First Use of Non-Invasive Spinal Cord Stimulation in Motor Rehabilitation of Children with Spinal Muscular Atrophy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verhaart, I.E.C.; Robertson, A.; Wilson, I.J.; Aartsma-Rus, A.; Cameron, S.; Jones, C.C.; Cook, S.F.; Lochmüller, H. Prevalence, Incidence and Carrier Frequency of 5q–Linked Spinal Muscular Atrophy—A Literature Review. Orphanet J. Rare Dis. 2017, 12, 124. [Google Scholar] [CrossRef]
- Lunn, M.R.; Wang, C.H. Spinal Muscular Atrophy. Lancet 2008, 371, 2120–2133. [Google Scholar] [CrossRef]
- Mercuri, E.; Finkel, R.S.; Muntoni, F.; Wirth, B.; Montes, J.; Main, M.; Mazzone, E.S.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; et al. Diagnosis and Management of Spinal Muscular Atrophy: Part 1: Recommendations for Diagnosis, Rehabilitation, Orthopedic and Nutritional Care. Neuromuscul. Disord. 2018, 28, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Dangouloff, T.; Servais, L. Clinical Evidence Supporting Early Treatment Of Patients With Spinal Muscular Atrophy: Current Perspectives. Ther. Clin. Risk Manag. 2019, 15, 1153–1161. [Google Scholar] [CrossRef] [PubMed]
- Finkel, R.S.; Mercuri, E.; Meyer, O.H.; Simonds, A.K.; Schroth, M.K.; Graham, R.J.; Kirschner, J.; Iannaccone, S.T.; Crawford, T.O.; Woods, S.; et al. Diagnosis and Management of Spinal Muscular Atrophy: Part 2: Pulmonary and Acute Care; Medications, Supplements and Immunizations; Other Organ Systems; and Ethics. Neuromuscul. Disord. 2018, 28, 197–207. [Google Scholar] [CrossRef]
- Gerasimenko, Y.P.; Lu, D.C.; Modaber, M.; Zdunowski, S.; Gad, P.; Sayenko, D.G.; Morikawa, E.; Haakana, P.; Ferguson, A.R.; Roy, R.R.; et al. Noninvasive Reactivation of Motor Descending Control after Paralysis. J. Neurotrauma 2015, 32, 1968–1980. [Google Scholar] [CrossRef] [PubMed]
- Moshonkina, T.R.; Pogolskaya, M.A.; Vinogradskaya, Z.V.; Likhacheva, P.K.; Gerasimenko, Y.P. Чрескoжная электрическая стимуляция спиннoгo мoзга в двигательнoй реабилитации пациентoв с травмoй спиннoгo мoзга. Интегративная Физиoлoгия 2020, 1, 350–364. [Google Scholar] [CrossRef]
- Baindurashvili, A.; Vissarionov, S.; Belianchikov, S.; Kartavenko, K.; Solokhina, I.; Kozyrev, A.; Pukhov, A.; Moshonkina, T.; Gerasimenko, Y. Comprehensive Treatment of a Patient with Complicated Thoracic Spine Injury Using Percutaneous Electrical Spinal Cord Stimulation (Case Report). Genij Ortop. 2020, 26, 79–88. [Google Scholar] [CrossRef]
- Keller, A.; Singh, G.; Sommerfeld, J.; King, M.; Parikh, P.; Ugiliweneza, B.; D’Amico, J.; Gerasimenko, Y.; Behrman, A. Noninvasive Spinal Stimulation Safely Enables Upright Posture in Children with Spinal Cord Injury. Nat. Commun. 2021, 12, 5850. [Google Scholar] [CrossRef]
- Megía García, A.; Serrano-Muñoz, D.; Taylor, J.; Avendaño-Coy, J.; Gómez-Soriano, J. Transcutaneous Spinal Cord Stimulation and Motor Rehabilitation in Spinal Cord Injury: A Systematic Review. Neurorehabil. Neural Repair 2020, 34, 3–12. [Google Scholar] [CrossRef]
- Solopova, I.A.; Sukhotina, I.A.; Zhvansky, D.S.; Ikoeva, G.A.; Vissarionov, S.V.; Baindurashvili, A.G.; Edgerton, V.R.; Gerasimenko, Y.P.; Moshonkina, T.R. Effects of Spinal Cord Stimulation on Motor Functions in Children with Cerebral Palsy. Neurosci. Lett. 2017, 639, 192–198. [Google Scholar] [CrossRef] [PubMed]
- Hastings, S.; Zhong, H.; Feinstein, R.; Zelczer, G.; Mitrovich, C.; Gad, P.; Edgerton, V.R. A Pilot Study Combining Noninvasive Spinal Neuromodulation and Activity-Based Neurorehabilitation Therapy in Children with Cerebral Palsy. Nat. Commun. 2022, 13, 5660. [Google Scholar] [CrossRef] [PubMed]
- Latash, M.L. Muscle Coactivation: Definitions, Mechanisms, and Functions. J. Neurophysiol. 2018, 120, 88–104. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, Y.; Gorodnichev, R.; Moshonkina, T.; Sayenko, D.; Gad, P.; Reggie Edgerton, V. Transcutaneous Electrical Spinal-Cord Stimulation in Humans. Ann. Phys. Rehabil. Med. 2015, 58, 225–231. [Google Scholar] [CrossRef] [PubMed]
- Gerasimenko, Y.; Gorodnichev, R.; Puhov, A.; Moshonkina, T.; Savochin, A.; Selionov, V.; Roy, R.R.; Lu, D.C.; Edgerton, V.R. Initiation and Modulation of Locomotor Circuitry Output with Multisite Transcutaneous Electrical Stimulation of the Spinal Cord in Noninjured Humans. J. Neurophysiol. 2015, 113, 834–842. [Google Scholar] [CrossRef]
- Manson, G.A.; Calvert, J.S.; Ling, J.; Tychhon, B.; Ali, A.; Sayenko, D.G. The Relationship between Maximum Tolerance and Motor Activation during Transcutaneous Spinal Stimulation Is Unaffected by the Carrier Frequency or Vibration. Physiol. Rep. 2020, 8, e14397. [Google Scholar] [CrossRef]
- High-Frequency Stimulation Does Not Improve Comfort of Transcutaneous Spinal Cord Stimulation|BioRxiv. Available online: https://www.biorxiv.org/content/10.1101/2022.09.06.506783v1 (accessed on 27 November 2022).
- Benavides, F.D.; Jo, H.J.; Lundell, H.; Edgerton, V.R.; Gerasimenko, Y.; Perez, M.A. Cortical and Subcortical Effects of Transcutaneous Spinal Cord Stimulation in Humans with Tetraplegia. J. Neurosci. 2020, 40, 2633–2643. [Google Scholar] [CrossRef]
- Kariyawasam, D.; D’Silva, A.; Howells, J.; Herbert, K.; Geelan-Small, P.; Lin, C.S.-Y.; Farrar, M.A. Motor Unit Changes in Children with Symptomatic Spinal Muscular Atrophy Treated with Nusinersen. J. Neurol. Neurosurg. Psychiatry 2021, 92, 78–85. [Google Scholar] [CrossRef]
- Bovend’Eerdt, T.J.; Botell, R.E.; Wade, D.T. Writing SMART Rehabilitation Goals and Achieving Goal Attainment Scaling: A Practical Guide. Clin. Rehabil. 2009, 23, 352–361. [Google Scholar] [CrossRef]
- Gad, P.; Lee, S.; Terrafranca, N.; Zhong, H.; Turner, A.; Gerasimenko, Y.; Edgerton, V.R. Non-Invasive Activation of Cervical Spinal Networks after Severe Paralysis. J. Neurotrauma 2018, 35, 2145–2158. [Google Scholar] [CrossRef]
- Huang, R.; Nikooyan, A.A.; Moore, L.D.; Zdunowski, S.; Morikawa, E.; Sierro, T.; Sayenko, D.; Gad, P.; Homsey, T.; Le, T.; et al. OPEN Minimal Handgrip Force Is Needed for Transcutaneous Electrical Stimulation to Improve Hand Functions of Patients with Severe Spinal Cord Injury. Sci. Rep. 2022, 12, 7733. [Google Scholar] [CrossRef]
- Iannaccone, S.T. Outcome Measures for Pediatric Spinal Muscular Atrophy. Arch. Neurol. 2002, 59, 1445. [Google Scholar] [CrossRef]
- Norkin, C.C.; White, D.J. Measurement of Joint Motion: A Guide to Goniometry, 3rd ed.; F.A. Davis Company: Philadelphia, PA, USA, 2004; ISBN 978-0-8036-4566-0. [Google Scholar]
- Mazzone, E.S.; Mayhew, A.; Montes, J.; Ramsey, D.; Fanelli, L.; Young, S.D.; Salazar, R.; De Sanctis, R.; Pasternak, A.; Glanzman, A.; et al. Revised Upper Limb Module for Spinal Muscular Atrophy: Development of a New Module. Muscle Nerve 2017, 55, 869–874. [Google Scholar] [CrossRef] [PubMed]
- O’Hagen, J.M.; Glanzman, A.M.; McDermott, M.P.; Ryan, P.A.; Flickinger, J.; Quigley, J.; Riley, S.; Sanborn, E.; Irvine, C.; Martens, W.B.; et al. An Expanded Version of the Hammersmith Functional Motor Scale for SMA II and III Patients. Neuromuscul. Disord. 2007, 17, 693–697. [Google Scholar] [CrossRef] [PubMed]
- Pera, M.C.; Coratti, G.; Mazzone, E.S.; Montes, J.; Scoto, M.; De Sanctis, R.; Main, M.; Mayhew, A.; Muni Lofra, R.; Dunaway Young, S.; et al. Revised Upper Limb Module for Spinal Muscular Atrophy: 12 Month Changes. Muscle Nerve 2019, 59, 426–430. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, e70–e88. [Google Scholar] [CrossRef] [PubMed]
- Chabanon, A.; Seferian, A.M.; Daron, A.; Péréon, Y.; Cances, C.; Vuillerot, C.; De Waele, L.; Cuisset, J.-M.; Laugel, V.; Schara, U.; et al. Prospective and Longitudinal Natural History Study of Patients with Type 2 and 3 Spinal Muscular Atrophy: Baseline Data NatHis-SMA Study. PLoS ONE 2018, 13, e0201004. [Google Scholar] [CrossRef]
- Wu, J.W.; Pepler, L.; Maturi, B.; Afonso, A.C.F.; Sarmiento, J.; Haldenby, R. Systematic Review of Motor Function Scales and Patient-Reported Outcomes in Spinal Muscular Atrophy. Am. J. Phys. Med. Rehabil. 2022, 101, 590–608. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Costa, J.F.; Povedano, M.; Nascimiento-Osorio, A.E.; Escribano, A.M.; Garcia, S.K.; Dominguez, R.; Exposito, J.M.; González, L.; Marco, C.; Castillo, J.M.; et al. Nusinersen in Adult Patients with 5q Spinal Muscular Atrophy: A Multicenter Observational Cohorts’ Study. Eur. J. Neurol. 2022, 29, 3337–3346. [Google Scholar] [CrossRef]
- Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; et al. Nusinersen versus Sham Control in Later-Onset Spinal Muscular Atrophy. N. Engl. J. Med. 2018, 378, 625–635. [Google Scholar] [CrossRef]
- Courtine, G.; Gerasimenko, Y.; van den Brand, R.; Yew, A.; Musienko, P.; Zhong, H.; Song, B.; Ao, Y.; Ichiyama, R.M.; Lavrov, I.; et al. Transformation of Nonfunctional Spinal Circuits into Functional States after the Loss of Brain Input. Nat. Neurosci. 2009, 12, 1333–1342. [Google Scholar] [CrossRef]
- Ichiyama, R.M.; Courtine, G.; Gerasimenko, Y.P.; Yang, G.J.; van den Brand, R.; Lavrov, I.A.; Zhong, H.; Roy, R.R.; Edgerton, V.R. Step Training Reinforces Specific Spinal Locomotor Circuitry in Adult Spinal Rats. J. Neurosci. 2008, 28, 7370–7375. [Google Scholar] [CrossRef] [PubMed]
- Falgairolle, M.; O’Donovan, M.J. Motoneuronal Spinal Circuits in Degenerative Motoneuron Disease. Front. Mol. Neurosci. 2020, 13, 74. [Google Scholar] [CrossRef]
- Pette, D.; Vrbová, G. The Contribution of Neuromuscular Stimulation in Elucidating Muscle Plasticity Revisited. Eur. J. Transl. Myol. 2017, 27, 6368. [Google Scholar] [CrossRef] [PubMed]
- Kooistra, B.; Dijkman, B.; Einhorn, T.A.; Bhandari, M. How to Design a Good Case Series. J. Bone Jt. Surg. 2009, 91, 21–26. [Google Scholar] [CrossRef] [PubMed]
PCPs | Sex | Age (Years) | SMA Type | SMN2 Copy NUMBER | Starting Nusinersen | Functional Status |
---|---|---|---|---|---|---|
P111 | F | 9 | II | 3 | October 2020 | non-sitter |
P128 | M | 6 | II | 3 | April 2021 | non-sitter |
P142 | M | 10 | III | 3 | November 2020 | sitter |
P143 | M | 13 | III | 4 | September 2020 | sitter |
P146 | M | 7 | III | 3 | January 2020 | sitter |
PCPs | Rehabilitation Goal |
---|---|
P111 | reduction of contractures of the knee and elbow joints; increasing the accuracy and coordination of movements of the upper extremities; increasing of the range of active movements in the joints of the lower extremities |
P128 | reduction of contractures of the knee joints; independent sitting; increasing of the muscle strength in the upper extremities; increasing of the range of active movements in the joints of the lower extremities |
P142 | reduction of contractures of the knee joints; independent sitting; increasing of the muscle strength in the shoulders; decreasing of hypertonicity in the buttocks; supported standing position |
P143 | reduction of contractures of the knee joints; increasing of the muscle strength in the right shoulder; increasing of the muscle strength in the trunk; independent standing position |
P146 | increasing of the muscle strength in the trunk; increasing of the muscle strength in the hips; independent standing position; independent symmetrical stepping |
PCPs | tSCS | Physical Therapy | ||||
---|---|---|---|---|---|---|
Site (Vert) | Intensity (mA) | Trainings (N) | Upper Extremities | Lower Extremities 1 | Other | |
P111 | Th11, Co | 20 | 12 | grasping, passive flexion/extension of the elbow joints, passive adduction/abduction of the shoulder joints, passive stretching arms above the head | flexion/extension of the toes, passive flexion/extension of the knee joints, stepping, kicking | holding and moving objects ~0.5 kg, long expiration breath |
P128 | C7-Th1, Co | 30 | 10 | grasping, flexion/extension of the elbow joints, adduction/abduction of the shoulder joints, stretching arms above the head, ball kicking and hit accuracy training | flexion/extension of the knee joints, stepping, kicking | holding and moving objects ~1 kg, long expiration breath, trunk twists and tilts |
P142 | C7, L1 | 50 | 14 | flexion/extension of the elbow joints, adduction/abduction of the shoulder joints, stretching arms above the head, ball throwing | flexion/extension of the knee joints, adduction/abduction of the hip joints, stepping for 2 min, kicking | holding and moving objects ~2 kg, trunk twists and tilts |
P143 | C7, Th12 | 15 | 12 | flexion/extension of the elbow joints, adduction/abduction of the shoulder joints, stretching arms above the head, ball throwing | flexion/extension of the knee joints, adduction/abduction of the hip joints, stepping for 2 min, kicking | holding and moving objects ~2 kg, trunk twists and tilts |
P146 | C7, L1 | 27 | 12 | stretching arms above the head, lifting arms on the sides, ball throwing | stepping for 5 min, ball kicking | holding and moving objects ~0.5 kg, trunk twists and tilts |
PCPs | Upper Extremities | Lower Extremities | Other |
---|---|---|---|
P111 | increased range of active motion in all joints; can bring a plastic cup of water to her mouth | increased range of active motion in all joints | |
P128 | active abduction in the shoulder joints of both arms increased | sitting without support increased from 20 s to 3 min | |
P142 | was able to transfer from the couch to the wheelchair, from the wheelchair to the floor, from the floor to the couch without help; to pull himself up to standing position holding on the Swedish Wall and remain standing with support for up to 11 s | ||
P143 | the time of holding a load weighing 0.5 kg with the lateral abduction of the arm increased from 0 to 30 s | the time of upright posture without support increased from 3 to 10 s | |
P146 | rise from lying on the back position to a sitting position pulling himself up holding a movable support 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novikov, A.; Maldova, M.; Shandybina, N.; Shalmiev, I.; Shoshina, E.; Epoyan, N.; Moshonkina, T. First Use of Non-Invasive Spinal Cord Stimulation in Motor Rehabilitation of Children with Spinal Muscular Atrophy. Life 2023, 13, 449. https://doi.org/10.3390/life13020449
Novikov A, Maldova M, Shandybina N, Shalmiev I, Shoshina E, Epoyan N, Moshonkina T. First Use of Non-Invasive Spinal Cord Stimulation in Motor Rehabilitation of Children with Spinal Muscular Atrophy. Life. 2023; 13(2):449. https://doi.org/10.3390/life13020449
Chicago/Turabian StyleNovikov, Anton, Maria Maldova, Natalia Shandybina, Ivan Shalmiev, Elena Shoshina, Natalia Epoyan, and Tatiana Moshonkina. 2023. "First Use of Non-Invasive Spinal Cord Stimulation in Motor Rehabilitation of Children with Spinal Muscular Atrophy" Life 13, no. 2: 449. https://doi.org/10.3390/life13020449
APA StyleNovikov, A., Maldova, M., Shandybina, N., Shalmiev, I., Shoshina, E., Epoyan, N., & Moshonkina, T. (2023). First Use of Non-Invasive Spinal Cord Stimulation in Motor Rehabilitation of Children with Spinal Muscular Atrophy. Life, 13(2), 449. https://doi.org/10.3390/life13020449