B.; Kellogg, R.M.; Rasing, T.; et al. Complete Chiral Symmetry Breaking of an Amino Acid Derivative Directed by Circularly Polarized Light. Nat. Chem. 2009, 1, 729–732. [Google Scholar] [CrossRef]
- Takahashi, J.; Kobayashi, K. Origin of Terrestrial Bioorganic Homochirality and Symmetry Breaking in the Universe. Symmetry 2019, 11, 919. [Google Scholar] [CrossRef]
- Breslow, R.; Cheng, Z.-L. L-Amino Acids Catalyze the Formation of an Excess of D-Glyceraldehyde, and Thus of Other D Sugars, under Credible Prebiotic Conditions. Proc. Natl. Acad. Sci. USA 2010, 107, 5723–5725. [Google Scholar] [CrossRef]
- Wagner, A.J.; Zubarev, D.Y.; Aspuru-Guzik, A.; Blackmond, D.G. Chiral Sugars Drive Enantioenrichment in Prebiotic Amino Acid Synthesis. ACS Cent. Sci. 2017, 3, 322–328. [Google Scholar] [CrossRef]
- Blackmond, D.G. The Origin of Biological Homochirality. Cold Spring Harb. Perspect. Biol. 2019, 11, a032540. [Google Scholar] [CrossRef]
- Percec, V.; Leowanawat, P. Why Are Biological Systems Homochiral? Isr. J. Chem. 2011, 51, 1107–1117. [Google Scholar] [CrossRef]
- Toxvaerd, S. Origin of Homochirality in Biosystems. Int. J. Mol. Sci. 2009, 10, 1290–1299. [Google Scholar] [CrossRef]
- Bryliakov, K.P. Chemical Mechanisms of Prebiotic Chirality Amplification. Research 2020, 2020, 5689246. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Mirazo, K.; Briones, C.; de la Escosura, A. Prebiotic Systems Chemistry: New Perspectives for the Origins of Life. Chem. Rev. 2014, 114, 285–366. [Google Scholar] [CrossRef] [PubMed]
- Bonner, W.A. The Origin and Amplification of Biomolecular Chirality. Orig. Life Evol. Biosph. 1991, 21, 59–111. [Google Scholar] [CrossRef] [PubMed]
- Sallembien, Q.; Bouteiller, L.; Crassous, J.; Raynal, M. Possible Chemical and Physical Scenarios towards Biological Homochirality. Chem. Soc. Rev. 2022, 51, 3436–3476. [Google Scholar] [CrossRef] [PubMed]
- Brack, A.; Spach, G. β-Structures of Polypeptides with L- and D-Residues. J. Mol. Evol. 1979, 13, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Nanda, V.; Andrianarijaona, A.; Narayanan, C. The Role of Protein Homochirality in Shaping the Energy Landscape of Folding. Protein Sci. 2007, 16, 1667–1675. [Google Scholar] [CrossRef] [PubMed]
- Weil-Ktorza, O.; Fridmann-Sirkis, Y.; Despotovic, D.; Naveh-Tassa, S.; Levy, Y.; Metanis, N.; Longo, L.M. Functional Ambidexterity of an Ancient Nucleic Acid-Binding Domain. bioRxiv 2023. [Google Scholar] [CrossRef]
- Genchi, G. An overview on D-amino acids. Amino Acids 2017, 49, 1521–1533. [Google Scholar] [CrossRef] [PubMed]
- Fan, C.; Deng, Q.; Zhu, T.F. Bioorthogonal Information Storage in L-DNA with a High-Fidelity Mirror-Image Pfu DNA Polymerase. Nat. Biotechnol. 2021, 39, 1548–1555. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, W.; Liu, X.; Wang, J.; Zhang, B.; Fan, C.; Liu, L.; Pena-Alcantara, G.; Ling, J.-J.; Chen, J.; et al. Mirror-Image Gene Transcription and Reverse Transcription. Chem 2019, 5, 848–857. [Google Scholar] [CrossRef]
- Green, M.M.; Jain, V. Homochirality in Life: Two Equal Runners, One Tripped. Orig. Life Evol. Biosph. 2010, 40, 111–118. [Google Scholar] [CrossRef]
- Elsliger, M.-A.; Wilson, I.A. 1.8 Structure Validation and Analysis. In Comprehensive Biophysics; Egelman, E.H., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 116–135. [Google Scholar] [CrossRef]
- Kalmankar, N.V.; Ramakrishnan, C.; Balaram, P. Sparsely Populated Residue Conformations in Protein Structures: Revisiting “Experimental” Ramachandran Maps. Proteins 2014, 82, 1101–1112. [Google Scholar] [CrossRef]
- Linderstrøm-Lang, K. Proteins and Enzymes; Stanford University Press: Redwood City, CA, USA, 1952. [Google Scholar]
- Sehnal, D.; Bittrich, S.; Deshpande, M.; Svobodová, R.; Berka, K.; Bazgier, V.; Velankar, S.; Burley, S.K.; Koča, J.; Rose, A.S. Mol* Viewer: Modern Web App for 3D Visualization and Analysis of Large Biomolecular Structures. Nucleic Acids Res. 2021, 49, W431–W437. [Google Scholar] [CrossRef]
- London, N.; Miller, R.M.; Krishnan, S.; Uchida, K.; Irwin, J.J.; Eidam, O.; Gibold, L.; Cimermančič, P.; Bonnet, R.; Shoichet, B.K.; et al. Covalent Docking of Large Libraries for the Discovery of Chemical Probes. Nat. Chem. Biol. 2014, 10, 1066–1072. [Google Scholar] [CrossRef]
- Fretheim, K.; Iwai, S.; Feeney, R.E. Extensive Modification of Protein Amino Groups by Reductive Addition of Different Sized Substituents. Int. J. Pept. Protein Res. 1979, 14, 451–456. [Google Scholar] [CrossRef]
- Tanaka, M. Design and Synthesis of Chiral α,α-Disubstituted Amino Acids and Conformational Study of Their Oligopeptides. Chem. Pharm. Bull. 2007, 55, 349–358. [Google Scholar] [CrossRef]
- Wang, X.; Li, J.; Hayashi, Y. Highly Sterically Hindered Peptide Bond Formation between α,α-Disubstituted α-Amino Acids and N-Alkyl Cysteines Using α,α-Disubstituted α-Amidonitrile. J. Am. Chem. Soc. 2022, 144, 10145–10150. [Google Scholar] [CrossRef]
- McKay, C.P. What Is Life—And How Do We Search for It in Other Worlds? PLoS Biol. 2004, 2, e302. [Google Scholar] [CrossRef] [PubMed]
- Anfinsen, C.B. Principles that Govern the Folding of Protein Chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Frank, F.C. Energy of Formation of Cyclol Molecules. Nature 1936, 138, 242. [Google Scholar] [CrossRef]
- Linus, P.; Carl, N. The Structure of Proteins. J. Am. Chem. Soc. 1939, 61, 1860–1867. [Google Scholar] [CrossRef]
- Chiarabelli, C.; Vrijbloed, J.W.; Thomas, R.M.; Luisi, P.L. Investigation of de Novo Totally Random Biosequences, Part I. Chem. Biodivers. 2006, 3, 827–839. [Google Scholar] [CrossRef]
- Chiarabelli, C.; Vrijbloed, J.W.; De Lucrezia, D.; Thomas, R.M.; Stano, P.; Polticelli, F.; Ottone, T.; Papa, E.; Luisi, P.L. Investigation of de Novo Totally Random Biosequences, Part II: On the Folding Frequency in a Totally Random Library of de Novo Proteins Obtained by Phage Display. Chem. Biodivers. 2006, 3, 840–859. [Google Scholar] [CrossRef]
- Uy, R.; Wold, F. Posttranslational Covalent Modification of Proteins. Science 1977, 198, 890–896. [Google Scholar] [CrossRef]
- Wong, J.T.-F.; Bronskill, P.M. Inadequacy of Prebiotic Synthesis as Origin of Proteinous Amino Acids. J. Mol. Evol. 1979, 13, 115–125. [Google Scholar] [CrossRef]
- Fekkes, D. Automated Analysis of Primary Amino Acids in Plasma by High-Performance Liquid Chromatography. Methods Mol. Biol. 2012, 828, 183–200. [Google Scholar] [CrossRef]
- Flissi, A.; Ricart, E.; Campart, C.; Chevalier, M.; Dufresne, Y.; Michalik, J.; Jacques, P.; Flahaut, C.; Lisacek, F.; Leclère, V.; et al. Norine: Update of the Nonribosomal Peptide Resource. Nucleic Acids Res. 2020, 48, D465–D469. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Bacon, C.; Agboha, N.; Muscalli, M.; Freeland, S. Evolution as a Guide to Designing Xeno Amino Acid Alphabets. Int. J. Mol. Sci. 2021, 22, 2787. [Google Scholar] [CrossRef] [PubMed]
- Andrews, J.; Gan, Q.; Fan, C. “Not-so-Popular” Orthogonal Pairs in Genetic Code Expansion. Protein Sci. 2023, 32, e4559. [Google Scholar] [CrossRef]
- Lee, J.; Schwieter, K.E.; Watkins, A.M.; Kim, D.S.; Yu, H.; Schwarz, K.J.; Lim, J.; Coronado, J.; Byrom, M.; Anslyn, E.V.; et al. Expanding the Limits of the Second Genetic Code with Ribozymes. Nat. Commun. 2019, 10, 5097. [Google Scholar] [CrossRef] [PubMed]
- Dell, M.; Dunbar, K.L.; Hertweck, C. Ribosome-Independent Peptide Biosynthesis: The Challenge of a Unifying Nomenclature. Nat. Prod. Rep. 2022, 39, 453–459. [Google Scholar] [CrossRef]
- Reimer, J.M.; Haque, A.S.; Tarry, M.J.; Schmeing, T.M. Piecing Together Nonribosomal Peptide Synthesis. Curr. Opin. Struct. Biol. 2018, 49, 104–113. [Google Scholar] [CrossRef]
- Feldman, A.W.; Dien, V.T.; Karadeema, R.J.; Fischer, E.C.; You, Y.; Anderson, B.A.; Krishnamurthy, R.; Chen, J.S.; Li, L.; Romesberg, F.E. Optimization of Replication, Transcription, and Translation in a Semi-Synthetic Organism. J. Am. Chem. Soc. 2019, 141, 10644–10653. [Google Scholar] [CrossRef]
- Mayer-Bacon, C.; Meringer, M.; Havel, R.; Aponte, J.C.; Freeland, S. A Closer Look at Non-Random Patterns within Chemistry Space for a Smaller, Earlier Amino Acid Alphabet. J. Mol. Evol. 2022, 90, 307–323. [Google Scholar] [CrossRef]
- Freeland, S. “Terrestrial” Amino Acids and Their Evolution. In Amino Acids, Peptides and Proteins in Organic Chemistry; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2009; pp. 43–75. [Google Scholar] [CrossRef]
- Dumas, A.; Lercher, L.; Spicer, C.D.; Davis, B.G. Designing Logical Codon Reassignment—Expanding the Chemistry in Biology. Chem. Sci. 2014, 6, 50–69. [Google Scholar] [CrossRef]
- Liu, C.C.; Schultz, P.G. Adding New Chemistries to the Genetic Code. Annu. Rev. Biochem. 2010, 79, 413–444. [Google Scholar] [CrossRef]
- Nödling, A.R.; Spear, L.A.; Williams, T.L.; Luk, L.Y.; Tsai, Y.-H. Using Genetically Incorporated Unnatural Amino Acids to Control Protein Functions in Mammalian Cells. Essays Biochem. 2019, 63, 237–266. [Google Scholar] [CrossRef] [PubMed]
- Anfinsen, C.B.; Corley, L.G. An Active Variant of Staphylococcal Nuclease Containing Norleucine in Place of Methionine. J. Biol. Chem. 1969, 244, 5149–5152. [Google Scholar] [CrossRef] [PubMed]
- Jukes, T.H. Arginine as an Evolutionary Intruder into Protein Synthesis. Biochem. Biophys. Res. Commun. 1973, 53, 709–714. [Google Scholar] [CrossRef] [PubMed]
- Kawashima, S.; Pokarowski, P.; Pokarowska, M.; Kolinski, A.; Katayama, T.; Kanehisa, M. AAindex: Amino Acid Index Database, Progress Report 2008. Nucleic Acids Res 2008, 36, D202–D205. [Google Scholar] [CrossRef] [PubMed]
- Beadle, G.W.; Tatum, E.L.; Lederberg, J. The Nobel Prize in Physiology or Medicine 1958. Available online: https://www.nobelprize.org/prizes/medicine/1958/summary/ (accessed on 29 October 2023).
- Crick, F.H.; Watson, J.D.; Wilkins, M.H. The Nobel Prize in Physiology or Medicine 1962. Available online: https://www.nobelprize.org/prizes/medicine/1962/summary/ (accessed on 29 October 2023).
- Delbrück, M.; Hershey, A.D.; Luria, S.E. The Nobel Prize in Physiology or Medicine 1969. Available online: https://www.nobelprize.org/prizes/medicine/1969/press-release/ (accessed on 29 October 2023).
- Holley, R.W.; Khorana, H.G.; Nirenberg, M.W. The Nobel Prize in Physiology or Medicine 1968. Available online: https://www.nobelprize.org/prizes/medicine/1968/summary/ (accessed on 29 October 2023).
- Crick, F. Central Dogma of Molecular Biology. Nature 1970, 227, 561–563. [Google Scholar] [CrossRef]
- Crick, F.H. Codon—Anticodon Pairing: The Wobble Hypothesis. J. Mol. Biol. 1966, 19, 548–555. [Google Scholar] [CrossRef]
- Knight, R.D.; Freeland, S.J.; Landweber, L.F. Selection, History and Chemistry: The Three Faces of the Genetic Code. Trends Biochem. Sci. 1999, 24, 241–247. [Google Scholar] [CrossRef]
- Koonin, E.V.; Novozhilov, A.S. Origin and Evolution of the Universal Genetic Code. Annu. Rev. Genet. 2017, 51, 45–62. [Google Scholar] [CrossRef]
- Wong, J.T.-F. A Co-Evolution Theory of the Genetic Code. Proc. Natl. Acad. Sci. USA 1975, 72, 1909–1912. [Google Scholar] [CrossRef]
- Levinthal, C. How to Fold Graciously. Mössbaun Spectrosc. Biol. Syst. Proc. 1969, 67, 22–24. [Google Scholar]
- Kryshtafovych, A.; Venclovas, Č.; Fidelis, K.; Moult, J. Progress over the First Decade of CASP Experiments. Proteins 2005, 61 (Suppl. S7), 225–236. [Google Scholar] [CrossRef] [PubMed]
- Altman, S.; Cech, T.R. The Nobel Prize in Chemistry 1989. Available online: https://www.nobelprize.org/prizes/chemistry/1989/summary/ (accessed on 29 October 2023).
- Gilbert, W. Origin of Life: The RNA World. Nature 1986, 319, 618. [Google Scholar] [CrossRef]
- Joyce, G.F. The Antiquity of RNA-Based Evolution. Nature 2002, 418, 214–221. [Google Scholar] [CrossRef]
- Štorchová, H.; Gesteland, R.F.; Atkins, J.F. The RNA World. Biol. Plant 1994, 36, 358. [Google Scholar] [CrossRef]
- Benner, S.A.; Ellington, A.D.; Tauer, A. Modern Metabolism as a Palimpsest of the RNA World. Proc. Natl. Acad. Sci. USA 1989, 86, 7054–7058. [Google Scholar] [CrossRef] [PubMed]
- Freeland, S.J.; Knight, R.D.; Landweber, L.F. Do Proteins Predate DNA? Science 1999, 286, 690–692. [Google Scholar] [CrossRef]
- Rivas, M.; Fox, G.E. Ancestry of RNA/RNA Interaction Regions within Segmented Ribosomes. RNA 2023, 29, 1388–1399. [Google Scholar] [CrossRef]
- Yarus, M. The Genetic Code and RNA-Amino Acid Affinities. Life 2017, 7, 13. [Google Scholar] [CrossRef]
- Doig, A.J. Frozen, but No Accident—Why the 20 Standard Amino Acids Were Selected. FEBS J. 2017, 284, 1296–1305. [Google Scholar] [CrossRef]
- Trifonov, E.N. Consensus Temporal Order of Amino Acids and Evolution of the Triplet Code. Gene 2000, 261, 139–151. [Google Scholar] [CrossRef]
- Higgs, P.G.; Pudritz, R.E. A Thermodynamic Basis for Prebiotic Amino Acid Synthesis and the Nature of the First Genetic Code. Astrobiology 2009, 9, 483–490. [Google Scholar] [CrossRef] [PubMed]
- Anfinsen, C.B.; Haber, E.; Sela, M.; White, F.H., Jr. The Kinetics of Formation of Native Ribonuclease during Oxidation of the Reduced Polypeptide Chain. Proc. Natl. Acad. Sci. USA 1961, 47, 1309–1314. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.M.; Voráček, V.; Freeland, S. What Would an Alien Amino Acid Alphabet Look Like and Why? Astrobiology 2023, 23, 536–549. [Google Scholar] [CrossRef] [PubMed]
- Culka, M.; Kalvoda, T.; Gutten, O.; Rulíšek, L. Mapping Conformational Space of All 8000 Tripeptides by Quantum Chemical Methods: What Strain Is Affordable within Folded Protein Chains? J. Phys. Chem. B 2021, 125, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Dayhoff, M.O.; Schwartz, R.M.; Orcutt, B.C. 22 A Model of Evolutionary Change in Proteins. Atlas Protein Seq. Struct. 1978, 5, 345–352. [Google Scholar]
- Frenkel-Pinter, M.; Haynes, J.W.C.M.; Petrov, A.S.; Burcar, B.T.; Krishnamurthy, R.; Hud, N.V.; Leman, L.J.; Williams, L.D. Selective Incorporation of Proteinaceous over Nonprosteinaceous Cationic Amino Acids in Model Prebiotic Oligomerization Reactions. Proc. Natl. Acad. Sci. USA 2019, 116, 16338–16346. [Google Scholar] [CrossRef] [PubMed]
- Furka, Á.; Sebestyén, F.; Asgedom, M.; Dibó, G. General Method for Rapid Synthesis of Multicomponent Peptide Mixtures. Int. J. Pept. Protein Res. 1991, 37, 487–493. [Google Scholar] [CrossRef]
- Granold, M.; Hajieva, P.; Toşa, M.I.; Irimie, F.-D.; Moosmann, B. Modern Diversification of the Amino Acid Repertoire Driven by Oxygen. Proc. Natl. Acad. Sci. USA 2018, 115, 41–46. [Google Scholar] [CrossRef]
- Ilardo, M.; Meringer, M.; Freeland, S.; Rasulev, B.; Ii, H.J.C. Extraordinarily Adaptive Properties of the Genetically Encoded Amino Acids. Sci. Rep. 2015, 5, 9414. [Google Scholar] [CrossRef]
- Kalvoda, T.; Culka, M.; Rulíšek, L.; Andris, E. Exhaustive Mapping of the Conformational Space of Natural Dipeptides by the DFT-D3//COSMO-RS Method. J. Phys. Chem. B 2022, 126, 5949–5958. [Google Scholar] [CrossRef]
- Karplus, M.; McCammon, J.A. Molecular Dynamics Simulations of Biomolecules. Nat. Struct. Mol. Biol. 2002, 9, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Keefe, A.D.; Szostak, J.W. Functional Proteins from a Random-Sequence Library. Nature 2001, 410, 715–718. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M. Evolutionary Rate at the Molecular Level. Nature 1968, 217, 624–626. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.M.; Despotović, D.; Weil-Ktorza, O.; Walker, M.J.; Jabłońska, J.; Fridmann-Sirkis, Y.; Varani, G.; Metanis, N.; Tawfik, D.S. Primordial Emergence of a Nucleic Acid-Binding Protein via Phase Separation and Statistical Ornithine-to-Arginine Conversion. Proc. Natl. Acad. Sci. USA 2020, 117, 15731–15739. [Google Scholar] [CrossRef] [PubMed]
- Longo, L.M.; Lee, J.; Blaber, M. Simplified Protein Design Biased for Prebiotic Amino Acids Yields a Foldable, Halophilic Protein. Proc. Natl. Acad. Sci. USA 2013, 110, 2135–2139. [Google Scholar] [CrossRef]
- Makarov, M.; Rocha, A.C.S.; Krystufek, R.; Cherepashuk, I.; Dzmitruk, V.; Charnavets, T.; Faustino, A.M.; Lebl, M.; Fujishima, K.; Fried, S.D.; et al. Early Selection of the Amino Acid Alphabet Was Adaptively Shaped by Biophysical Constraints of Foldability. J. Am. Chem. Soc. 2023, 149, 5320–5329. [Google Scholar] [CrossRef]
- Maynard Smith, J. Natural Selection and the Concept of a Protein Space. Nature 1970, 225, 563–564. [Google Scholar] [CrossRef] [PubMed]
- Merrifield, B. Solid Phase Synthesis. Science 1986, 232, 341–347. [Google Scholar] [CrossRef]
- Moosmann, B. Redox Biochemistry of the Genetic Code. Trends Biochem. Sci. 2021, 46, 83–86. [Google Scholar] [CrossRef]
- Philip, G.K.; Freeland, S.J. Did Evolution Select a Nonrandom “Alphabet” of Amino Acids? Astrobiology 2011, 11, 235–240. [Google Scholar] [CrossRef]
- Ramachandran, G.N.; Ramakrishnan, C.; Sasisekharan, V. Stereochemistry of Polypeptide Chain Configurations. J. Mol. Biol. 1963, 7, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Řezáč, J.; Bím, D.; Gutten, O.; Rulíšek, L. Toward Accurate Conformational Energies of Smaller Peptides and Medium-Sized Macrocycles: MPCONF196 Benchmark Energy Data Set. J. Chem. Theory Comput. 2018, 14, 1254–1266. [Google Scholar] [CrossRef] [PubMed]
- Riddle, D.S.; Santiago, J.V.; Bray-Hall, S.T.; Doshi, N.; Grantcharova, V.P.; Yi, Q.; Baker, D. Functional Rapidly Folding Proteins from Simplified Amino Acid Sequences. Nat. Struct. Mol. Biol. 1997, 4, 805–809. [Google Scholar] [CrossRef]
- Tanaka, J.; Doi, N.; Takashima, H.; Yanagawa, H. Comparative Characterization of Random-Sequence Proteins Consisting of 5, 12, and 20 Kinds of Amino Acids. Protein Sci. 2010, 19, 786–795. [Google Scholar] [CrossRef] [PubMed]
- Tretyachenko, V.; Vymětal, J.; Neuwirthová, T.; Vondrášek, J.; Fujishima, K.; Hlouchová, K. Modern and Prebiotic Amino Acids Support Distinct Structural Profiles in Proteins. Open Biol. 2022, 12, 220040. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.L. Thermal Synthesis and Hydrolysis of Polyglyceric Acid. Orig. Life Evol. Biosph. 1989, 19, 7–19. [Google Scholar] [CrossRef] [PubMed]
- Woolfson, D.N. A Brief History of De Novo Protein Design: Minimal, Rational, and Computational. J. Mol. Biol. 2021, 433, 167160. [Google Scholar] [CrossRef]
- Brack, A.; Orgel, L.E. β Structures of Alternating Polypeptides and Their Possible Prebiotic Significance. Nature 1975, 256, 383–387. [Google Scholar] [CrossRef]
- Tretyachenko, V.; Vymětal, J.; Bednárová, L.; Kopecký, V.; Hofbauerová, K.; Jindrová, H.; Hubálek, M.; Souček, R.; Konvalinka, J.; Vondrášek, J.; et al. Random Protein Sequences Can Form Defined Secondary Structures and Are Well-Tolerated In Vivo. Sci. Rep. 2017, 7, 15449. [Google Scholar] [CrossRef]
- Merrifield, B. The Nobel Prize in Chemistry 1984. Available online: https://www.nobelprize.org/prizes/chemistry/1984/summary/ (accessed on 29 October 2023).
- Furka, Á. Forty Years of Combinatorial Technology. Drug Discov. Today 2022, 27, 103308. [Google Scholar] [CrossRef]
- Moult, J. A Decade of CASP: Progress, Bottlenecks and Prognosis in Protein Structure Prediction. Curr. Opin. Struct. Biol. 2005, 15, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Simons, K.T.; Bonneau, R.; Ruczinski, I.; Baker, D. Ab Initio Protein Structure Prediction of CASP III Targets Using ROSETTA. Proteins 1999, 37 (Suppl. S3), 171–176. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly Accurate Protein Structure Prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- McCammon, J.A.; Gelin, B.R.; Karplus, M. Dynamics of Folded Proteins. Nature 1977, 267, 585–590. [Google Scholar] [CrossRef]
- Krishnan, A. What Are Academic Disciplines? Some Observations on the Disciplinarity vs. Interdisciplinarity Debate; Working Paper; National Centre for Research Methods: Bristol, UK, 2009. [Google Scholar]
- Chin, J.W. Reprogramming the Genetic Code. EMBO J. 2011, 30, 2312–2324. [Google Scholar] [CrossRef] [PubMed]
- de la Torre, D.; Chin, J.W. Reprogramming the Genetic Code. Nat. Rev. Genet. 2020, 22, 169–184. [Google Scholar] [CrossRef]
- Bada, J.L.; Cleaves, H.J. Ab Initio Simulations and the Miller Prebiotic Synthesis Experiment. Proc. Natl. Acad. Sci. USA 2015, 112, E342. [Google Scholar] [CrossRef]
- Atkins, J.F.; Gesteland, R. The 22nd Amino Acid. Science 2002, 296, 1409–1410. [Google Scholar] [CrossRef]
- Rao, V.; Nanjundiah, V.J.B.S. Haldane, Ernst Mayr and the Beanbag Genetics Dispute. J. Hist. Biol. 2011, 44, 233–281. [Google Scholar] [CrossRef]
- Jukes, T.H.; Kimura, M. Evolutionary Constraints and the Neutral Theory. J. Mol. Evol. 1984, 21, 90–92. [Google Scholar] [CrossRef]
- Ghosh, S.; Pal, J.; Cattani, C.; Maji, B.; Bhattacharya, D.K. Protein Sequence Comparison Based on Representation on a Finite Dimensional Unit Hypercube. J. Biomol. Struct. Dyn. 2023, 1–15. [Google Scholar] [CrossRef]
- Parker, G.; Smith, J. Optimality theory in evolutionary biology. Nature 1990, 348, 27–33. [Google Scholar] [CrossRef]
- Elner, R.W. The Mechanics of Predation by the Shore Crab, Carcinus maenas (L.), on the Edible Mussel, Mytilus edulis L. Oecologia 1978, 36, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Szathmáry, E. Four Letters in the Genetic Alphabet: A Frozen Evolutionary Optimum? Proc. Biol. Sci. 1991, 245, 91–99. [Google Scholar] [CrossRef]
- Szathmáry, E. Why Are There Four Letters in the Genetic Alphabet? Nat. Rev. Genet. 2003, 4, 995–1001. [Google Scholar] [CrossRef]
- Freeland, S.J.; Hurst, L.D. The Genetic Code Is One in a Million. J. Mol. Evol. 1998, 47, 238–248. [Google Scholar] [CrossRef] [PubMed]
- Omachi, Y.; Saito, N.; Furusawa, C. Rare-Event Sampling Analysis Uncovers the Fitness Landscape of the Genetic Code. PLoS Comput. Biol. 2023, 19, e1011034. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Bacon, C.; Freeland, S.J. A Broader Context for Understanding Amino Acid Alphabet Optimality. J. Theor. Biol. 2021, 520, 110661. [Google Scholar] [CrossRef]
- Singh, S.; Singh, H.; Tuknait, A.; Chaudhary, K.; Singh, B.; Kumaran, S.; Raghava, G.P.S. PEPstrMOD: Structure Prediction of Peptides Containing Natural, Non-Natural and Modified Residues. Biol. Direct. 2015, 10, 73. [Google Scholar] [CrossRef]
- Lu, Y.; Freeland, S. Testing the Potential for Computational Chemistry to Quantify Biophysical Properties of the Non-Proteinaceous Amino Acids. Astrobiology 2006, 6, 606–624. [Google Scholar] [CrossRef]
- Dobson, C.M. Chemical Space and Biology. Nature 2004, 432, 824–828. [Google Scholar] [CrossRef]
- Lipinski, C.; Hopkins, A. Navigating Chemical Space for Biology and Medicine. Nature 2004, 432, 855–861. [Google Scholar] [CrossRef]
- Lipinski, C.A. Rule of Five in 2015 and beyond: Target and Ligand Structural Limitations, Ligand Chemistry Structure and Drug Discovery Project Decisions. Adv. Drug Deliv. Rev. 2016, 101, 34–41. [Google Scholar] [CrossRef]
- Lins, L.; Brasseur, R. The hydrophobic effect in protein folding. FASEB J. 1995, 9, 535–540. [Google Scholar] [CrossRef]
- Vascon, F.; Gasparotto, M.; Giacomello, M.; Cendron, L.; Bergantino, E.; Filippini, F.; Righetto, I. Protein electrostatics: From computational and structural analysis to discovery of functional fingerprints and biotechnological design. Comput. Struct. Biotechnol. J. 2020, 18, 1774–1789. [Google Scholar] [CrossRef]
- Ilardo, M.A.; Freeland, S.J. Testing for Adaptive Signatures of Amino Acid Alphabet Evolution Using Chemistry Space. J. Syst. Chem. 2014, 5, 1. [Google Scholar] [CrossRef]
- Cockell, C.S.; Bush, T.; Bryce, C.; Direito, S.; Fox-Powell, M.; Harrison, J.P.; Lammer, H.; Landenmark, H.; Martin-Torres, J.; Nicholson, N.; et al. Habitability: A Review. Astrobiology 2016, 16, 89–117. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.L.; Cleland, C.E.; Arend, D.; Bartlett, S.; Cleaves, H.J.; Demarest, H.; Prabhu, A.; Lunine, J.I.; Hazen, R.M. On the Roles of Function and Selection in Evolving Systems. Proc. Natl. Acad. Sci. USA 2023, 120, e2310223120. [Google Scholar] [CrossRef]
- Cabrele, C.; Martinek, T.A.; Reiser, O.; Berlicki, B. Peptides Containing β-Amino Acid Patterns: Challenges and Successes in Medicinal Chemistry. J. Med. Chem. 2014, 57, 9718–9739. [Google Scholar] [CrossRef] [PubMed]
- Hickey, J.L.; Sindhikara, D.; Zultanski, S.L.; Schultz, D.M. Beyond 20 in the 21st Century: Prospects and Challenges of Non-Canonical Amino Acids in Peptide Drug Discovery. ACS Med. Chem. Lett. 2023, 14, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Teniola, O.R.; Laurencin, C.T. Biodegradable Polyphosphazenes for Regenerative Engineering. J. Mater. Res. 2022, 37, 1417–1428. [Google Scholar] [CrossRef] [PubMed]
Heavy Atoms | Molecular Weight (g/mol) | Chemical Elements | |
---|---|---|---|
Coded Amino Acids (ACDEFGHIKLMNPQRSTVWY) | 5–15 | CHONS | |
‘Prebiotic’ Amino Acids (ADEGILPSTV) | 5–8 | CHONS | |
Nucleobases | 8–11 | CHONP | |
Nucleotides Nucleobase + Ribose + PO4 | 23–24 | CHONP | |
Fatty Acids | ≥5 | CHO | |
Propionic acid § | 5 | 74 | |
Decanoic acid † | 12 | 172 | |
Lipids | ≥12 | CHO | |
Triformin * | 12 | 176 | |
Sugars Monosaccharides | ≥6 | CHO | |
Triose ‡ | 6 | 90 | |
Ribose | 10 | 150 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brown, S.M.; Mayer-Bacon, C.; Freeland, S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life 2023, 13, 2281. https://doi.org/10.3390/life13122281
Brown SM, Mayer-Bacon C, Freeland S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life. 2023; 13(12):2281. https://doi.org/10.3390/life13122281
Chicago/Turabian StyleBrown, Sean M., Christopher Mayer-Bacon, and Stephen Freeland. 2023. "Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It" Life 13, no. 12: 2281. https://doi.org/10.3390/life13122281
APA StyleBrown, S. M., Mayer-Bacon, C., & Freeland, S. (2023). Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life, 13(12), 2281. https://doi.org/10.3390/life13122281