Low-Dose Blue Light (420 nm) Reduces Metabolic Activity and Inhibits Proliferation of Human Dermal Fibroblasts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Skin Specimen
2.3. Cell Culture
2.4. Irradiation of Human Dermal Fibroblasts
2.5. Determination of Cell Viability, Proliferation, and Cell Toxic Effects
2.6. Myofibroblast Differentiation
2.7. Determination of ATP
2.8. Western Blotting
2.9. RNA-Seq Analyses
2.10. Statistical Analysis
3. Results
3.1. Blue Light Effects on Cell Proliferation and Cell Viability
3.2. Low-Dose Blue Light Effects on Intracellular ATP Concentration and Cell Proliferation
3.3. Low-Dose Blue Light Did Not Induce Fibroblast/Myofibroblast Differentiation
3.4. Effects of Low-Dose Blue Light Irradiation on Gene Expression of Human Skin Fibroblasts
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rigel, D.S. Cutaneous Ultraviolet Exposure and Its Relationship to the Development of Skin Cancer. J. Am. Acad. Dermatol. 2008, 58 (Suppl. S2), S129–S132. [Google Scholar] [CrossRef] [PubMed]
- Helfrich, Y.R.; Sachs, D.L.; Voorhees, J.J. Overview of Skin Aging and Photoaging. Dermatol. Nurs. 2008, 20, 177–183. [Google Scholar] [PubMed]
- Wacker, M.; Holick, M.F. Sunlight and Vitamin D: A Global Perspective for Health. Dermato-endocrinology 2013, 5, 51–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Slominski, A.T.; Zmijewski, M.A.; Plonka, P.M.; Szaflarski, J.P.; Paus, R. How Uv Light Touches the Brain and Endocrine System through Skin, and Why. Endocrinology 2018, 159, 1992–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoud, B.H.; Hexsel, C.L.; Hamzavi, I.H.; Lim, H.W. Effects of Visible Light on the Skin. Photochem. Photobiol. 2008, 84, 450–462. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.; Wang, Y.; Murray, C.K.; Hamblin, M.R.; Hooper, D.C.; Dai, T. Antimicrobial Blue Light Inactivation of Pathogenic Microbes: State of the Art. Drug Resist. Updates Rev. Comment. Antimicrob. Anticancer. Chemother. 2017, 33–35, 1–22. [Google Scholar] [CrossRef]
- Omi, T.; Bjerring, P.; Sato, S.; Kawana, S.; Hankins, R.W.; Honda, M. 420 nm Intense Continuous Light Therapy for Acne. J. Cosmet. Laser Ther. 2004, 6, 156–162. [Google Scholar] [CrossRef]
- Okuno, T. Hazards of Solar Blue Light. Appl. Opt. 2008, 47, 2988–2992. [Google Scholar] [CrossRef]
- Gorgidze, L.A.; Oshemkova, S.A.; Vorobjev, I.A. Blue Light Inhibits Mitosis in Tissue Culture Cells. Biosci. Rep. 1998, 18, 215–224. [Google Scholar] [CrossRef] [Green Version]
- Taoufik, K.; Mavrogonatou, E.; Eliades, T.; Papagiannoulis, L.; Eliades, G.; Kletsas, D. Effect of Blue Light on the Proliferation of Human Gingival Fibroblasts. Dent. Mater. 2008, 24, 895–900. [Google Scholar] [CrossRef]
- Liebmann, J.; Born, M.; Kolb-Bachofen, V. Blue-Light Irradiation Regulates Proliferation and Differentiation in Human Skin Cells. J. Investig. Dermatol. 2010, 130, 259–269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taflinski, L.; Demir, E.; Kauczok, J.; Fuchs, P.C.; Born, M.; Suschek, C.V.; Oplander, C. Blue Light Inhibits Transforming Growth Factor-Beta1-Induced Myofibroblast Differentiation of Human Dermal Fibroblasts. Exp. Dermatol. 2014, 23, 240–246. [Google Scholar] [CrossRef]
- Ohara, M.; Kawashima, Y.; Kitajima, S.; Mitsuoka, C.; Watanabe, H. Blue Light Inhibits the Growth of Skin Tumors in the V-Ha-Ras Transgenic Mouse. Cancer Sci. 2003, 94, 205–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamskaya, N.; Dungel, P.; Mittermayr, R.; Hartinger, J.; Feichtinger, G.; Wassermann, K.; Redl, H.; van Griensven, M. Light Therapy by Blue Led Improves Wound Healing in an Excision Model in Rats. Injury 2010, 42, 917–921. [Google Scholar] [CrossRef]
- Dungel, P.; Hartinger, J.; Chaudary, S.; Slezak, P.; Hofmann, A.; Hausner, T.; Strassl, M.; Wintner, E.; Redl, H.; Mittermayr, R. Low Level Light Therapy by Led of Different Wavelength Induces Angiogenesis and Improves Ischemic Wound Healing. Lasers Surg. Med. 2014, 46, 773–780. [Google Scholar] [CrossRef]
- Shnitkind, E.; Yaping, E.; Geen, S.; Shalita, A.R.; Lee, W.-L. Anti-Inflammatory Properties of Narrow-Band Blue Light. J. Drugs Dermatol. 2006, 5, 605–610. [Google Scholar] [PubMed]
- Weinstabl, A.; Hoff-Lesch, S.; Merk, H.F.; von Felbert, V. Prospective Randomized Study on the Efficacy of Blue Light in the Treatment of Psoriasis Vulgaris. Dermatology 2011, 223, 251–259. [Google Scholar] [CrossRef] [PubMed]
- Becker, D.; Langer, E.; Seemann, M.; Seemann, G.; Fell, I.; Saloga, J.; Grabbe, S.; Von Stebut, E. Clinical Efficacy of Blue Light Full Body Irradiation as Treatment Option for Severe Atopic Dermatitis. PLoS ONE 2011, 6, e20566. [Google Scholar] [CrossRef]
- Pieraggi, M.T.; Bouissou, H.; Angelier, C.; Uhart, D.; Magnol, J.P.; Kokolo, J. The Fibroblast. Ann. Pathol. 1985, 5, 65–76. [Google Scholar]
- Baum, C.L.; Arpey, C.J. Normal Cutaneous Wound Healing: Clinical Correlation with Cellular and Molecular Events. Dermatol. Surg. Off. Publ. Am. Soc. Dermatol. Surg. 2005, 31, 674–686. [Google Scholar] [CrossRef]
- Gabbiani, G. The Myofibroblast in Wound Healing and Fibrocontractive Diseases. J. Pathol. 2003, 200, 500–503. [Google Scholar] [CrossRef]
- Kim, J.-A.; Ahn, B.-N.; Kong, C.-S.; Kim, S.-K. The Chromene Sargachromanol E Inhibits Ultraviolet a-Induced Ageing of Skin in Human Dermal Fibroblasts. Br. J. Dermatol. 2013, 168, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.R.; Parrish, J.A. The Optics of Human Skin. J. Investig. Dermatol. 1981, 77, 13–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opländer, C.; Hidding, S.; Werners, F.B.; Born, M.; Pallua, N.; Suschek, C.V. Effects of Blue Light Irradiation on Human Dermal Fibroblasts. J. Photochem. Photobiol. B Biol. 2011, 103, 118–125. [Google Scholar] [CrossRef]
- Rossi, F.; Magni, G.; Tatini, F.; Banchelli, M.; Cherchi, F.; Rossi, M.; Coppi, E.; Pugliese, A.M.; Rossi degl’Innocenti, D.; Alfieri, D.; et al. Photobiomodulation of Human Fibroblasts and Keratinocytes with Blue Light: Implications in Wound Healing. Biomedicines 2021, 9, 41. [Google Scholar] [CrossRef]
- Karu, T.I.; Pyatibrat, L.V.; Afanasyeva, N.I. A Novel Mitochondrial Signaling Pathway Activated by Visible-to-near Infrared Radiation. Photochem. Photobiol. 2004, 80, 366–372. [Google Scholar] [CrossRef] [PubMed]
- Karu, T.I.; Pyatibrat, L.V.; Kalendo, G.S. Photobiological Modulation of Cell Attachment via Cytochrome C Oxidase. Photochem. Photobiol. Sci. 2004, 3, 211–216. [Google Scholar] [CrossRef]
- Boulton, M.; Rózanowska, M.; Rózanowski, B.; Wess, T. The Photoreactivity of Ocular Lipofuscin. Photochem. Photobiol. Sci. 2004, 3, 759–764. [Google Scholar] [CrossRef]
- Losi, A. Flavin-Based Blue-Light Photosensors: A Photobiophysics Update. Photochem. Photobiol. 2007, 83, 1283–1300. [Google Scholar] [CrossRef]
- Lienhart, W.D.; Gudipati, V.; Macheroux, P. The Human Flavoproteome. Arch. Biochem. Biophys. 2013, 535, 150–162. [Google Scholar] [CrossRef] [Green Version]
- Park, S.E.; Song, J.D.; Kim, K.M.; Park, Y.M.; Kim, N.D.; Yoo, Y.H.; Park, Y.C. Diphenyleneiodonium Induces Ros-Independent P53 Expression and Apoptosis in Human Rpe Cells. FEBS Lett. 2007, 581, 180–186. [Google Scholar] [CrossRef]
- Krassovka, J.M.; Suschek, C.V.; Prost, M.; Grotheer, V.; Schiefer, J.L.; Demir, E.; Fuchs, P.C.; Windolf, J.; Stürmer, E.K.; Opländer, C. The Impact of Non-Toxic Blue Light (453 Nm) on Cellular Antioxidative Capacity, Tgf-Beta1 Signaling, and Myofibrogenesis of Human Skin Fibroblasts. J. Photochem. Photobiol. B Biol. 2020, 209, 111952. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. Nih Image to Imagej: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef] [PubMed]
- Yang, N.C.; Ho, W.M.; Chen, Y.H.; Hu, M.L. A Convenient One-Step Extraction of Cellular Atp Using Boiling Water for the Luciferin-Luciferase Assay of Atp. Anal. Biochem. 2002, 306, 323–327. [Google Scholar] [CrossRef] [PubMed]
- Tomasek, J.J.; Gabbiani, G.; Hinz, B.; Chaponnier, C.; Brown, R.A. Myofibroblasts and Mechano-Regulation of Connective Tissue Remodelling. Nat. Rev. Mol. Cell Biol. 2002, 3, 349–363. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Shi-Wen, X.; van Beek, J.; Kennedy, L.; McLeod, M.; Renzoni, E.A.; Bou-Gharios, G.; Wilcox-Adelman, S.; Goetinck, P.F.; Eastwood, M.; et al. Matrix Contraction by Dermal Fibroblasts Requires Transforming Growth Factor-Beta/Activin-Linked Kinase 5, Heparan Sulfate-Containing Proteoglycans, and Mek/Erk: Insights into Pathological Scarring in Chronic Fibrotic Disease. Am. J. Pathol. 2005, 167, 1699–1711. [Google Scholar] [CrossRef]
- Verhoekx, J.S.; Verjee, L.S.; Izadi, D.; Chan, J.K.; Nicolaidou, V.; Davidson, D.; Midwood, K.S.; Nanchahal, J. Isometric Contraction of Dupuytren’s Myofibroblasts Is Inhibited by Blocking Intercellular Junctions. J. Investig. Dermatol. 2013, 133, 2664–2671. [Google Scholar] [CrossRef] [Green Version]
- Schutz, R. Blue Light and the Skin. Curr. Probl. Dermatol. 2021, 55, 354–373. [Google Scholar]
- Osborne, N.N.; Núñez-Álvarez, C.; del Olmo-Aguado, S.; Merrayo-Lloves, J. Visual Light Effects on Mitochondria: The Potential Implications in Relation to Glaucoma. Mitochondrion 2017, 36, 29–35. [Google Scholar] [CrossRef]
- Godley, B.F.; Shamsi, F.A.; Liang, F.-Q.; Jarrett, S.G.; Davies, S.; Boulton, M. Blue Light Induces Mitochondrial DNA Damage and Free Radical Production in Epithelial Cells. J. Biol. Chem. 2005, 280, 21061–21066. [Google Scholar] [CrossRef] [Green Version]
- King, A.; Gottlieb, E.; Brooks, D.G.; Murphy, M.P.; Dunaief, J.L. Mitochondria-Derived Reactive Oxygen Species Mediate Blue Light-Induced Death of Retinal Pigment Epithelial Cells. Photochem. Photobiol. 2004, 79, 470–475. [Google Scholar] [CrossRef] [PubMed]
- Sepasi Tehrani, H.; Moosavi-Movahedi, A.A. Catalase and Its Mysteries. Prog. Biophys. Mol. Biol. 2018, 140, 5–12. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Kellogg, E.W., 3rd; Packer, L. Photoinactivation of Catalase. Photochem. Photobiol. 1981, 34, 125–129. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Li, Y.; Xia, S.; Li, J.; Yang, Q.; Ding, K.; Zhang, H. Sequestosome 1/P62: A Multitasker in the Regulation of Malignant Tumor Aggression (Review). Int. J. Oncol. 2021, 59, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Song, C.; Mitter, S.K.; Qi, X.; Beli, E.; Rao, H.V.; Ding, J.; Ip, C.S.; Gu, H.; Akin, D.; Dunn, W.A., Jr.; et al. Oxidative Stress-Mediated Nfkappab Phosphorylation Upregulates P62/Sqstm1 and Promotes Retinal Pigmented Epithelial Cell Survival through Increased Autophagy. PLoS ONE 2017, 12, e0171940. [Google Scholar]
- Metelli, A.; Salem, M.; Wallace, C.H.; Wu, B.X.; Li, A.; Li, X.; Li, Z. Immunoregulatory Functions and the Therapeutic Implications of Garp-Tgf-Beta in Inflammation and Cancer. J. Hematol. Oncol. 2018, 11, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Annes, J.P.; Chen, Y.; Munger, J.S.; Rifkin, D.B. Integrin Alphavbeta6-Mediated Activation of Latent Tgf-Beta Requires the Latent Tgf-Beta Binding Protein-1. J. Cell Biol. 2004, 165, 723–734. [Google Scholar] [CrossRef]
- Cuende, J.; Lienart, S.; Dedobbeleer, O.; van der Woning, B.; De Boeck, G.; Stockis, J.; Huygens, C.; Colau, D.; Somja, J.; Delvenne, P.; et al. Monoclonal Antibodies against Garp/Tgf-Beta1 Complexes Inhibit the Immunosuppressive Activity of Human Regulatory T Cells in Vivo. Sci. Transl. Med. 2015, 7, 284ra56. [Google Scholar] [CrossRef]
- Kinney, C.J.; Bloch, R.J. Micro-Crystallin: A Thyroid Hormone Binding Protein. Endocr. Regul. 2021, 55, 89–102. [Google Scholar] [CrossRef] [PubMed]
- Noborio, R.; Nishida, E.; Kurokawa, M.; Morita, A. A New Targeted Blue Light Phototherapy for the Treatment of Acne. Photodermatol. Photoimmunol. Photomed. 2007, 23, 32–34. [Google Scholar] [CrossRef]
- Unal, B.; Alan, S.; Bassorgun, C.I.; Karakas, A.A.; Elpek, G.O.; Ciftcioglu, M.A. The Divergent Roles of Growth Differentiation Factor-15 (Gdf-15) in Benign and Malignant Skin Pathologies. Arch. Dermatol. Res. 2015, 307, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Li, S.; Qiu, Y.; Zhou, M.; Chen, M.; Hu, Y.; Hong, S.; Jiang, L.; Guo, Y. Circulating Fgf21 and Gdf15 as Biomarkers for Screening, Diagnosis, and Severity Assessment of Primary Mitochondrial Disorders in Children. Front. Pediatr. 2022, 10, 851534. [Google Scholar] [CrossRef] [PubMed]
- Lanfray, D.; Caron, A.; Roy, M.C.; Laplante, M.; Morin, F.; Leprince, J.; Tonon, M.C.; Richard, D. Involvement of the Acyl-Coa Binding Domain Containing 7 in the Control of Food Intake and Energy Expenditure in Mice. Elife 2016, 5, e11742. [Google Scholar] [CrossRef]
- Zimmermann, R.; Lang, S.; Lerner, M.; Forster, F.; Nguyen, D.; Helms, V.; Schrul, B. Quantitative Proteomics and Differential Protein Abundance Analysis after the Depletion of Pex3 from Human Cells Identifies Additional Aspects of Protein Targeting to the ER. Int. J. Mol. Sci. 2021, 22, 13028. [Google Scholar] [CrossRef]
- Boczkowska, M.; Rebowski, G.; Domínguez, R. Actin Filament Nucleation by Smooth Muscle Leiomodin-1. Biophys. J. 2013, 104, 645a. [Google Scholar] [CrossRef] [Green Version]
- Conley, C.A. Leiomodin and Tropomodulin in Smooth Muscle. Am. J. Physiol. Physiol. 2001, 280, C1645–C1656. [Google Scholar] [CrossRef] [Green Version]
- Wolter, P.; Schmitt, K.; Fackler, M.; Kremling, H.; Probst, L.; Hauser, S.; Gruss, O.J.; Gaubatz, S. Gas2l3, a Target Gene of the Dream Complex, Is Required for Proper Cytokinesis and Genomic Stability. J. Cell Sci. 2012, 125 Pt 10, 2393–2406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcone, D.; Uzunbajakava, N.; van Abeelen, F.; Oversluizen, G.; Peppelman, M.; van Erp, P.; van de Kerkhof, P. Effects of Blue Light on Inflammation and Skin Barrier Recovery Following Acute Perturbation. Pilot Study Results in Healthy Human Subjects. Photodermatol. Photoimmunol. Photomed. 2018, 34, 184–193. [Google Scholar] [CrossRef]
- Magni, G.; Tatini, F.; De Siena, G.; Pavone, F.S.; Alfieri, D.; Cicchi, R.; Rossi, M.; Murciano, N.; Paroli, G.; Vannucci, C.; et al. Blue-Led-Light Photobiomodulation of Inflammatory Responses and New Tissue Formation in Mouse-Skin Wounds. Life 2022, 12, 1564. [Google Scholar] [CrossRef]
- Spinella, A.; de Pinto, M.; Galluzzo, C.; Testoni, S.; Macripo, P.; Lumetti, F.; Parenti, L.; Magnani, L.; Sandri, G.; Bajocchi, G.; et al. Photobiomodulation Therapy: A New Light in the Treatment of Systemic Sclerosis Skin Ulcers. Rheumatol. Ther. 2022, 9, 891–905. [Google Scholar] [CrossRef]
- Fraccalvieri, M.; Amadeo, G.; Bortolotti, P.; Ciliberti, M.; Garrubba, A.; Mosti, G.; Bianco, S.; Mangia, A.; Massa, M.; Hartwig, V.; et al. Effectiveness of Blue Light Photobiomodulation Therapy in the Treatment of Chronic Wounds. Results of the Blue Light for Ulcer Reduction (B.L.U.R.) Study. Ital. J. Dermatol. Venerol. 2022, 157, 187–194. [Google Scholar] [CrossRef] [PubMed]
- Slominski, A.T.; Slominski, R.M.; Raman, C.; Chen, J.Y.; Athar, M.; Elmets, C. Neuroendocrine Signaling in the Skin with a Special Focus on the Epidermal Neuropeptides. Am. J. Physiol.-Cell Physiol. 2022, 323, C1757–C1776. [Google Scholar] [CrossRef] [PubMed]
Comparison | Genes | Up and Down | ncRNA | Genes | Up and Down | ncRNA | Genes | Up and Down | ncRNA |
---|---|---|---|---|---|---|---|---|---|
con (d7) vs. BL (d7) | 2 | ↑ 2 | 0 | 6 | ↑ 4 | 0 | 321 | ↑ 170 | 16 |
↓ 0 | 0 | ↓ 2 | 0 | ↓ 151 | 8 | ||||
con (d10) vs. BL (d10) | 296 | ↑ 104 | 2 | 703 | ↑ 268 | 15 | 1426 | ↑ 601 | 51 |
↓ 192 | 1 | ↓ 435 | 8 | ↓ 825 | 40 | ||||
con (d7) vs. con (d10) | 129 | ↑ 72 | 0 | 351 | ↑ 218 | 6 | 1077 | ↑ 736 | 60 |
↓ 57 | 1 | ↓ 133 | 3 | ↓ 341 | 19 | ||||
BL (d7) vs. BL (d10) | 84 | ↑ 29 | 1 | 269 | ↑ 114 | 10 | 869 | ↑ 486 | 64 |
↓ 55 | 0 | ↓ 155 | 2 | ↓ 383 | 20 | ||||
Bonferoni: p ≤ 0.05 |FC|: ≥2 | FDR: p ≤ 0.05 |FC|: ≥2 | p-value: p ≤ 0.05 |FC|: ≥2 |
Database Object Name | ID | Fold-Change |
---|---|---|
Ketimine reductase mu-crystallin | CRYM | 117.32 |
AC004988.1 | Antisense | 20.77 |
Interstitial collagenase | MMP1 | 15.04 |
FAM65C | lincRNA | 14.97 |
Ras-related GTP-binding protein D | RRAGD | 13.05 |
Growth/differentiation factor 15 | GDF15 | 12.46 |
N-acylglucosamine 2-epimerase | RENBP | 10.64 |
Proepiregulin | EREG | 10.24 |
Integrin beta-3 | ITGB3 | 9.80 |
Folate receptor gamma | FOLR3 | 8.65 |
Hexokinase-2 | HK2 | 6.78 |
FAM87B | lincRNA | 6.45 |
Sodium/potassium-transporting ATPase subunit beta-1-interacting protein 1 | NKAIN1 | 6.29 |
Paraneoplastic antigen-like protein 6A | PNMA6A | 5.87 |
Neuronal pentraxin receptor | NPTXR | 5.34 |
Transmembrane glycoprotein NMB | GPNMB | 4.87 |
Matrix metalloproteinase-15 | MMP15 | 4.87 |
17-beta-hydroxysteroid dehydrogenase 14 | HSD17B14 | 4.78 |
Dipeptidyl peptidase 4 | DPP4 | 4.74 |
Leucine-rich repeat-containing protein 32 | LRRC32 | 4.63 |
Pleckstrin homology-like domain family A member 1 | PHLDA1 | 4.41 |
Uridine diphosphate glucose pyrophosphatase | NUDT14 | 4.13 |
Sequestosome-1 | SQSTM1 | 4.03 |
cGMP-dependent protein kinase 2 | PRKG2 | 4.03 |
F-box only protein 32 | FBXO32 | 4.00 |
Database Object Name | ID | Fold-Change |
---|---|---|
Acyl-CoA-binding domain-containing protein 7 | ACBD7 | −15.59 |
Leiomodin-1 | LMOD1 | −10.89 |
Kinesin-like protein KIF20A | KIF20A | −7.23 |
RP11-867G23.10 | processed_transcript | −6.55 |
SDPR | protein_coding | −6.53 |
Serine/threonine-protein kinase Nek2 | NEK2 | −6.50 |
PICALM interacting mitotic regulator | FAM64A | −6.37 |
Suppressor APC domain-containing protein 2 | SAPCD2 | −6.04 |
Alpha-N-acetylgalactosaminide alpha-2,6-sialyltransferase 5 | ST6GALNAC5 | −6.03 |
Cell division cycle protein 20 homolog | CDC20 | −5.99 |
Protein FAM83D | FAM83D | −5.99 |
Oxytocin receptor | OXTR | −5.94 |
Tastin | TROAP | −5.67 |
Serine/threonine-protein kinase PLK1 | PLK1 | −5.51 |
Histone H3-like centromeric protein A | CENPA | −5.48 |
Cyclin-dependent kinase inhibitor 3 | CDKN3 | −5.37 |
Tumor necrosis factor alpha-induced protein 8-like protein 1 | TNFAIP8L1 | −5.29 |
Disks large-associated protein 5 | DLGAP5 | −5.25 |
G2/mitotic-specific cyclin-B1 | CCNB1 | −5.23 |
G2/mitotic-specific cyclin-B2 | CCNB2 | −5.22 |
Borealin | CDCA8 | −5.14 |
Ras GTPase-activating-like protein IQGAP3 | IQGAP3 | −5.09 |
Centrosomal protein of 55 kDa | CEP55 | −4.99 |
Lamin-B1 | LMNB1 | −4.98 |
GAS2-like protein 3 | GAS2L3 | −4.87 |
Abnormal spindle-like microcephaly-associated protein | ASPM | −4.78 |
Anillin | ANLN | −4.68 |
DEP domain-containing protein 1A | DEPDC1 | −4.68 |
High mobility group protein B2 | HMGB2 | −4.67 |
Mitotic checkpoint serine/threonine-protein kinase BUB1 | BUB1 | −4.49 |
Cyclin-A2 | CCNA2 | −4.48 |
Protein regulator of cytokinesis 1 | PRC1 | −4.44 |
Matrilin-2 | MATN2 | −4.42 |
Protein Mis18-beta | OIP5 | −4.32 |
Kinesin-like protein KIF20B | KIF20B | −4.30 |
Cyclin-F | CCNF | −4.29 |
RING finger protein 150 | RNF150 | −4.27 |
Kinesin-like protein KIF2C | KIF2C | −4.27 |
Kinetochore scaffold 1 | KNL1 | −4.25 |
Proline/serine-rich coiled-coil protein 1 | PSRC1 | −4.20 |
Baculoviral IAP repeat-containing protein 5 | BIRC5 | −4.16 |
RP11-265N7.1 | lincRNA | −4.14 |
Proline-rich protein 15 | PRR15 | −4.13 |
Hyaluronan mediated motility receptor | HMMR | −4.12 |
Targeting protein for Xklp2 | TPX2 | −4.11 |
Securin | PTTG1 | −4.09 |
Cell division cycle-associated protein 3 | CDCA3 | −4.08 |
Nucleolar and spindle-associated protein 1 | NUSAP1 | −4.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brüning, A.K.E.; Schiefer, J.L.; Fuchs, P.C.; Petzsch, P.; Köhrer, K.; Suschek, C.V.; Stürmer, E.K.; Opländer, C. Low-Dose Blue Light (420 nm) Reduces Metabolic Activity and Inhibits Proliferation of Human Dermal Fibroblasts. Life 2023, 13, 331. https://doi.org/10.3390/life13020331
Brüning AKE, Schiefer JL, Fuchs PC, Petzsch P, Köhrer K, Suschek CV, Stürmer EK, Opländer C. Low-Dose Blue Light (420 nm) Reduces Metabolic Activity and Inhibits Proliferation of Human Dermal Fibroblasts. Life. 2023; 13(2):331. https://doi.org/10.3390/life13020331
Chicago/Turabian StyleBrüning, Anne K. E., Jennifer L. Schiefer, Paul C. Fuchs, Patrick Petzsch, Karl Köhrer, Christoph V. Suschek, Ewa K. Stürmer, and Christian Opländer. 2023. "Low-Dose Blue Light (420 nm) Reduces Metabolic Activity and Inhibits Proliferation of Human Dermal Fibroblasts" Life 13, no. 2: 331. https://doi.org/10.3390/life13020331
APA StyleBrüning, A. K. E., Schiefer, J. L., Fuchs, P. C., Petzsch, P., Köhrer, K., Suschek, C. V., Stürmer, E. K., & Opländer, C. (2023). Low-Dose Blue Light (420 nm) Reduces Metabolic Activity and Inhibits Proliferation of Human Dermal Fibroblasts. Life, 13(2), 331. https://doi.org/10.3390/life13020331