Long-Term Phellodendri Cortex Supplementation in the Tiger Grouper (Epinephelus fuscoguttatus): Dual Effects on Intestinal Health Revealed by Transcriptome Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PC Extract and Experimental Diets
2.2. Rearing
2.3. Sampling
2.4. Growth Performance, Hepatosomatic Index, and Spleen-Somatic Index
2.5. Biochemical Analysis
2.6. Challenge Test
2.7. RNA Extraction, cDNA Library Construction, and Transcriptome Sequencing
2.8. De Novo Assembly and Gene Functional Annotation
2.9. Analysis of Differentially Expressed Genes
2.10. Validation of RNA Sequencing Data Using Quantitative RT-PCR (qPCR)
2.11. Statistical Analysis
3. Results
3.1. Growth Performance, Antioxidant Capacity, and Non-Specific Immunity Indices
3.2. De Novo Assembly and Sequence Annotation
3.3. Functional Annotation
3.4. Identification and Annotation of DEGs in the E. fuscoguttatus Intestinal Transcriptome in Response to PC Supplementation
3.5. Validation of 15 Putative DEGs using qPCR
3.6. Disease Resistance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sudirman; Halide, H.; Jompa, J.; Zulfikar; Iswahyudin; McKinnon, A.D. Wild fish associated with tropical sea cage aquaculture in South Sulawesi, Indonesia. Aquaculture 2009, 286, 233–239. [Google Scholar] [CrossRef]
- De Benedetto, G.; Arfuso, F.; Ferrara, M.C.; Brianti, E.; Gaglio, G. Parasite Fauna of the Dusky Grouper (Epinephelus marginatus, Lowe 1834) from the Central Mediterranean Sea. Animals 2021, 11, 2523. [Google Scholar] [CrossRef] [PubMed]
- Hoihuan, A.; Soonson, P.; Bunlipatanon, P.; Thawonsuwan, J.; Tanasomwang, V.; Areechon, N.; Unajak, S. Molecular genotyping and phenotyping of Vibrio vulnificus isolated from diseased, brown-marbled grouper (Epinephelus fuscoguttatus) in Thailand with vaccine. Aquaculture 2021, 545, 737188. [Google Scholar] [CrossRef]
- Noor, N.M.; Defoirdt, T.; Alipiah, N.; Karim, M.; Daud, H.; Natrah, I. Quorum sensing is required for full virulence of Vibrio campbellii towards tiger grouper (Epinephelus fuscoguttatus) larvae. J. Fish Dis. 2019, 42, 489–495. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Lin, H.; Xing, Y.; Wen, J.; Fang, W.; Zhang, J.; Duan, Y. Response signatures of intestinal microbiota and gene transcription of the tiger grouper Epinephelus fuscoguttatus to nervous necrosis virus infection. Aquaculture 2022, 550, 737848. [Google Scholar] [CrossRef]
- Wang, C.; Yao, Z.; Zhan, P.; Yi, X.; Chen, J.; Xiong, J. Significant tipping points of sediment microeukaryotes forewarn increasing antibiotic pollution. J. Environ. Sci. 2023, 124, 429–439. [Google Scholar] [CrossRef]
- Xia, Y.T.; Wu, Q.Y.; Cheng, E.H.C.; Dong, T.T.X.; Qin, Q.W.; Wang, W.X.; Tsim, K.W.K. The inclusion of extract from aerial part of Scutellaria baicalensis in feeding of pearl gentian grouper (Epinephelus fuscoguttatus × Epinephelus lanceolatus) promotes growth and immunity. Fish Shellfish. Immunol. 2022, 127, 521–529. [Google Scholar] [CrossRef]
- Zhou, X.; Wang, Y.; Yu, J.; Li, J.; Wu, Q.; Bao, S.; Jiang, L.; Liu, B. Effects of dietary fermented Chinese herbal medicines on growth performance, digestive enzyme activity, liver antioxidant capacity, and intestinal inflammatory gene expression of juvenile largemouth bass (Micropterus salmoides). Aquac. Rep. 2022, 25, 101269. [Google Scholar] [CrossRef]
- Cheng, M.E.; Zhan, Z.L.; Zhang, W.; Yang, H.J.; Shen, J.Z.; Peng, H.S. Textual research of “Huangbo” in classical prescriptions. Zhongguo Zhong Yao Za Zhi 2019, 44, 4768–4771. (In Chinese) [Google Scholar]
- Ding, X.; Tang, Y.; Sun, A.; Liu, R. Simultaneous determination of three alkaloids in Huangbo using an ionic liquid as a mobile phase additive in reversed-phase liquid chromatography. J. Sep. Sci. 2015, 38, 374–380. [Google Scholar] [CrossRef]
- Liu, C.S.; Zheng, Y.R.; Zhang, Y.F.; Long, X.Y. Research progress on berberine with a special focus on its oral bioavailability. Fitoterapia 2016, 109, 274–282. [Google Scholar] [CrossRef] [PubMed]
- Takei, Y. The digestive tract as an essential organ for water acquisition in marine teleosts: Lessons from euryhaline eels. Zool. Lett. 2021, 7, 10. [Google Scholar] [CrossRef]
- Chang, X.; Liu, P.; Feng, J.; Su, X.; Huang, M.; Chen, Y.; Zhang, J.; Li, B. Impact of chronic exposure to the ionic liquid ([C8mim] [PF6]) on intestinal physical barrier, immunological barrier and gut microbiota in common carp (Cyprinus carpio L.). Environ. Res. 2020, 189, 109919. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, Y.; Ling, H.; Luo, L.; Qi, D.; Feng, L. The effect of dietary supplementation with Clostridium butyricum on the growth performance, immunity, intestinal microbiota and disease resistance of tilapia (Oreochromis niloticus). PLoS ONE 2019, 14, e0223428. [Google Scholar] [CrossRef] [PubMed]
- Gerile, S.; Pirhonen, J. Replacement of fishmeal with corn gluten meal in feeds for juvenile rainbow trout (Oncorhynchus mykiss) does not affect oxygen consumption during forced swimming. Aquaculture 2017, 479, 616–618. [Google Scholar] [CrossRef]
- Amoah, K.; Yan, X.; Liu, H.; Pan, S.; Li, T.; Suo, X.; Tan, B.; Zhang, S.; Huang, W.; Xie, M.; et al. Substituting fish meal with castor meal in diets of hybrid grouper (Epinephelus fuscoguttatus ♀ × E. lanceolatus ♂): Effects on growth performance, immune response, antioxidant and digestive enzyme activities, gut morphology, and inflammatory-related gene expression. Fish Shellfish. Immunol. 2022, 131, 181–195. [Google Scholar] [CrossRef]
- Yong, A.S.K.; Syed Mubarak, N.S.; Zhuo, L.C.; Lin, Y.H.; Shapawi, R. Oxidized Palm Oil Diet Affects Fatty Acid Profiles, Apparent Digestibility Coefficients and Liver of Hybrid Grouper Juvenile (Epinephelus fuscoguttatus × Epinephelus lanceolatus). Front. Sustain. Food Syst. 2022, 6, 837469. [Google Scholar] [CrossRef]
- Ismail, R.; Yong, A.S.K.; Lim, L.S.; Kawamura, G.; Shapawi, R. Utilization of different dietary carbohydrate sources in hybrid grouper, Tiger grouper (Epinephelus fuscoguttatus, ♀) × Giant grouper (Epinephelus lanceolatus, ♂) juveniles. Int. J. Aquat. Sci. 2018, 9, 85–92. [Google Scholar]
- Zuo, Z.; Wang, S.; Wang, Q.; Wang, D.; Wu, Q.; Xie, S.; Zou, J. Effects of partial replacement of dietary flour meal with seaweed polysaccharides on the resistance to ammonia stress in the intestine of hybrid snakehead (Channa maculatus ♀ × Channa argus ♂). Fish Shellfish. Immunol. 2022, 127, 271–279. [Google Scholar] [CrossRef]
- Wang, S.; Li, X.; Zhang, M.; Jiang, H.; Wang, R.; Qian, Y.; Li, M. Ammonia stress disrupts intestinal microbial community and amino acid metabolism of juvenile yellow catfish (Pelteobagrus fulvidraco). Ecotoxicol. Environ. Saf. 2021, 227, 112932. [Google Scholar] [CrossRef]
- Gomez, D.; Sunyer, J.O.; Salinas, I. The mucosal immune system of fish: The evolution of tolerating commensals while fighting pathogens. Fish Shellfish. Immunol. 2013, 35, 1729–1739. [Google Scholar] [CrossRef] [PubMed]
- Nardocci, G.; Navarro, C.; Cortés, P.P.; Imarai, M.; Montoya, M.; Valenzuela, B.; Jara, P.; Acuña-Castillo, C.; Fernández, R. Neuroendocrine mechanisms for immune system regulation during stress in fish. Fish Shellfish. Immunol. 2014, 40, 531–538. [Google Scholar] [CrossRef] [PubMed]
- Rosengren, M.; Thörnqvist, P.-O.; Winberg, S.; Sundell, K. The brain-gut axis of fish: Rainbow trout with low and high cortisol response show innate differences in intestinal integrity and brain gene expression. Gen. Comp. Endocrinol. 2018, 257, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Groschwitz, K.R.; Hogan, S.P. Intestinal barrier function: Molecular regulation and disease pathogenesis. J. Allergy Clin. Immunol. 2009, 124, 3–20. [Google Scholar] [CrossRef] [PubMed]
- Martín, R.; Laval, L.; Chain, F.; Miquel, S.; Natividad, J.; Cherbuy, C.; Sokol, H.; Verdu, E.F.; Vlieg, J.v.H.; Bermudez-Humaran, L.G.; et al. Bifidobacterium animalis ssp. lactis CNCM-I2494 Restores Gut Barrier Permeability in Chronically Low-Grade Inflamed Mice. Front. Microbiol. 2016, 7, 608. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Wang, S.; Guo, W.; Xie, Z.; Zheng, Y.; Cao, Z.; Zhou, Y. Transcriptome analysis provides insights into the immune responsive pathways and genes in the head kidney of tiger grouper (Epinephelus fuscoguttatus) fed with Spatholobus suberectus, Phellodendron amurense, or Eclipta prostrata. Fish Shellfish. Immunol. 2018, 73, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Liu, K.; Wang, S.; Guo, W.; Xie, Z.; Zhou, Y. Identification of pathogenicity, investigation of virulent gene distribution and development of a virulent strain-specific detection PCR method for Vibrio harveyi isolated from Hainan Province and Guangdong Province, China. Aquaculture 2017, 468, 226–234. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Lee, E.; Yoon, S.H.; Kim, H.; Kim, Y.D.; Leem, J.; Park, J. Ephedrae Herba in combination with herbal medicine (Zhizichi decoction and Phellodendri Cortex) for weight reduction: A case series. Integr. Med. Res. 2020, 9, 100408. [Google Scholar] [CrossRef]
- Xu, B.; Yan, Y.; Huang, J.; Yin, B.; Pan, Y.; Ma, L. Cortex Phellodendri extract’s anti-diarrhea effect in mice related to its modification of gut microbiota. Biomed. Pharmacother. 2020, 123, 109720. [Google Scholar] [CrossRef]
- Sohal, R.S.; Ku, H.-H.; Agarwal, S.; Forster, M.J.; Lal, H. Oxidative damage, mitochondrial oxidant generation and antioxidant defenses during aging and in response to food restriction in the mouse. Mech. Ageing Dev. 1994, 74, 121–133. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Y.; Sun, J.; Ding, Y.; Le, G.; Shi, Y. Alterations of the gut microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl. Microbiol. Biotechnol. 2013, 97, 1689–1697. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, Q.; Guo, Z.; Zhao, Y.; Gao, Y.; Yu, T.; Chen, Y.; Zhang, D.; Wang, G. Effects of dietary oxidized fish oil on growth performance and antioxidant defense mechanism of juvenile Rhynchocypris lagowski Dybowski. Aquaculture 2019, 512, 734368. [Google Scholar] [CrossRef]
- Yin, G.; Li, W.; Lin, Q.; Lin, X.; Lin, J.; Zhu, Q.; Jiang, H.; Huang, Z. Dietary administration of laminarin improves the growth performance and immune responses in Epinephelus coioides. Fish Shellfish. Immunol. 2014, 41, 402–406. [Google Scholar] [CrossRef] [PubMed]
- Morrison, D.J.; Preston, T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 2016, 7, 189–200. [Google Scholar] [CrossRef] [PubMed]
- Peterson, L.W.; Artis, D. Intestinal epithelial cells: Regulators of barrier function and immune homeostasis. Nat. Rev. Immunol. 2014, 14, 141–153. [Google Scholar] [CrossRef] [PubMed]
- Lack, L.; Suliman, H.B.; Rahman, A.A.; Abou-Donia, M.B. Cholestyramine feeding lowers number of colonic apoptotic cells in rat. J. Toxicol. Environ. Health A 2005, 68, 1963–1975. [Google Scholar] [CrossRef]
- Ye, J.; Han, Y.; Chen, X.; Xie, J.; Liu, X.; Qiao, S.; Wang, C. L-Carnitine attenuates H2O2-induced neuron apoptosis via inhibition of endoplasmic reticulum stress. Neurochem. Int. 2014, 78, 86–95. [Google Scholar] [CrossRef]
- Wang, K. Molecular mechanisms of hepatic apoptosis. Cell Death Dis. 2014, 5, e996. [Google Scholar] [CrossRef]
- Yuan, Z.; Feng, L.; Jiang, W.; Wu, P.; Liu, Y.; Kuang, S.; Tang, L.; Zhou, X. Dietary choline deficiency aggravated the intestinal apoptosis in association with the MAPK signalling pathways of juvenile grass carp (Ctenopharyngodon idella). Aquaculture 2021, 532, 736046. [Google Scholar] [CrossRef]
- Pan, M.; Liu, D.; Liu, J.; Li, X.; Huang, D.; Luo, K.; Liu, Y.; Wu, Z.; Zhang, W.; Mai, K. Biotin alleviates hepatic and intestinal inflammation and apoptosis induced by high dietary carbohydrate in juvenile turbot (Scophthalmus maximus L.). Fish Shellfish. Immunol. 2022, 130, 560–571. [Google Scholar] [CrossRef]
- Eissa, L.A.; Kenawy, H.I.; El-Karef, A.; Elsherbiny, N.M.; El-Mihi, K.A. Antioxidant and anti-inflammatory activities of berberine attenuate hepatic fibrosis induced by thioacetamide injection in rats. Chem.-Biol. Interact. 2018, 294, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Liu, Y.C.; Wang, Z.L.; Ruan, X.L.; Li, S.; Ni, S.Y.; Zhong, J.H. Effect of berberine from Coptis chinensis on Apoptosis of Intestinal Epithelial Cells in a Mouse Model of Ulcerative Colitis: Role of Endoplasmic Reticulum Stress. Evid.-Based Complement. Altern. Med. 2020, 2020, 3784671. [Google Scholar] [CrossRef]
- Fang, C.Z.; Xie, L.L.; Liu, C.M.; Fu, C.H.; Ye, W.; Liu, H.; Zhang, B.H. Berberine ameliorates neonatal necrotizing enterocolitis by activating the phosphoinositide 3-kinase/protein kinase B signaling pathway. Exp. Ther. Med. 2018, 15, 3530–3536. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.D.; Fiocchi, C. Regulation of life and death in lamina propria T cells. Semin. Immunol. 2001, 13, 195–199. [Google Scholar] [CrossRef] [PubMed]
- Reiner, J.; Berlin, P.; Wobar, J.; Schäffler, H.; Bannert, K.; Bastian, M.; Vollmar, B.; Jaster, R.; Lamprecht, G.; Witte, M. Teduglutide Promotes Epithelial Tight Junction Pore Function in Murine Short Bowel Syndrome to Alleviate Intestinal Insufficiency. Dig. Dis. Sci. 2020, 65, 3521–3537. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Tian, L.I.; Zhou, X.Q.; Jiang, W.D.; Liu, Y.; Jiang, J.; Xie, F.; Kuang, S.Y.; Tang, L.; Tang, W.N.; et al. Sodium butyrate enhanced physical barrier function referring to Nrf2, JNK and MLCK signaling pathways in the intestine of young grass carp (Ctenopharyngodon idella). Fish Shellfish. Immunol. 2018, 73, 121–132. [Google Scholar] [CrossRef]
- Ji, X.; Qiao, Y.; Zheng, W.; Jiang, H.; Yao, W. Deoxynivalenol interferes with intestinal motility via injuring the contractility of enteric smooth muscle cells: A novel hazard to the gastrointestinal tract by environmental toxins. Ecotoxicol. Environ. Saf. 2021, 224, 112656. [Google Scholar] [CrossRef]
- Snelleksz, M.; Dean, B. Lower levels of tubulin alpha 1b in the frontal pole in schizophrenia supports a role for changed cytoskeletal dynamics in the aetiology of the disorder. Psychiatry Res. 2021, 303, 114096. [Google Scholar] [CrossRef]
- Hu, X.; Zhu, H.; Chen, B.; He, X.; Shen, Y.; Zhang, X.; Chen, W.; Liu, X.; Xu, Y.; Xu, X. Tubulin Alpha 1b Is Associated with the Immune Cell Infiltration and the Response of HCC Patients to Immunotherapy. Diagnostics 2022, 12, 858. [Google Scholar] [CrossRef]
- Rein-Fischboeck, L.; Pohl, R.; Haberl, E.M.; Zimny, S.; Neumann, M.; Eisinger, K.; Weiss, T.S.; Krautbauer, S.; Buechler, C. Tubulin alpha 8 is expressed in hepatic stellate cells and is induced in transformed hepatocytes. Mol. Cell. Biochem. 2017, 428, 161–170. [Google Scholar] [CrossRef] [PubMed]
- Sultana, R.; Baglioni, M.; Cecchetti, R.; Cai, J.; Klein, J.B.; Bastiani, P.; Ruggiero, C.; Mecocci, P.; Butterfield, D.A. Lymphocyte mitochondria: Toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free. Radic. Biol. Med. 2013, 65, 595–606. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zhang, J.; Ma, A.; Wang, X.; Sun, Z.; Cui, W.; Yuan, C.; Zhu, C. Molecular characterization, expression analysis of 14-3-3 beta/alpha and the effect of RNA interference on ion transporter protein Na+-K+-ATPase, Na+-H+-exchanger and CFTR in turbot (Scophthalmus maximus). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2020, 246–247, 110458. [Google Scholar] [CrossRef] [PubMed]
- Gobec, S.; Frlan, R. Inhibitors of cathepsin B. Curr. Med. Chem. 2006, 13, 2309–2327. [Google Scholar] [CrossRef]
- Liang, J.Z.; Rao, Y.Z.; Lun, Z.R.; Yang, T.B. Cathepsin L in the orange-spotted grouper, Epinephelus coioides: Molecular cloning and gene expression after a Vibrio anguillarum challenge. Fish Physiol. Biochem. 2012, 38, 1795–1806. [Google Scholar] [CrossRef]
- Wei, S.; Huang, Y.; Huang, X.; Cai, J.; Yan, Y.; Guo, C.; Qin, Q. Characterization of cathepsin B gene from orange-spotted grouper, Epinephelus coioides involved in SGIV infection. Fish Shellfish. Immunol. 2014, 36, 194–205. [Google Scholar] [CrossRef]
- Menzel, K.; Hausmann, M.; Obermeier, F.; Schreiter, K.; Dunger, N.; Bataille, F.; Falk, W.; Scholmerich, J.; Herfarth, H.; Rogler, G. Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo. Clin. Exp. Immunol. 2006, 146, 169–180. [Google Scholar] [CrossRef]
T-AOC | CAT | SOD | ALP | LZM | |
---|---|---|---|---|---|
C | 7.04 ± 1.42 * | 47.42 ± 17.16 * | 19.75 ± 4.03 | 41.19 ± 30.05 | 112.65 ± 21.52 |
PC | 4.59 ± 1.28 | 33.763 ± 28.02 | 21.45 ± 3.59 | 107.59 ± 24.68 ** | 222.65 ± 24.50 ** |
Database | Unigene Number | Percentage |
---|---|---|
NR | 26,128 | 38.52% |
Swiss-Prot | 20,629 | 30.42% |
Pfam | 18,636 | 27.48% |
COG | 11,718 | 17.28% |
GO | 7745 | 11.42% |
KEGG | 16,156 | 23.82% |
Total annotated unigenes | 26,864 | 39.61% |
Total unigenes | 67,825 | 100.00% |
Gene Id | Gene Description | Gene Symbol | KEGG Categories | Log2(FC) | Regulate |
---|---|---|---|---|---|
Apoptosis/Immune responses | |||||
TRINITY_DN21229_c6_g3 | cathepsin B-like | CTSB | Immune system; Cell growth and death | −2.2 | down |
TRINITY_DN15782_c3_g2 | cathepsin L, partial | CTSL1 | Immune system; Cell growth and death | −1.3 | down |
TRINITY_DN16713_c4_g5 | cathepsin L, partial | CTSL2 | Immune system; Cell growth and death | −1.2 | down |
TRINITY_DN18426_c2_g3 | heat shock protein 90 beta | HSP90B | Immune system; Cardiovascular disease; Endocrine system | −2.6 | down |
TRINITY_DN20083_c0_g1 | caspase-3-like | CASP3 | Cell growth and death; Immune system; Infectious disease: viral; Infectious disease: bacteria | 1.0 | up |
Epithelium integrity | |||||
TRINITY_DN24936_c0_g1 | claudin-11 | CLAU-11 | Cellular community-eukaryotes; Immune system; Signaling molecules and interaction; Infectious disease: viral | −2.8 | down |
TRINITY_DN20497_c0_g2 | 14-3-3 protein beta/alpha-1 | 14-3-3PB/A1 | Aging; Signal transduction; Cell growth and death; Cancer: overview; Infectious disease: viral | −2.2 | down |
TRINITY_DN13254_c0_g2 | myosin light polypeptide 6 | MYOLP6 | Cellular community-eukaryotes; endocrine system; circulatory system | −1.7 | down |
TRINITY_DN19287_c0_g2 | tubulin alpha-1B chain-like | TUA-1B | Cell growth and death; Cellular community- eukaryotes; Infectious disease: bacterial; Transport and catabolism | −1.6 | down |
*TRINITY_DN19417_c2_g1 | integrin alpha-6-like | IL-6 | Signal transduction; Signaling molecules and interaction; Cellular community-eukaryotes; Immune system; Cancer: overview | −1.3 | down |
TRINITY_DN19287_c0_g3 | tubulin alpha-8 chain-like | TUA8 | Cell growth and death; Cellular community- eukaryotes; Infectious disease: bacterial; Transport and catabolism | −1.2 | down |
TRINITY_DN9279_c0_g2 | claudin-10-like isoform X1 | CLAU-10 | Cellular community-eukaryotes; Immune system; Signaling molecules and interaction; Infectious disease: viral | 1.9 | up |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Shi, H.; Zheng, Y.; Zhou, Y.; Guo, W.; Liao, J.; Wang, S. Long-Term Phellodendri Cortex Supplementation in the Tiger Grouper (Epinephelus fuscoguttatus): Dual Effects on Intestinal Health Revealed by Transcriptome Analysis. Life 2023, 13, 2336. https://doi.org/10.3390/life13122336
Cai Y, Shi H, Zheng Y, Zhou Y, Guo W, Liao J, Wang S. Long-Term Phellodendri Cortex Supplementation in the Tiger Grouper (Epinephelus fuscoguttatus): Dual Effects on Intestinal Health Revealed by Transcriptome Analysis. Life. 2023; 13(12):2336. https://doi.org/10.3390/life13122336
Chicago/Turabian StyleCai, Yan, Huizhong Shi, Yu Zheng, Yongcan Zhou, Weiliang Guo, Jingqiu Liao, and Shifeng Wang. 2023. "Long-Term Phellodendri Cortex Supplementation in the Tiger Grouper (Epinephelus fuscoguttatus): Dual Effects on Intestinal Health Revealed by Transcriptome Analysis" Life 13, no. 12: 2336. https://doi.org/10.3390/life13122336
APA StyleCai, Y., Shi, H., Zheng, Y., Zhou, Y., Guo, W., Liao, J., & Wang, S. (2023). Long-Term Phellodendri Cortex Supplementation in the Tiger Grouper (Epinephelus fuscoguttatus): Dual Effects on Intestinal Health Revealed by Transcriptome Analysis. Life, 13(12), 2336. https://doi.org/10.3390/life13122336