Influence of Gutta-Percha Surface on Enterococcus faecalis Initial Adhesion In Vitro: An Atomic Force Microscopy Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimens Preparation
2.2. Experimental Groups
2.3. Bacterial Contamination Protocol with Enterococcus faecalis
2.4. AFM Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yildirim, A.; Lübbers, H.T.; Yildirim, V. Endodontic filling with gutta-percha- requirements, formation and characteristics. Swiss Dent. J. 2016, 126, 150–151. [Google Scholar] [PubMed]
- Monga, P.; Kaur, H.; Tiwari, R.; Mahajan, P.; Sharma, P. Harshita Evaluation of efficacy of different chemical agents in disinfection of gutta percha cones. Int. J. Curr. Res. 2018, 10, 65576–65580. [Google Scholar]
- Topuz, Ö.; Sağlam, B.C.; Şen, F.; Şen, S.; Gökağaç, G.; Görgül, G. Effects of sodium hypochlorite on gutta-percha and Resilon cones: An atomic force microscopy and scanning electron microscopy study. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 21–26. [Google Scholar] [CrossRef]
- Linke, H.A.B.; Chohayeb, A.A. Effective surface sterilization of gutta-percha points. Oral Surg. Oral Med. Oral Pathol. 1983, 55, 73–77. [Google Scholar] [CrossRef]
- Shur, A.L.; Sedgley, C.M.; Fenno, J.C. The antimicrobial efficacy of ‘MGP’ gutta-percha in vitro. Int. Endod. J. 2003, 36, 616–621. [Google Scholar] [CrossRef] [PubMed]
- Valois, C.R.A.; Silva, L.P.; Azevedo, R.B.; Costa, E.D. Atomic force microscopy study of gutta-percha cone topography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2004, 98, 250–255. [Google Scholar] [CrossRef]
- Valois, C.R.A.; Silva, L.P.; Azevedo, R.B. Effects of 2% chlorhexidine and 5.25% sodium hypochlorite on gutta-percha cones studied by atomic force microscopy. Int. Endod. J. 2005, 38, 425–429. [Google Scholar] [CrossRef]
- John, B.M.; Purra, A.; Dutta, A.; Zargar, A.W. Topographical effects of Gutta Percha immersed in different concentration of Sodium Hypochlorite disinfection at different time interval: An atomic force microscopy study. Int. J. Oral Health Dent. 2017, 3, 54–58. [Google Scholar]
- Kayaoglu, G.; Gürel, M.; Omürlü, H.; Bek, Z.G.; Sadik, B. Examination of gutta-percha cones for microbial contamination during chemical use. J. Appl. Oral Sci. 2009, 17, 244–247. [Google Scholar] [CrossRef]
- Skoskiewicz-Malinowska, K.; Kaczmarek, U.; Malicka, B.; Walczak, K.; Zietek, M. Application of Chitosan and Propolis in Endodontic Treatment: A Review. Mini Rev. Med. Chem. 2017, 17, 410–434. [Google Scholar] [CrossRef] [PubMed]
- Wezgowiec, J.; Paradowska-Stolarz, A.; Malysa, A.; Orzeszek, S.; Seweryn, P.; Wieckiewicz, M. Effects of Various Disinfection Methods on the Material Properties of Silicone Dental Impressions of Different Types and Viscosities. Int. J. Mol. Sci. 2022, 23, 10859. [Google Scholar] [CrossRef]
- Song, F.; Koo, H.; Ren, D. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation. J. Dent. Res. 2015, 94, 1027–1034. [Google Scholar] [CrossRef]
- Wu, S.; Zhang, B.; Liu, Y.; Suo, X.; Li, H. Influence of surface topography on bacterial adhesion: A review (Review). Biointerphases 2018, 13, 060801. [Google Scholar] [CrossRef]
- Wassmann, T.; Kreis, S.; Behr, M.; Buergers, R. The influence of surface texture and wettability on initial bacterial adhesion on titanium and zirconium oxide dental implants. Int. J. Implant Dent. 2017, 3, 32. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Bawazir, M.; Dhall, A.; Kim, H.E.; He, L.; Heo, J.; Hwang, G. Implication of Surface Properties, Bacterial Motility, and Hydrodynamic Conditions on Bacterial Surface Sensing and Their Initial Adhesion. Front. Bioeng. Biotechnol. 2021, 9, 643722. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.; Feng, G.; Moraru, C.I. Micro- and Nanotopography Sensitive Bacterial Attachment Mechanisms: A Review. Front. Microbiol. 2019, 10, 191. [Google Scholar] [CrossRef]
- Alam, F.; Kumar, S.; Varadarajan, K.M. Quantification of Adhesion Force of Bacteria on the Surface of Biomaterials: Techniques and Assays. ACS Biomater. Sci. Eng. 2019, 5, 2093–2110. [Google Scholar] [CrossRef]
- Truong, V.K.; Lapovok, R.; Estrin, Y.S.; Rundell, S.; Wang, J.Y.; Fluke, C.J.; Crawford, R.J.; Ivanova, E.P. The influence of nano-scale surface roughness on bacterial adhesion to ultrafine-grained titanium. Biomaterials 2010, 31, 3674–3683. [Google Scholar] [CrossRef]
- Crawford, R.J.; Webb, H.K.; Truong, V.K.; Hasan, J.; Ivanova, E.P. Surface topographical factors influencing bacterial attachment. Adv. Colloid Interface Sci. 2012, 179, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Stout, K.J.; Blunt, L.; Dong, W.; Mainsah, E.; Luo, N.; Mathia, T.; Sullivan, P.; Zahouani, H. Development of Methods for the Characterisation of Roughness in Three Dimensions, 2nd ed.; Elsevier Science and Technology: London, UK, 2002. [Google Scholar]
- Pinheiro, E.T.; Gomes, B.P.; Ferraz, C.C.; Sousa, E.L.; Teixeira, F.B.; Souza-Filho, F.J. Microorganisms from canals of root-filled teeth with periapical lesions. Int. Endod. J. 2003, 36, 1–11. [Google Scholar] [CrossRef]
- Vera, J.; Siqueira, J.F., Jr.; Ricucci, D.; Loghin, S.; Fernández, N.; Flores, B.; Cruz, A.G. One- versus two-visit endodontic treatment of teeth with apical periodontitis: A histobacteriologic study. J. Endod. 2012, 38, 1040–1052. [Google Scholar] [CrossRef]
- Zancan, R.F.; Calefi, P.; Borges, M.; Lopes, M.; Andrade, F.B.; Vivan, R.R.; Duarte, M. Antimicrobial activity of intracanal medications against both Enterococcus faecalis and Candida albicans biofilm. Microsc. Res. Tech. 2019, 82, 494–500. [Google Scholar] [CrossRef]
- Tanomaru-Filho, M.; Orlando, T.; Bortoluzzi, E.A.; Silva, G.F.; Tanomaru, J.M. Solvent capacity of different substances on gutta-percha and Resilon. Braz. Dent. J. 2010, 21, 46–49. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F., Jr.; Rôças, I.N. Clinical implications and microbiology of bacterial persistence after treatment procedures. J. Endod. 2008, 34, 1291–1301.e3. [Google Scholar] [CrossRef]
- Rady, D.; Rahman, M.H.A.; El-Mallah, S.; Khalil, M.M. Biocompatibility assessment of different root-end filling materials implanted subcutaneously in rats: An in vivo study. Dent. Med. Probl. 2021, 58, 525–532. [Google Scholar] [CrossRef]
- Chandra, P.V.R.; Kumar, V.H.; Reddy, S.J.; Kiran, D.R.; Krishna, M.N.; Kumar, G.V. Biofilm forming capacity of Enterococcus faecalis on Gutta-percha points treated with four disinfectants using confocal scanning laser microscope: An in vitro study. Dent. Res. J. 2015, 12, 331–336. [Google Scholar] [CrossRef]
- Xu, J.; He, J.; Shen, Y.; Zhou, X.; Huang, D.; Gao, Y.; Haapasalo, M. Influence of Endodontic Procedure on the Adherence of Enterococcus faecalis. J. Endod. 2019, 45, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Gallusi, G.; Campanella, V.; Montemurro, E.; Di Taranto, V.; Libonati, A. Antibacterial activity of first and latest generation bioceramic sealers on the elimination of Enterococcus faecalis: An in vitro study. J. Biol. Regul. Homeost. Agents 2020, 34, 73–79. [Google Scholar] [PubMed]
- Linklater, D.P.; Baulin, V.A.; Juodkazis, S.; Crawford, R.J.; Stoodley, P.; Ivanova, E.P. Mechano-bactericidal actions of nanostructured surfaces. Nat. Rev. Microbiol. 2021, 19, 8–22. [Google Scholar] [CrossRef] [PubMed]
- Takemura, N.; Noiri, Y.; Ehara, A.; Kawahara, T.; Noguchi, N.; Ebisu, S. Single species biofilm-forming ability of root canal isolates on gutta-percha points. Eur. J. Oral Sci. 2004, 112, 523–529. [Google Scholar] [CrossRef]
- Kubasiewicz-Ross, P.; Fleischer, M.; Pitułaj, A.; Hadzik, J.; Nawrot-Hadzik, I.; Bortkiewicz, O.; Dominiak, M.; Jurczyszyn, K. Evaluation of the three methods of bacterial decontamination on implants with three different surfaces. Adv. Clin. Exp. Med. 2020, 29, 177–182. [Google Scholar] [CrossRef] [PubMed]
- Haapasalo, M.; Shen, Y.; Qian, W.; Gao, Y. Irrigation in endodontics. Dent. Clin. N. Am. 2010, 54, 291–312. [Google Scholar] [CrossRef]
- Tilakchand, M.; Naik, B.; Shetty, A.S. A comparative evaluation of the effect of 5.25% sodium hypochlorite and 2% chlorhexidine on the surface texture of Gutta-percha and resilon cones using atomic force microscope. J. Conserv. Dent. 2014, 17, 18–21. [Google Scholar] [CrossRef] [PubMed]
- Love, R.M. Enterococcus faecalis—A mechanism for its role in endodontic failure. Int. Endod. J. 2001, 34, 399–405. [Google Scholar] [CrossRef]
- Sedgley, C.; Nagel, A.; Dahlén, G.; Reit, C.; Molander, A. Real-time quantitative polymerase chain reaction and culture analyses of Enterococcus faecalis in root canals. J. Endod. 2006, 32, 173–177. [Google Scholar] [CrossRef]
- Stuart, C.H.; Schwartz, S.A.; Beeson, T.J.; Owatz, C.B. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment. J. Endod. 2006, 32, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Bracciale, F.; Marino, N.; Noronha, A.; Manso, M.; Gavinha, S.; Cardoso, I.L.; Pina, C.; Teles, A.M. Bacterial Contamination of Gutta-Percha Points From Different Brands and the Efficacy of a Chairside Disinfection Protocol. Eur. Endod. J. 2020, 5, 282–287. [Google Scholar] [CrossRef]
- Prado, M.; Gusman, H.; Gomes, B.P.; Simão, R.A. The importance of final rinse after disinfection of gutta-percha and Resilon cones. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2011, 111, 21–24. [Google Scholar] [CrossRef]
- Santos, R.P.; Arruda, T.T.; Carvalho, C.B.; Carneiro, V.A.; Braga, L.Q.; Teixeira, E.H.; Arruda, F.V.; Cavada, B.S.; Havt, A.; de Oliveira, T.M.; et al. Correlation between Enterococcus faecalis biofilms development stage and quantitative surface roughness using atomic force microscopy. Microsc. Microanal. 2008, 14, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Hsu, L.C.; Fang, J.; Borca-Tasciuc, D.A.; Worobo, R.W.; Moraru, C.I. Effect of micro- and nanoscale topography on the adhesion of bacterial cells to solid surfaces. Appl. Environ. Microbiol. 2013, 79, 2703–2712. [Google Scholar] [CrossRef] [Green Version]
Groups | RMS Roughness (Sq) nm | Mean Roughness (Sa) nm | Maximum Height (Sz) nm |
---|---|---|---|
TD | 56.86 (22.37–63.91) Aa | 37.03 (16.43–48.28) Aa | 453.4 (275.9–569.8) Ab |
DD | 33.53 (22.92–37.59) Aa | 25.8 (16.94–27.24) Aa | 308.6 (211.6–390.7) Ab |
TC | 71.51 (58.21–82.01) ACa | 51.41 (42.73–61.03) BCa | 561.5 (478–707.3) BCb |
DC | 173 (132.3–253.7) Ba | 142.6 (102.1–186.7) Ba | 883.7 (686–1389) BCb |
TDB | 132.7 (113.4–212.5) ACa | 108.7 (90.43–163.5) ACa | 762.1 (611.6–1309) ABb |
DDB | 199.5 (162.9–217.7) Ba | 154.4 (133.6–185.4) Ba | 1168 (868.7–1327) BCb |
TCB | 134.1 (120.1–144.6) BCa | 107.4 (97.73–117.8) BCa | 724 (623.4–810.1) Bb |
DCB | 149 (120–189.1) BCa | 119 (98.58–146.7) BCa | 937.1 (723.1–1093) Bb |
Groups | RMS Roughness (Rq) nm | Mean Roughness (Ra) mm | Waviness Average (Wa) nm | RMS Waviness (Wq) nm |
---|---|---|---|---|
TD | 4.30 (2.47–6.39) Aa | 3.21 (1.94–4.87) Aa | 21.8 (12.58–39.86) Ab | 30.25 (15.83–51.19) Ab |
DD | 3.47 (2.8–4.55) Aa | 2.32 (2.04–2.91) Aa | 14.69 (13.52–23.96) Ab | 18.73 (16.22–32.82) Ab |
TC | 6.27 (4.22–8.86) BCa | 4.33 (3.06–6.32) Ba | 58.51 (46.36–94.67) BCb | 77 (58.22–112.4) ABb |
DC | 4.7 (1.62–6.7) ABa | 3.39 (1.09–4.63) ABa | 118.3 (85.41–205.6) Cb | 138.5 (99.94–237.8) BCb |
TDB | 11.89 (7.62–14.75) ABa | 8.64 (5.28–11.01) ABa | 119.3 (78.65–156.7) ABb | 138.3 (94.35–192.7) BCb |
DDB | 7.1 (5.2–8.1) Aa | 4.87 (3.52–5.97) Aa | 164 (94.53–190.7) BCb | 181.3 (115.1–215.3) BCb |
TCB | 9 (6.92–13.54) BCa | 6.56 (5.22–10.48) Ba | 112.8 (95.12–133.8) BCb | 130.9 (116.4–148.9) BCb |
DCB | 7.33 (6.3–9.08) ABa | 5.54 (4.73–6.81) ABa | 102.7 (84.68–125.7) BCb | 119.5 (109.8–163.1) BCb |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.V.; Velásquez-Espedilla, E.G.; de Barros, M.C.; de Melo Simas, L.L.; de Andrade, F.B. Influence of Gutta-Percha Surface on Enterococcus faecalis Initial Adhesion In Vitro: An Atomic Force Microscopy Study. Life 2023, 13, 456. https://doi.org/10.3390/life13020456
Ribeiro AV, Velásquez-Espedilla EG, de Barros MC, de Melo Simas LL, de Andrade FB. Influence of Gutta-Percha Surface on Enterococcus faecalis Initial Adhesion In Vitro: An Atomic Force Microscopy Study. Life. 2023; 13(2):456. https://doi.org/10.3390/life13020456
Chicago/Turabian StyleRibeiro, Allan Victor, Evelyn Giuliana Velásquez-Espedilla, Mirela Cesar de Barros, Letícia Lobo de Melo Simas, and Flaviana Bombarda de Andrade. 2023. "Influence of Gutta-Percha Surface on Enterococcus faecalis Initial Adhesion In Vitro: An Atomic Force Microscopy Study" Life 13, no. 2: 456. https://doi.org/10.3390/life13020456
APA StyleRibeiro, A. V., Velásquez-Espedilla, E. G., de Barros, M. C., de Melo Simas, L. L., & de Andrade, F. B. (2023). Influence of Gutta-Percha Surface on Enterococcus faecalis Initial Adhesion In Vitro: An Atomic Force Microscopy Study. Life, 13(2), 456. https://doi.org/10.3390/life13020456