Deep Learning Approach for Predicting the Therapeutic Usages of Unani Formulas towards Finding Essential Compounds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preprocessing
2.2. Model Generation and Comparison
2.3. Extracting Important Metabolites
3. Results
3.1. Filtering Dataset
3.2. Performance of Prediction
3.3. Identification of Important Metabolites
3.4. Validation of Important Metabolites
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Wijaya, S.H.; Tanaka, Y.; Altaf-Ul-Amin, M.; Morita, A.H.; Afendi, F.M.; Batubara, I.; Kanaya, S. Utilization of KNApSAcK family databases for developing herbal medicine systems. J. Comput. Aided Chem. 2006, 17, 1–7. [Google Scholar] [CrossRef]
- Hossain, S.F.; Wijaya, S.H.; Huang, M.; Batubara, I.; Kanaya, S.; Farhad, M.A.U.A. Prediction of Plant-Disease Relations Based on Unani Formulas by Network Analysis. In Proceedings of the 2018 IEEE 18th International Conference on Bioinformatics and Bioengineering (BIBE), Taicung, Taiwain, 29–31 October 2018. [Google Scholar]
- Itrat, M. Methods of health promotion and disease prevention in Unani medicine. J. Educ. Health Promot. 2020, 9, 168. [Google Scholar] [CrossRef]
- Husain, A.; Sofi, G.D.; Tajuddin, T.; Dang, R.; Kumar, N. Unani system of medicine-introduction and challenges. Med. J. Islam. World Acad. Sci. 2010, 18, 27–30. [Google Scholar]
- Rani, M.; Nayak, R.; Vyas, O.P. An ontology-based adaptive personalized e-learning system, assisted by software agents on cloud storage. Knowl.-Based Syst. 2015, 90, 33–48. [Google Scholar] [CrossRef]
- Cortes, C.; Mohri, M.; Rostamizadeh, A. Algorithms for learning kernels based on centered alignment. J. Mach. Learn. Res. 2012, 13, 795–828. [Google Scholar]
- Kang, M.J.; Kang, J.W. Intrusion detection system using deep neural network for in-vehicle network security. PLoS ONE 2016, 11, e0155781. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Thakkar, A.; Pandya, M.; Makwana, K. Neural network with deep learning architectures. J. Inf. Optim. Sci. 2018, 39, 31–38. [Google Scholar] [CrossRef]
- Nasution, A.K.; Wijaya, S.H.; Gao, P.; Islam, R.M.; Huang, M.; Ono, N.; Altaf-Ul-Amin, M. Prediction of Potential Natural Antibiotics Plants Based on Jamu Formula Using Random Forest Classifier. Antibiotics 2022, 11, 1199. [Google Scholar] [CrossRef] [PubMed]
- Wijaya, S.H.; Batubara, I.; Nishioka, T.; Altaf-Ul-Amin, M.; Kanaya, S. Metabolomic studies of Indonesian jamu medicines: Prediction of jamu efficacy and identification of important metabolites. Mol. Inform. 2017, 36, 1700050. [Google Scholar] [CrossRef]
- Jackins, V.; Vimal, S.; Kaliappan, M.; Lee, M.Y. AI-based smart prediction of clinical disease using random forest classifier and Naive Bayes. J. Supercomput. 2021, 77, 5198–5219. [Google Scholar] [CrossRef]
- Gunn, S.R. Support vector machines for classification and regression. ISIS Tech. Rep. 1998, 1, 5–16. [Google Scholar]
- Hinton, G.E.; Salakhutdinov, R.R. Reducing the dimensionality of data with neural networks. Science 2006, 313, 504–507. [Google Scholar] [CrossRef] [Green Version]
- Nwankpa, C.; Ijomah, W.; Gachagan, A.; Marshall, S. Activation functions: Comparison of trends in practice and research for deep learning. arXiv 2018, arXiv:1811.03378. [Google Scholar]
- Larrosa, M.; González-Sarrías, A.; García-Conesa, M.T.; Tomás-Barberán, F.A.; Espín, J.C. Urolithins; ellagic acid-derived metabolites produced by human colonic microflora; exhibit estrogenic and antiestrogenic activities. J. Agric. Food Chem. 2006, 54, 1611–1620. [Google Scholar] [CrossRef]
- Ren, Y.; Shen, L.; Zhang, D.W.; Dai, S.J. Two new sesquiterpenoids from Solanum lyratum with cytotoxic activities. Chem. Pharm. Bull. 2009, 57, 408–410. [Google Scholar] [CrossRef]
- Pan, R.L.; Chen, D.H.; Si, J.Y.; Zhao, X.H.; Li, Z.; Cao, L. Immunosuppressive effects of new cyclolanostane triterpene diglycosides from the aerial part of Cimicifuga foetida. Arch. Pharmacal Res. 2009, 32, 185–190. [Google Scholar] [CrossRef]
- van der Krieken, S.E.; Popeijus, H.E.; Bendik, I.; Böhlendorf, B.; Konings, M.C.; Tayyeb, J.; Plat, J. Large-Scale Screening of Natural Products Transactivating Peroxisome Proliferator-Activated Receptor α Identifies 9S-Hydroxy-10E; 12Z; 15Z-Octadecatrienoic Acid and Cymarin as Potential Compounds Capable of Increasing Apolipoprotein A-I Transcription in Human Liver Cells. Lipids 2018, 53, 1021–1030. [Google Scholar] [PubMed]
- Sanders, B.; Lankenau, S.E.; Bloom, J.J.; Hathazi, D. “Research chemicals”: Tryptamine and phenethylamine use among high-risk youth. Subst. Use Misuse 2008, 43, 389–402. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, P.; Sharma, P.; Khan, F.; Singh Sangwan, N.; Nath Mishra, B.; Singh Sangwan, R. Structure activity relationship studies of gymnemic acid analogues for antidiabetic activity targeting PPARγ. Curr. Comput.-Aided Drug Des. 2015, 11, 57–71. [Google Scholar] [CrossRef]
- Al-Taweel, A.M.; Abdel-Kader, M.S.; Fawzy, G.A.; Perveen, S.; Maher, H.M.; Al-Zoman, N.Z.; AI-Showiman, H. Isolation of flavonoids from Delonix data and determination of its rutin content using capillary electrophoresis. Pak. J. Pharm. Sci. 2015, 28, 1897–1903. [Google Scholar]
- Pawar, R.S.; Grundel, E. Overview of regulation of dietary supplements in the USA and issues of adulteration with phenethylamines (PEAs). Drug Test. Anal. 2017, 9, 500–517. [Google Scholar] [CrossRef] [PubMed]
- Mattingly, R.R.; Stephens, L.R.; Irvine, R.F.; Garrison, J.C. Effects of transformation with the v-src oncogene on inositol phosphate metabolism in rat-1 fibroblasts. D-myo-inositol 1; 4; 5; 6-tetrakisphosphate is increased in v-src-transformed rat-1 fibroblasts and can be synthesized from D-myo-inositol 1; 3; 4-trisphosphate in cytosolic extracts. J. Biol. Chem. 1991, 266, 15144–15153. [Google Scholar]
- Abdin, M.; Hamed, Y.S.; Akhtar, H.M.S.; Chen, D.; Chen, G.; Wan, P.; Zeng, X. Antioxidant and anti-inflammatory activities of target anthocyanins di-glucosides isolated from Syzygium cumini pulp by high speed counter-current chromatography. J. Food Biochem. 2020, 44, 1050–1062. [Google Scholar] [CrossRef]
- Oh, S.M.; Kim, Y.P.; Chung, K.H. Biphasic effects of kaempferol on the estrogenicity in human breast cancer cells. Arch. Pharmacal Res. 2006, 29, 354–362. [Google Scholar] [CrossRef]
- Xiao, J.; Sun, G.B.; Sun, B.; Wu, Y.; He, L.; Wang, X.; Sun, X.B. Kaempferol protects against doxorubicin-induced cardiotoxicity in vivo and in vitro. Toxicology 2012, 292, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, Y.S.; Kwon, S.; Lee, H.S.; Seol, G.H. Linalyl acetate prevents hypertension-related ischemic injury. PLoS ONE 2018, 13, e0198082. [Google Scholar] [CrossRef]
- Wang, S.; Guan, X.; Zhong, X.; Yang, Z.; Huang, W.; Jia, B.; Cui, T. Simultaneous determination of cucurbitacin IIa and cucurbitacin IIb of Hemsleya amabilis by HPLC–MS/MS and their pharmacokinetic study in normal and indomethacin-induced rats. Biomed. Chromatogr. 2016, 30, 1632–1640. [Google Scholar] [CrossRef] [PubMed]
- Acquaviva, R.; Di Giacomo, C.; Sorrenti, V.; Galvano, F.; Santangelo, R.; Cardile, V.; Vanella, L. Antiproliferative effect of oleuropein in prostate cell lines. Int. J. Oncol. 2012, 41, 31–38. [Google Scholar]
- Acharya, N.; Acharya, S.; Shah, U.; Shah, R.; Hingorani, L. A comprehensive analysis on Symplocos racemosa Roxb.: Traditional uses; botany; phytochemistry and pharmacological activities. J. Ethnopharmacol. 2016, 181, 236–251. [Google Scholar] [CrossRef]
- Kulikova, V.; Morozova, E.; Rodionov, A.; Koval, V.; Anufrieva, N.; Revtovich, S.; Demidkina, T. Non-stereoselective decomposition of (±)-S-alk (en) yl-l-cysteine sulfoxides to antibacterial thiosulfinates catalyzed by C115H mutant methionine γ-lyase from Citrobacter freundii. Biochimie 2018, 151, 42–44. [Google Scholar] [CrossRef]
- Sakata, T.; Oda, S.; Tsunaga, Y.; Shomura, H.; Kawagishi-Kobayashi, M.; Aya, K.; Higashitani, A. Reduction of gibberellin by low temperature disrupts pollen development in rice. Plant Physiol. 2014, 164, 2011–2019. [Google Scholar] [CrossRef] [PubMed]
- Engels, B.; Heinig, U.; McElroy, C.; Meusinger, R.; Grothe, T.; Stadler, M.; Jennewein, S. Isolation of a gene cluster from Armillaria gallica for the synthesis of armillyl orsellinate–type sesquiterpenoids. Appl. Microbiol. Biotechnol. 2020, 105, 211–224. [Google Scholar] [CrossRef] [PubMed]
- McCormack, D.; McFadden, D. A review of pterostilbene antioxidant activity and disease modification. Oxidative Med. Cell. Longev. 2013, 2013, 575482. [Google Scholar] [CrossRef] [PubMed]
- Bhakta, H.K.; Park, C.H.; Yokozawa, T.; Tanaka, T.; Jung, H.A.; Choi, J.S. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits. Arch. Pharmacal Res. 2017, 40, 836–853. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wu, J.; Liu, F.; Tong, L.; Chen, Z.; Chen, J.; Huang, C. Neuroprotective effects of anthocyanins and its major component cyanidin-3-O-glucoside (C3G) in the central nervous system: An outlined review. Eur. J. Pharmacol. 2019, 858, 172500. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Montano, J.M.; Burgos-Morón, E.; Orta, M.L.; Pastor, N.; Austin, C.A.; Mateos, S.; López-Lázaro, M. Alpha; beta-unsaturated lactones 2-furanone and 2-pyrone induce cellular DNA damage; formation of topoisomerase I-and II-DNA complexes and cancer cell death. Toxicol. Lett. 2013, 222, 64–71. [Google Scholar] [CrossRef]
- Xin, X.Q.; Chen, Y.; Zhang, H.; Li, Y.; Yang, M.H.; Kong, L.Y. Cytotoxic seco-cytochalasins from an endophytic Aspergillus sp. harbored in Pinellia ternata tubers. Fitoterapia 2019, 132, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.Y.; Choi, S.E.; Jeong, M.S.; Park, K.H.; Moon, N.J.; Joo, S.S.; Seo, S.J. Effect of taxifolin glycoside on atopic dermatitis-like skin lesions in NC/Nga mice. Phytother. Res. 2010, 24, 1071–1077. [Google Scholar] [CrossRef]
- Cho, J.; Tremmel, L.; Rho, O.; Camelio, A.M.; Siegel, D.; Slaga, T.J.; DiGiovanni, J. Evaluation of pentacyclic triterpenes found in Perilla frutescens for inhibition of skin tumor promotion by 12-O-tetradecanoylphorbol-13-acetate. Oncotarget 2015, 6, 39292. [Google Scholar] [CrossRef]
- Lin, Y.; Dubinsky, W.P.; Ho, D.H.; Felix, E.; Newman, R.A. Determinants of human and mouse melanoma cell sensitivities to oleandrin. J. Exp. Ther. Oncol. 2008, 7, 195–205. [Google Scholar]
- Umekawa, T.; Yamate, T.; Amasaki, N.; Kohri, K.; Kurita, T. Osteopontin mRNA in the kidney on an experimental rat model of renal stone formation without renal failure. Urol. Int. 1995, 55, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Kohri, K.E.A.; Nomura, S.; Kitamura, Y.; Nagata, T.; Yoshioka, K.; Iguchi, M.; Sinohara, H. Structure and expression of the mRNA encoding urinary stone protein (osteopontin). J. Biol. Chem. 1993, 268, 15180–15184. [Google Scholar] [CrossRef] [PubMed]
- Robitaille, L.; Mamer, O.A.; Miller, W.H., Jr.; Levine, M.; Assouline, S.; Melnychuk, D.; Hoffer, L.J. Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism 2009, 58, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Kropp, H.; Sundelof, J.G.; Hajdu, R.; Kahan, F.M. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase; dehydropeptidase-I. Antimicrob. Agents Chemother. 1983, 22, 62–70. [Google Scholar] [CrossRef]
- Philbrick, D.J.; Bureau, D.P.; Collins, F.W.; Holub, B.J. Evidence that soyasaponin Bb retards disease progression in a murine model of polycystic kidney disease. Kidney Int. 2003, 63, 1230–1239. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, G.; Poeschl, R.; Zimhony, O.; Gunaratnam, M.; Moreira, J.B.; Neidle, S.; Gibbons, S. Bioactive pyridine-N-oxide disulfides from Allium stipitatum. J. Nat. Prod. 2009, 72, 360–365. [Google Scholar] [CrossRef]
- Stahlhut, S.G.; Siedler, S.; Malla, S.; Harrison, S.J.; Maury, J.; Neves, A.R.; Forster, J. Assembly of a novel biosynthetic pathway for production of the plant flavonoid fisetin in Escherichia coli. Metab. Eng. 2015, 31, 84–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IJAH Analytics. Available online: http://ijah.apps.cs.ipb.ac.id/#/home (accessed on 13 December 2022).
ID | Therapeutic Usage | Number of Unani Formula | Number of Metabolites | ||
---|---|---|---|---|---|
Minimum | Maximum | Mean | |||
3 | The Digestive System | 103 | 3 | 518 | 87.63 |
16 | Skin and Connective Tissue | 40 | 16 | 240 | 75.97 |
15 | Respiratory Diseases | 32 | 15 | 379 | 107.9 |
17 | The Urinary System | 31 | 17 | 366 | 110.5 |
10 | Male-Specific Diseases | 26 | 10 | 545 | 148 |
6 | Female-Specific Diseases | 22 | 6 | 309 | 122 |
13 | The Nervous System | 22 | 33 | 265 | 104.5 |
8 | The Heart and Blood Vessels | 19 | 8 | 355 | 84.4 |
11 | Muscle and Bone | 19 | 11 | 392 | 102 |
18 | Mental and Behavioral Disorders | 16 | 25 | 350 | 121.68 |
4 | Ear, Nose, and Throat | 15 | 4 | 161 | 34.35 |
1 | Blood and Lymph Diseases | 13 | 1 | 308 | 64.7 |
5 | Diseases of the Eye | 10 | 5 | 287 | 87 |
14 | Nutritional and Metabolic Diseases | 6 | 14 | 148 | 79.83 |
2 | Cancers | 3 | 2 | 19 | 7.66 |
7 | Glands and Hormones | 3 | 33 | 117 | 65 |
9 | Diseases of the Immune System | 1 | 64 | 64 | 64 |
Type of Dataset | Accuracy (%) | Data Dimension | Number of Efficacy |
---|---|---|---|
Dataset before filtering | - | [609 × 4688] | 17 |
Dataset filtering random forest | 80.83 | [307 × 4688] | 16 |
Dataset filtering deep learning | 70.00 | [268 × 4688] | 13 |
No | ID Class | Weight of Variable Importance | Num. of Selected Compounds | ||
---|---|---|---|---|---|
Min | Max | Mean | |||
1 | 3 | 0.1470 | 0.5150 | 0.2437 | 15 |
2 | 6 | 0.0110 | 0.3400 | 0.1212 | 13 |
3 | 8 | 0.0119 | 0.5910 | 0.1829 | 7 |
4 | 10 | 0.1420 | 0.5350 | 0.2961 | 15 |
5 | 11 | 0.0175 | 0.1870 | 0.0782 | 15 |
6 | 13 | 0.0314 | 0.2240 | 0.0951 | 8 |
7 | 15 | 0.0208 | 0.4300 | 0.1209 | 15 |
8 | 16 | 0.1010 | 0.4880 | 0.2172 | 15 |
9 | 17 | 0.1110 | 0.3450 | 0.1993 | 15 |
No | Feature | Metabolites | Weight | Validation | |
---|---|---|---|---|---|
Class 3—The Digestive System | |||||
1 | 3450 | 6H-dibenzo[b,d]pyran-6-one | 0.2980 | Enterophytoestrogens [16] | |
2 | 2809 | lyratol C | 0.2450 | Colorectal neoplasms [17] | |
3 | 3813 | epithienamycin E | 0.2190 | Validated [18] | |
4 | 2356 | 9(S)-HOTrE | 0.2030 | Liver neoplasms [19] | |
5 | 1557 | cimifoetiside A | 0.1950 | Validated [20] | |
6 | 1835 | Gymnemic acid XII | 0.1750 | Diabetes Mellitus [21] | |
7 | 3045 | quercetin 7,4′-di-O-β-D-glucoside | 0.1730 | Flatulence [22] | |
8 | 1836 | Phenethylamine | 0.1470 | Validated [23] | |
Class 6—Female-Specific Diseases | |||||
1 | 2739 | D-myo-inositol 1,2,5,6-tetrakisphosphate | 0.3400 | Validated on medical article [24] | |
2 | 582 | butin | 0.1550 | Albizia glaberrima (TCM) | |
3 | 1041 | Delphin | 0.1190 | Inflammation [25] | |
4 | 2603 | Malvidin | 0.0277 | Validated based on Jamu data | |
5 | 2634 | (R)-4-hydroxy-1-methyl-L-proline | 0.0155 | Aglaia andamanica | |
Class 8—The Heart and Blood Vessels | |||||
1 | 2311 | kaempferol 3-O-[α-L-rhamnopyranosyl(1→2)-β-D-galactopyranosyl]-7-O-α-L-rhamnopyranoside | 0.5910 | Cardiovascular diseases [26] Cardiomyopathies [27] | |
2 | 626 | Succinic acid | 0.5160 | Validated based on Jamu data | |
3 | 40 | Linaloyl acetate | 0.0367 | Validated [28] | |
4 | 2949 | Betamethasone valerate | 0.0167 | Synthetic glucocorticoid | |
Class 10—Male-Specific Diseases | |||||
1 | 333 | Obtusifoliol | 0.5230 | Validated use of Simpson similarity (0.9706) Euphadienol [29] | |
2 | 1362 | Methyl 4-hydroxy cinnamate | 0.4600 | Prostate cancer [30] | |
3 | 4415 | 3-O-Acetyloleanolic acid | 0.3610 | Prostate cancer [31] | |
4 | 2853 | Butiin | 0.2890 | Bacterial infections [32] | |
5 | 603 | Gibberellin A12 | 0.2700 | Infertility, Male [33] | |
6 | 2253 | Δ6-protoilludene | 0.2220 | Cancer [34] | |
7 | 4534 | erythrodiol | 0.1420 | Rhododendron ferrugineum (TCM) | |
Class 11—Muscle and Bone | |||||
1 | 4078 | 14-deoxo-3-O-propionyl-5,15-di-O-acetyl-7-O-benzoylmyrsinol-14beta-nicotinoate | 0.1870 | Validated use Simpson similarity (0.9523) with perfluorooctyl iodide | |
2 | 1804 | Euphorbiaproliferin I | 0.1250 | Validated use Simpson similarity (0.9523) with cesium | |
3 | 4570 | Euphorbiaproliferin G | 0.1070 | Validated use Simpson similarity (0.974) with moli001259 | |
4 | 2146 | Euphorbiaproliferin D | 0.0641 | Euphorbia prolifera | |
Class 13—The Nervous System | |||||
1 | 434 | pterostilbene | 0.1290 | Validated [35] NCBI | |
2 | 75 | Trapain | 0.0396 | Alzheimer’s disease [36] | |
3 | 1610 | cyanidin 3-O-(6-O-acetyl-β-D-glucoside) | 0.0314 | Neuroprotective effects [37] | |
Class 15—Respiratory Diseases | |||||
1 | 4624 | 6-epi-guttiferone J | 0.2250 | Validated use Simpson similarity (0.902) with Sesquiterpene lactone | |
2 | 848 | 2(3H)-Furanone | 0.0858 | Lung neoplasms [38,39] | |
3 | 2133 | 2-(3,4-dihydroxyphenyl)-ethyl-O-β-D-glucopyranoside | 0.0395 | Cornus mas L. Cornus alba L. (TCM) | |
Class 16—Skin and Connective Tissue | |||||
1 | 2846 | Taxifolin 3′-glucoside | 0.4520 | Dermatitis [40] | |
2 | 4306 | Oleanolic acid | 0.2560 | Skin neoplasms [41] | |
3 | 1970 | Oleandrin | 0.1900 | Melanoma [42] | |
4 | 2461 | Himaphenolone | 0.1360 | Cedrus deodara (Roxb.) Loud (TCM) | |
5 | 2316 | Coniferyl aldehyde | 0.1320 | Validated use Simpson similarity (0.9087) with Nalco L | |
6 | 2866 | Cedrin | 0.1010 | Validated use Simpson similarity (0.9370) with Dihydroquercetin | |
Class 17—The Urinary System | |||||
1 | 908 | Glyoxylic acid | 0.3450 | Kidney calculi [43,44] | |
2 | 322 | Biochanin A | 0.2750 | Validated based on Jamu data | |
3 | 3752 | Pyruvic acid | 0.2010 | Validated [45] | |
4 | 1526 | Oxalic acid | 0.1840 | Validated [46] | |
5 | 4026 | Soyasaponin I | 0.1630 | Polycystic kidney diseases [47] | |
6 | 1067 | 2-(methyldithio)pyridine-N-oxide | 0.1520 | Neoplasms [48] | |
7 | 2898 | Liquiritigenin | 0.1490 | Validated based on Jamu data | |
8 | 3934 | Garbanzol | 0.1270 | Neoplasms [49] | |
9 | 1266 | Medicagol | 0.1200 | Validated based on Jamu data [50] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wijaya, S.H.; Nasution, A.K.; Batubara, I.; Gao, P.; Huang, M.; Ono, N.; Kanaya, S.; Altaf-Ul-Amin, M. Deep Learning Approach for Predicting the Therapeutic Usages of Unani Formulas towards Finding Essential Compounds. Life 2023, 13, 439. https://doi.org/10.3390/life13020439
Wijaya SH, Nasution AK, Batubara I, Gao P, Huang M, Ono N, Kanaya S, Altaf-Ul-Amin M. Deep Learning Approach for Predicting the Therapeutic Usages of Unani Formulas towards Finding Essential Compounds. Life. 2023; 13(2):439. https://doi.org/10.3390/life13020439
Chicago/Turabian StyleWijaya, Sony Hartono, Ahmad Kamal Nasution, Irmanida Batubara, Pei Gao, Ming Huang, Naoaki Ono, Shigehiko Kanaya, and Md. Altaf-Ul-Amin. 2023. "Deep Learning Approach for Predicting the Therapeutic Usages of Unani Formulas towards Finding Essential Compounds" Life 13, no. 2: 439. https://doi.org/10.3390/life13020439
APA StyleWijaya, S. H., Nasution, A. K., Batubara, I., Gao, P., Huang, M., Ono, N., Kanaya, S., & Altaf-Ul-Amin, M. (2023). Deep Learning Approach for Predicting the Therapeutic Usages of Unani Formulas towards Finding Essential Compounds. Life, 13(2), 439. https://doi.org/10.3390/life13020439