“Sea Water” Supplemented with Calcium Phosphate and Magnesium Sulfate in a Long-Term Miller-Type Experiment Yields Sugars, Nucleic Acids Bases, Nucleosides, Lipids, Amino Acids, and Oligopeptides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Apparatus
2.2. “Sea Water”
2.3. Regassing
2.4. Sampling
2.5. Ultraviolet (UV) Spectroscopy
2.6. Mass Spectrometry
2.7. ATP Assay (Luciferin/Luciferase)
2.8. cAMP Assay (Enzyme-Linked Immunoadsorption Assay—ELISA)
2.9. Phosphate Assay
2.10. pH Measurements
3. Results
3.1. Increased Yields of Compounds through Regassing
3.2. Initial Compound Identification
3.3. Amino Acids
3.4. Sugars
3.5. Nucleic Acid Bases, Nucleosides, and Nucleotides
3.6. Fatty Acids and Steroids
3.7. Controls for Possible Sources of Contamination
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Additional “Metabolite” Spectra
Appendix B. Additional Amino Acid Spectra
Appendix C. Additional Sugar Spectra
Appendix D. Additional Nucleic Acid Spectrum
Appendix E. Additional Fatty Acid Spectra
Appendix F. Uracil Compound Spectra
References
- Kauffmann, S.A. The Origins of Order. In Self-Organization and Selection in Evolution; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Root-Bernstein, R.S.; Dillon, P.F. Molecular complementarity I, the complementarity theory of the origin and evolution of life. J. Theor. Biol. 1997, 188, 447–479. [Google Scholar] [CrossRef]
- Miller, S.L. Production of amino acids under possible primitive earth conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [Green Version]
- Keseru, G.M.; Soos, T.; Kappe, C.O. Anthropogenic reaction parameters−the missing link between chemical intuition and the available chemical space. Chem. Soc. Rev. 2014, 43, 5387–5399. [Google Scholar] [CrossRef] [Green Version]
- Cleaves, H.J. Prebiotic chemistry: What we know, what we don’t. Evo. Edu. Outreach. 2012, 5, 342–360. [Google Scholar] [CrossRef] [Green Version]
- Bada, J.L. New insights into prebiotic chemistry from Stanley Miller’s spark discharge experiments. Chem. Soc. Rev. 2013, 42, 2186–2196. [Google Scholar] [CrossRef]
- Hunding, A.; Kepes, F.; Lancet, D.; Minsky, A.; Norris, V.; Raine, D.; Sriram, K.; Root-Bernstein, R. Compositional complementarity and prebiotic ecology in the origin of life. Bioessays 2006, 28, 399–412. [Google Scholar] [CrossRef]
- Root-Bernstein, R. A modular hierarchy-based theory of the chemical origins of life based on molecular complementarity. Acc. Chem. Res. 2012, 45, 2169–2177. [Google Scholar] [CrossRef]
- Vincent, L.; Colón-Santos, S.; Cleaves, H.J., 2nd; Baum, D.A.; Maurer, S.E. The prebiotic kitchen: A guide to composing prebiotic soup recipes to test origins of life hypotheses. Life 2021, 11, 1221. [Google Scholar] [CrossRef]
- Zaia, D.A.; Zaia, C.T.; De Santana, H. Which amino acids should be used in prebiotic chemistry studies? Orig. Life Evol. Biosph. 2008, 38, 469–488. [Google Scholar] [CrossRef]
- Guttenberg, N.; Virgo, N.; Chandru, K.; Scharf, C.; Mamajanov, I. Bulk measurements of messy chemistries are needed for a theory of the origins of life. Philos. Trans. A Math. Phys. Eng. Sci. 2017, 375, 20160347. [Google Scholar] [CrossRef]
- Asche, S.; Cooper, G.J.T.; Keenan, G.; Mathis, C.; Cronin, L. A robotic prebiotic chemist probes long term reactions of complexifying mixtures. Nat. Commun. 2021, 12, 3547. [Google Scholar] [CrossRef]
- Wikipedia. Magnesium in Biology. 2022. Available online: https//en.wikipedia.org/wiki/Magnesium_in_biology (accessed on 10 August 2022).
- Reid, C.; Orgel, L.E. Synthesis in sugars in potentially prebiotic conditions. Nature 1967, 216, 455. [Google Scholar] [CrossRef]
- Weber, A.L. Prebiotic sugar synthesis: Hexose and hydroxy acid synthesis from glyceraldehyde catalyzed by iron(III) hy-droxide oxide. J. Mol. Evol. 1992, 35, 1–6. [Google Scholar] [CrossRef]
- Gabel, N.W.; Ponnamperuma, C. Model for origin of monosaccharides. Nature 1967, 216, 453–455. [Google Scholar] [CrossRef]
- Saladino, R.; Neri, V.; Crestini, C. Role of clays in the prebiotic synthesis of sugar derivatives from formamide. Philos Mag. 2010, 90, 2329–2337. [Google Scholar] [CrossRef] [Green Version]
- Civiš, S.; Szabla, R.; Szyja, B.M.; Smykowski, D.; Ivanek, O.; Knížek, A.; Kubelík, P.; Šponer, J.; Ferus, M.; Šponer, J.E. TiO2-catalyzed synthesis of sugars from formaldehyde in extraterrestrial impacts on the early Earth. Sci. Rep. 2016, 6, 23199. [Google Scholar] [CrossRef] [Green Version]
- Forsythe, J.G.; Yu, S.S.; Mamajanov, I.; Grover, M.A.; Krishnamurthy, R.; Fernández, F.M.; Hud, N.V. Ester-mediated amide bond formation driven by wet-dry cycles: A possible path to polypeptides on the prebiotic earth. Angew. Chem. Int. Ed. Engl. 2015, 54, 9871–9875. [Google Scholar] [CrossRef] [Green Version]
- Raine, D.J.; Norris, V. Lipid domain boundaries as prebiotic catalysts of peptide bond formation. J. Theor. Biol. 2007, 246, 176–185. [Google Scholar] [CrossRef]
- Yamauchi, K.; Kinoshita, M. Highly stable lipid membranes from archaebacterial extremophiles. Prog. Polym. Sci. 1993, 18, 763–804. [Google Scholar] [CrossRef]
- Driessen, A.J.M.; van de Vossenberg, J.A.C.M.; Konings, W.N. Membrane composition and ion-permeability in extremophiles. FEMS Microbio. Rev. 1996, 18, 139–148. [Google Scholar] [CrossRef]
- van Meer, G.; Voelker, D.R.; Feigenson, G.W. Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol. 2008, 9, 112–124. [Google Scholar] [CrossRef]
- Parker, E.T.; Zhou, M.; Burton, A.S.; Glavin, D.P.; Dworkin, J.P.; Krishnamurthy, R.; Fernández, F.M.; Bada, J.L. A plausible simultaneous synthesis of amino acids and simple peptides on the primordial Earth. Angew. Chem. Int. Ed. Engl. 2014, 53, 8132–8136. [Google Scholar] [CrossRef]
- Cossetti, C.; Crestini, C.; Saladino, R.; Mauro, E.D. Borate Minerals and RNA Stability. Polymers 2010, 2, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Yuasa, S.; Flory, D.; Basile, B.; Oró, J. Abiotic synthesis of purines and other heterocyclic compounds by the action of electrical discharges. J. Mol. Evol. 1984, 21, 76–80. [Google Scholar] [CrossRef]
- Ruiz-Bermejo, M.; Menor-Salván, C.; Osuna-Esteban, S.; Veintemillas-Verdaguer, S. Prebiotic microreactors, a synthesis of purines and dihydroxy compounds in aqueous aerosol. Orig. Life Evol. Biosph. 2007, 37, 123–142. [Google Scholar] [CrossRef]
- Ferus, M.; Pietrucci, F.; Saitta, A.M.; Knížek, A.; Kubelík, P.; Ivanek, O.; Shestivska, V.; Civiš, S. Formation of nucleobases in a Miller-Urey reducing atmosphere. Proc. Natl. Acad. Sci. USA 2017, 114, 4306–4311. [Google Scholar] [CrossRef] [Green Version]
- Allen, W.V.; Ponnamperuma, C. A possible prebiotic synthesis of monocarboxylic acids. Curr. Mod. Biol. 1967, 1, 24–28. [Google Scholar] [CrossRef]
- Bossard, A.R.; Raulin, F.; Mourey, D.; Toupance, G. Organic synthesis from reducing models of the atmosphere of the primitive earth with UV light and electric discharges. J. Mol. Evol. 1982, 18, 173–178. [Google Scholar] [CrossRef]
- Saladino, R.; Carota, E.; Botta, G.; Kapralov, M.; Timoshenko, G.N.; Rozanov, A.Y.; Krasavin, E.; Di Mauro, E. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation. Proc. Natl. Acad. Sci. USA 2015, 112, E2746–E2755. [Google Scholar] [CrossRef] [Green Version]
- Muchowska, K.B.; Varma, S.J.; Moran, J. Synthesis and breakdown of universal metabolic precursors promoted by iron. Nature 2019, 569, 104–107. [Google Scholar] [CrossRef]
- Lawless, J.G.; Levi, N. The role of metal ions in chemical evolution, polymerization of alanine and glycine in a cation-exchanged clay environment. J. Mol. Evol. 1979, 13, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Hansma, H.G. Potassium at the origins of life: Did biology emerge from biotite in micaceous clay? Life 2022, 12, 301. [Google Scholar] [CrossRef] [PubMed]
- Baú, J.; Carneiro, C.; da Costa, A.; Valezi, D.F.; di Mauro, E.; Pilau, E.; Zaia, D. The effect of goethites on the polymerization of glycine and alanine under prebiotic chemistry conditions. Orig. Life Evol. Biosph. 2021, 51, 299–320. [Google Scholar] [CrossRef] [PubMed]
- Shanker, U.; Bhushan, B.; Bhattacharjee, G. Oligomerization of glycine and alanine catalyzed by iron oxides, implications for prebiotic chemistry. Orig. Life Evol. Biosph. 2012, 42, 31–45. [Google Scholar] [CrossRef]
- Root-Bernstein, R.; Brown, A.W. Novel Apparatuses for Incorporating Natural Selection Processes into Origins-of-Life Experiments to Produce Adaptively Evolving Chemical Ecosystems. Life 2022, 12, 1508. [Google Scholar] [CrossRef]
- Miyakawa, S.; Yamanashi, H.; Kobayashi, K.; Cleaves, H.J.; Miller, S.L. Prebiotic synthesis from CO atmospheres, implications for the origins of life. Proc. Natl. Acad. Sci. USA 2002, 99, 14628–14631. [Google Scholar] [CrossRef] [Green Version]
- Kasting, J.F. The evolution of the prebiotic atmosphere. Orig. Life 1984, 14, 75–82. [Google Scholar] [CrossRef]
- Mazankova, V.; Torokova, L.; Krcma, F.; Mason, N.J.; Matejcik, S. The influence of CO2 admixtures on the product composition in a nitrogen-methane atmospheric glow discharge used as a prebiotic atmosphere mimic. Orig. Life Evol. Biosph. 2016, 46, 499–506. [Google Scholar] [CrossRef]
- Raulin, F.; Brassé, C.; Poch, O.; Coll, P. Prebiotic-like chemistry on Titan. Chem. Soc. Rev. 2012, 41, 5380–5393. [Google Scholar] [CrossRef]
- Cruikshank, D.P.; Materese, C.K.; Pendleton, Y.J.; Boston, P.J.; Grundy, W.M.; Schmitt, B.; Lisse, C.M.; Runyon, K.D.; Keane, J.T.; Beyer, R.A.; et al. Prebiotic Chemistry of Pluto. Astrobiology 2019, 19, 831–848. [Google Scholar] [CrossRef]
- Paecht-Horowitz, M.; Berger, J.; Katchalsky, A. Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino-acid adenylates. Nature 1970, 228, 636–639. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Beaufils, D.; Rossi, J.C.; Pascal, R. Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides. Sci. Rep. 2014, 4, 7440. [Google Scholar] [CrossRef] [PubMed]
Reactant Compounds | RT (min) | Hit Name | Mol. Wt. | QOM |
---|---|---|---|---|
Acetic Acid | 3.851 | Acetic acid, [(trimethylsilyl)oxy]-, trimethylsilyl ester | 220.41 | 80 |
Formamide | 3.982 | Formamide, (trimethylsilyl)- | 189.4 | 87 |
Glycerol | 4.751 | Glycerol, tris(trimethylsilyl) ether | 308.64 | 90 |
Oxalic Acid | 4.783 | Oxalic acid, di(trimethylsilyl) | 234.40 | 87 |
Urea | 4.327 | Urea, (trimethylsilyl)- | 426.68 | 96 |
Amino Acids | RT (min) | Hit Name | Mol. Wt. | QOM |
---|---|---|---|---|
Alanine | 4.080 | Alanine, N-(trimethylsilyl)-, trimethylsilyl ester | 233.45 | 93 |
Asparagine | 6.525 | Asparagine, N,N2-bis(trimethylsilyl)-, trimethylsilyl ester | 348.66 | 99 |
Aspartic Acid | 5.821 | Aspartic acid, N-(trimethylsilyl)-, bis(trimethylsilyl) ester | 349.64 | 98 |
Beta-alanine | 5.867 | Beta-alanine, N-(trimethylsilyl)-, bis(trimethylsilyl) ester | 305.64 | 75 |
Cystathionine | 9.777 | Cystathionine, N-(trimethylsilyl)-, bis(trimethylsilyl) ester | 366.63 | 51 |
Cysteine | 8.622 | Cysteine, N,N’-bis(trimethylsilyl)-, bis(trimethylsilyl) ester | 337.70 | 76 |
Glutamic Acid | 6.313 | Glutamic acid, N-(trimethylsilyl)-, bis(trimethylsilyl) ester | 363.67 | 98 |
Glutamine | 6.924 | Glutamine, tris(trimethylsilyl) | 362.69 | 64 |
Glycine | 4.929 | Glycine, N,N-bis(trimethylsilyl)-, trimethylsilyl ester | 291.61 | 86 |
Hydroxytryptophan | 4.581 | 5-Hydroxytryptophan, tetramethylsilylester | 508.95 | 87 |
Isoleucine | 8.588 | Isoleucine, N-(trimethylsilyl)-, trimethylsilyl ester | 275.53 | 81 |
Leucine | 4.42 | Leucine, trimethylsilyl ester | 203.35 | 95 |
Methionine | 10.311 | Methionine-(trimethylsilyl) | 221.39 | 72 |
Oxyproline | 5.965 | Proline, 5-oxo-1-(trimethylsilyl)-, trimethylsilyl ester | 275.49 | 74 |
Phenylalanine | 6.415 | Phenylalanine, N,O-Bis-(trimethylsilyl) | 309.55 | 91 |
Phenylpropanolamine | 4.080 | Phenylpropanolamine, bis(trimethylsilyl) | 295.57 | 80 |
Proline | 10.651 | Proline, trimethylsilyl)-, trimethylsilyl ester | 259.49 | 57 |
Sarcosine | 4.165 | Sarcosine, Bis(trimethylsilyl) | 233.45 | 81 |
Serine | 5.201 | Serine, N,O-bis(trimethylsilyl)-, trimethylsilyl ester | 321.63 | 87 |
Threonine | 5.320 | Threonine, N,O,O-Tris(trimethylsilyl)- | 335.66 | 91 |
Tryptophan | 9.420 | Tryptophan, bis(trimethylsilyl)- | 348.6 | 89 |
Tyramine | 5.707 | Tyramine, tri(trimethylsilyl)- | 353.72 | 90 |
Valine | 4.581 | Valine, N-(trimethylsilyl)-, trimethylsilyl ester | 261.51 | 90 |
Norvaline | 4.581 | Norvaline, N-(trimethylsilyl)-, trimethylsilyl ester | 261.51 | 83 |
Peptides | RT | Hit Name | Mol. Wt. | QOM |
---|---|---|---|---|
Alanyl-beta-alanine | 5.201 | Alanyl-beta-alanine, N,O-bis(trimethylsilyl)-, trimethylsilyl ester | 232.35 | 87 |
Alanyl–alanyl–alanine | 9.768 | Alanyl–alanyl–alanine methyl ester | 245.28 | 59 |
Alanyl–glycine | 6.0242 | Alanyl–glycine, bis(trimethylsilyl) ester | 218.33 | 87 |
Glycyl-glutamic acid | 17.286 | Glycyl-glutamic acid, bis(trimethylsilyl) ester | 348.54 | 86 |
Leucyl–alanine | 8.588 | Leucyl–alanine, bis(trimethylsilyl) ester | 376.69 | 81 |
Monosaccharides | RT (min) | Hit Name | Mol. Wt. | QOM |
---|---|---|---|---|
Allose | 7.4 | Allose, pentakis(trimethylsilyl) ether, methyloxime (anti) | 570.10 | 90 |
Deoxyribose | 4.072 | 2-Deoxy-ribose, tris(trimethylsilyl) ether | 437.87 | 53 |
Fructose | 7.221 | Fructose, pentakis(trimethylsilyl) ether, methyloxime (anti) | 570.10 | 97 |
Fucose | 7.552 | Fucose, tetrakis(trimethylsilyl) ether | 481.90 | 91 |
Galactopyranose | 7.552 | Galactopyranose, pentakis(trimethylsilyl) ether (isomer 2) | 541.06 | 90 |
Galactose | 7.4 | Galactose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-, o-methyloxyme, (1E)- | 570.10 | 91 |
Glucose | 7.4 | Glucose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-, o-methyloxyme, (1Z)- | 628.30 | 87 |
Gluconic Acid | 8.792 | Gluconic acid, 2,3,4,6-tetrakis-O-(trimethylsilyl)-, .delta.-lactone | 466.86 | 77 |
Inositol | 7.994 | Inositol, 1,2,3,4,5,6-hexakis-O-(trimethylsilyl)-, cis- | 613.24 | 90 |
Levoglucosan | 6.67 | Levoglucosan, tris(trimethylsilyl)- | 378.68 | 87 |
Lyxose | 7.221 | Lyxose, tetrakis(trimethylsilyl) ether, trimethylsilyloxime (isomer 1) | 526.05 | 90 |
Mannose | 7.4 | Mannose, 2,3,4,5,6-pentakis-O-(trimethylsilyl)-, o-methyloxyme, (1Z)- | 570.10 | 91 |
Myo-Inositol | 8.002 | Myo-Inositol, 1,2,3,4,5,6-hexakis-O-(trimethylsilyl)- | 613.24 | 99 |
Ribonic Acid | 5.091 | Ribonic acid, 5-deoxy-2,3-bis-O-(trimethylsilyl)-, .gamma.-lactone | 276.48 | 89 |
Ribose | 6.355 | Ribose, 2,3,4,5-tetrakis-O-(trimethylsilyl)- | 438.9 | 87 |
Ribo-hexos-3-ulose | 4.700 | Ribo-hexos-3-ulose, 2,4,5,6-tetrakis-O-(trimethylsilyl)-, bis(O-methyloxime) | 525.0 | 73 |
Ribono-1,4-lactone | 9.352 | Ribono-1,4-lactone, tris(trimethylsilyl) ether | 364.65 | 63 |
Sorbitol | 7.434 | Sorbitol, hexakis(trimethylsilyl) ether | 615.26 | 89 |
Sorbose | 7.221 | Sorbose, pentakis(trimethylsilyl) ether, trimethylsilyloxime (isomer 1) | 628.26 | 90 |
Tagatose | 7.221 | Tagatose, pentakis(trimethylsilyl) ether, trimethylsilyloxime | 628.26 | 91 |
Talose | 7.4 | Talose, pentakis(trimethylsilyl) ether, methyloxime (syn) | 570.10 | 91 |
Disaccharides | RT (min) | Hit Name | Mol. Wt. | QOM |
---|---|---|---|---|
Maltose | 9.836 | Maltose, octakis(trimethylsilyl) ether, methyloxime (isomer 1) | 948.78 | 93 |
Trehalose | 9.836 | Trehalose, octakis(trimethylsilyl) ether | 919.75 | 64 |
Nucleic Acid Precursors | RT (min) | Hit Name | Mol. Wt. | QOM |
---|---|---|---|---|
Adenine | 6.551 | Adenine, N,7-bis(trimethylsilyl)- | 279.49 | 60 |
Adenosine | 8.461 | Adenosine, N-(4-hydroxy-3-methyl-2-butenyl)-, (E)- | 351.15 | 80 |
Adenosine | 9.598 | Adenosine-tetrakis(trimethylsilyl)- | 555.97 | 93 |
Guanine | 7.824 | Thioguanine | 167.19 | 59 |
Guanosine | 9.972 | Guanosine,N-Methyl penta(trimethylsilyl)- | 644.10 | 56 |
7H-Purine | 7.799 | 7-(Trimethylsilyl)-2,6-bis[(trimethylsilyl)oxy]-7H-purine | 368.65 | 99 |
7H-Purine | 7.714 | 7-(Trimethylsilyl)-2,6-bis[(trimethylsilyl)oxy]-7H-purine | 368.65 | 91 |
9H-Purine | 6.271 | 9H-Purine, 9-(trimethylsilyl)-2,6-bis[(trimethylsilyl)oxy]- | 368.65 | 78 |
Pyrimidinetrione | 7.484 | 2,4,6(1H,3H,5H)-Pyrimidinetrione, 5-[2-(methoxyimino)-3-[(trimethylsilyl)]- | 399.6 | 93 |
Pyrimidine | 7.077 | Pyrimidine, 2,4,6-tris[(trimethylsilyl)oxy]- | 344.63 | 76 |
Pyrimidine | 7.391 | 1,2,4-Triazolo[1,5-a]pyrimidine, 5,7-dimethyl-2-phenyl- | 224.26 | 64 |
Pyrmidinone | 5.345 | 5-Methyldihydro-2,4(1H,3H)-pyrimidinedione diTMS | 272.49 | 70 |
Pyrmidinone | 8.962 | 2(1H)-Pyrimidinone, 5-(4-methylphenoxy)-4-(4-nitrophenyl)-6-phenyl- | 399.40 | 64 |
Uracil | 5.779 | Dihydro-uracil-di(trimethylsilyl)- | 258.46 | 69 |
Uracil | 5.209 | 6-Azauracil, bis(tert-butyldimethylsilyl) deriv. | 341.6 | 72 |
Steroids | RT | Hit Name | Mol. Wt. | QOM |
---|---|---|---|---|
Androstan-17-one | 16.462 | Androstan-17-one, 3-[(trimethylsilyl)oxy]-, (3.alpha.,5.alpha.)- | 362.6 | 97 |
Androstan-17-one | 6.848 | 5.alpha.-Androstan-17-one, 11.beta.-hydroxy-3.alpha.-(trimethylsiloxy)- | 378.6 | 98 |
Androstan-17-one | 8.461 | 5.beta.-Androstan-17-one, 11.beta.-hydroxy-3.alpha.-(trimethylsiloxy)- | 378.6 | 95 |
Cholestane | 5.88 | Cholestane, 2,3-epoxy-, (2.alpha.,3.alpha.,5.alpha.)- | 386.7 | 92 |
Deoxycorticosterone | 8.919 | 4-Pregnen-21-ol-3,20-dione glucoside | 492.6 | 95 |
ALPHA AND FATTY ACIDS | RT | Hit Name | Mol. Wt. | QOM |
Propanedioic Acid, Malonic Acid (C3) | 9.53 | Propanedioic acid, (1H-indole-3-ylmethylene)-, diethyl ester | 287.31 | 93 |
Butenoic Acid, Succinic Acid (C4) | 6.186 | 2-Butenoic acid, 3-methyl-2-[(trimethylsilyl)oxy]-, trimethylsilyl ester | 260.48 | 76 |
Butanedioic Acid, Fumeric Acid (C4) | 5.048 | Butanedioic acid, bis(trimethylsilyl) ester | 262.45 | 97 |
Butyric Acid (C4) | 6.024 | 2,3,4-Trihydroxybutyric acid tetrakis(trimethylsilyl) deriv., (, (R*,R*)-) | 424.8 | 87 |
Aminohexanoic Acid (C6) | 4.581 | N,O,O’-Tris-(trimethylsilyl)-6-hydroxy-2-aminohexanoic acid | 363.71 | 90 |
Sebacic Acid (C10) | 7.349 | Sebacic acid, bis(trimethylsilyl) ester | 346.61 | 87 |
Decanoic Acid (C10) | 9.318 | Decanoic acid, 2-[(trimethylsilyl)oxy]-1-[[(trimethylsilyl)oxy]methyl]ethyl ester | 390.7 | 62 |
Lauric Acid (C12) | 12.985 | 12-Methylaminolauric acid | 229.36 | 59 |
Myristic Acid (C14) | 7.061 | Myristic acid, trimethylsilyl ester | 300.6 | 89 |
Pentadecanoic Acid (C15) | 7.394 | Pentadecanoic acid, trimethylsilyl ester | 314.6 | 80 |
Palmitelaidic Acid (C16) | 7.773 | Palmitelaidic acid, trimethylsilyl ester | 326.6 | 62 |
Octadecenoic Acid, Stearic Acid (C18) | 7.484 | 9-Trimethylsilyloxy-12-octadecenoic acid, methyl ester | 384.7 | 80 |
Arachidonic Acid (C20) | 7.604 | Arachidonic acid, trimethylsilyl ester | 376.6 | 91 |
5,8,11-Eicosatrienoic acid (C20) | 7.255 | cis-5,8,11-Eicosatrienoic acid, trimethylsilyl ester | 378.7 | 91 |
Day 0 | 1 Time | 2 Times | 3 Times | 4 Times | 5 Times | |
---|---|---|---|---|---|---|
Phosphates | 0 | 25 ppm | 50 ppm | 75 ppm | 100 ppm | 150 ppm |
Sugars | Fructose, Galactose, Glucose, Mannose, Sorbose, Tagatose | Xylose, Fucose, Maltose Trehalose? | Ribose, Deoxyribose? | |||
Amino Acids | Ala, Asn, Asp, Gln, Glu, Gly, Ile, Leu, Ser, Trp | Phenylpropanolamine (amphetamine), Cys, Met, Val, Nor-Val | Ala-Gly Gly-Glu | Ala-Ala Ala-Ala-Ala Leu-Ala | ||
Nucleic Acids | Adenosine, Guanosine? 7H-Purine, 9H-Purine, Pyrimidinones | cAMP, cGMP? | Uracil | ATP | ||
Fatty Acids | Aminohexanoic acid (C6), Butanoic Acid (C4), (Succinic Acid), Butyric Acid (C4) | Sebacic acid (C10), Decanoic Acid (C10), Arachidonic Acid (C20), Eicosatrianoic Acid (C20) | Lauric Acid (C14), Myristic Acid (C14), Octadecenoic Acid (C18), Steroids | Hexadecanoic Acid (C16) Palmitalaidic Acid (C16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Root-Bernstein, R.; Baker, A.G.; Rhinesmith, T.; Turke, M.; Huber, J.; Brown, A.W. “Sea Water” Supplemented with Calcium Phosphate and Magnesium Sulfate in a Long-Term Miller-Type Experiment Yields Sugars, Nucleic Acids Bases, Nucleosides, Lipids, Amino Acids, and Oligopeptides. Life 2023, 13, 265. https://doi.org/10.3390/life13020265
Root-Bernstein R, Baker AG, Rhinesmith T, Turke M, Huber J, Brown AW. “Sea Water” Supplemented with Calcium Phosphate and Magnesium Sulfate in a Long-Term Miller-Type Experiment Yields Sugars, Nucleic Acids Bases, Nucleosides, Lipids, Amino Acids, and Oligopeptides. Life. 2023; 13(2):265. https://doi.org/10.3390/life13020265
Chicago/Turabian StyleRoot-Bernstein, Robert, Andrew G. Baker, Tyler Rhinesmith, Miah Turke, Jack Huber, and Adam W. Brown. 2023. "“Sea Water” Supplemented with Calcium Phosphate and Magnesium Sulfate in a Long-Term Miller-Type Experiment Yields Sugars, Nucleic Acids Bases, Nucleosides, Lipids, Amino Acids, and Oligopeptides" Life 13, no. 2: 265. https://doi.org/10.3390/life13020265
APA StyleRoot-Bernstein, R., Baker, A. G., Rhinesmith, T., Turke, M., Huber, J., & Brown, A. W. (2023). “Sea Water” Supplemented with Calcium Phosphate and Magnesium Sulfate in a Long-Term Miller-Type Experiment Yields Sugars, Nucleic Acids Bases, Nucleosides, Lipids, Amino Acids, and Oligopeptides. Life, 13(2), 265. https://doi.org/10.3390/life13020265