The Evolution of the Sentinel Node Biopsy in Melanoma
Abstract
:1. Introduction
2. The Discovery of Lymphatics
3. First Descriptions of Sentinel Nodes
4. The Management of Clinically Negative Nodes
4.1. Lymphatic Mapping
4.2. Validation of the Sentinel Node Biopsy in Literature
4.3. Multicenter Selective Lymphadenectomy Trial-I (MSLT-I)
4.4. The Sentinel Node in Melanoma–Therapeutic?
4.5. Criticisms and Considerations
4.6. Risks and Complications
4.7. Patient Selection: Current Clinical Guidelines
4.8. Thin Melanoma (<1-mm Breslow Thickness)
4.9. Intermediate-Thickness Melanoma (>1 mm to 4 mm Breslow Thickness)
4.10. Thick Melanoma (>4-mm Breslow Thickness)
Prior WLE [81,93] |
|
Isolated Local Recurrence [93,94,95,96] |
|
Pregnancy [39,40,81] |
|
Microsatellites [81,95,96] |
|
5. Management of Positive Sentinel Nodes
5.1. Multicenter Selective Lymphadenectomy Trial-II (MSLT-II)
5.2. German Dermatologic Oncology Cooperative Group (DeCOG-SLT) Trial
5.3. Outcomes after MSLT-2 and DeCOG-SLT
6. The Era of Immunotherapy
6.1. Overview of Immunotherapy and Targeted Therapies
6.2. Evolution of Systemic Therapy
6.3. Immune-Checkpoint Inhibitors
6.4. Targeted Therapy
6.5. Sentinel Node Biopsy in the Era of Immunotherapy
7. Staging
8. Local Therapies
Radiation Therapy
9. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tanis, P.J.; Nieweg, O.E.; Olmos, R.A.V.; Rutgers, E.J.T.; Kroon, B.B. History of sentinel node and validation of the technique. Breast Cancer Res. 2001, 3, 109–112. [Google Scholar] [CrossRef]
- Lee, C.; Collichio, F.; Ollila, D.; Moschos, S. Historical review of melanoma treatment and outcomes. Clin. Dermatol. 2013, 31, 141–147. [Google Scholar] [CrossRef]
- Mariani, G.; Manca, G.; Orsini, F.; Vidal-Sicart, S.; Olmos, R.A.V. Atlas of Lymphoscintigraphy and Sentinel Node Mapping: A Pictorial Case-Based Approach; Springer: Milan, Italy, 2013. [Google Scholar]
- Faries, M.B.; Testori, A.A.E.; Gershenwald, J.E. Sentinel node biopsy for primary cutaneous melanoma. Ann. Oncol. 2021, 32, 290–292. [Google Scholar] [CrossRef]
- Curti, B.D.; Faries, M.B. Recent Advances in the Treatment of Melanoma. N. Engl. J. Med. 2021, 384, 2229–2240. [Google Scholar] [CrossRef]
- Huang, A.C.; Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: Understanding the molecular basis for immune sensitivity and resistance. Nat. Immunol. 2022, 23, 660–670. [Google Scholar] [CrossRef]
- Thomas, D.; Bello, D.M. Adjuvant immunotherapy for melanoma. J. Surg. Oncol. 2021, 123, 789–797. [Google Scholar] [CrossRef]
- Chikly, B. Who discovered the lymphatic system? Lymphology 1997, 30, 186–193. [Google Scholar]
- Halsted, W.S. The Results of Operations for the Cure of Cancer of the Breast Performed at the Johns Hopkins Hospital from June, 1889, To January. Ann. Surg. 1894, 20, 497–555. [Google Scholar] [CrossRef]
- Zeidman, I.; Buss, J.M. Experimental studies on the spread of cancer in the lymphatic system. I. Effectiveness of the lymph node as a barrier to the passage of embolic tumor cells. Cancer Res. 1954, 14, 403–405. [Google Scholar]
- Hellman, S.; Lecture, K.M. Natural history of small breast cancers. J. Clin. Oncol. 1994, 12, 2229–2234. [Google Scholar]
- Fisher, B.; Fisher, E.R. Barrier function of lymph node to tumor cells and erythrocytes.I. Normal nodes. Cancer 1967, 20, 1907–1913. [Google Scholar] [CrossRef]
- Gould, E.A.; Winship, T.; Philbin, P.H.; Kerr, H.H. Observations on a “sentinel node” in cancer of the parotid. Cancer 1960, 13, 77–78. [Google Scholar] [CrossRef]
- Cabanas, R.M. An approach for the treatment of penile carcinoma. Cancer 1977, 39, 456–466. [Google Scholar] [CrossRef]
- Chiappa, S.; Uslenghi, C.; Bonadonna, G.; Marano, P.; Ravasi, G. Combined testicular and foot lymphangiography in testicular carcinomas. Surg. Gynecol. Obstet. 1966, 123, 10–14. [Google Scholar]
- Weissbach, L.; Boedefeld, E.A.; for the Testicular Tumor Study Group. Localization of Solitary and Multiple Metastases in Stage II Nonseminomatous Testis Tumor as Basis for a Modified Staging Lymph Node Dissection in Stage I. J. Urol. 1987, 138, 77–82. [Google Scholar] [CrossRef]
- Kett, K.; Varga, G.; Lukács, L. Direct lymphography of the breast. Lymphology 1970, 3, 3–12. [Google Scholar]
- Christensen, B.; Blichert-Toft, M.; Siemssen, O.J.; Nielsen, S.L. Reliability of axillary lymph node scintiphotography in suspected carcinoma of the breast. Br. J. Surg. 1980, 67, 667–668. [Google Scholar] [CrossRef]
- Fee, H.J.; Robinson, D.S.; Sample, W.F.; Graham, L.S.; Holmes, E.C.; Morton, D.L. The determination of lymph shed by colloidal gold scanning in patients with malignant melanoma: A preliminary study. Surgery 1978, 84, 626–632. [Google Scholar]
- Morton, D.L.; Wen, D.R.; Cochran, A.J. Pathophysiology of regional lymph node metastases in early melanoma studied by intraoperative mapping of the cutaneous lymphatics. In Proceedings of the Second International Conference on Melanoma, Venice, Italy, 16–19 October 1989; Volume 131. [Google Scholar]
- Morton, D.L.; Wen, D.R.; Wong, J.H.; Economou, J.S.; Cagle, L.A.; Storm, F.K.; Foshag, L.J.; Cochran, A.J. Technical Details of Intraoperative Lymphatic Mapping for Early Stage Melanoma. Arch. Surg. 1992, 127, 392–399. [Google Scholar] [CrossRef]
- Reintgen, D.; Cruse, C.W.; Wells, K.; Berman, C.; Fenske, N.; Glass, F.; Schroer, K.; Heller, R.; Ross, M.; Lyman, G.; et al. The Orderly Progression of Melanoma Nodal Metastases. Ann. Surg. 1994, 220, 759–767. [Google Scholar] [CrossRef]
- Kapteijn, B.; Nieweg, O.; Petersen, J.; Rutgers, E.; Hart, A.; van Dongen, J.; Kroon, B. Identification and biopsy of the sentinel lymph node in breast cancer. Eur. J. Surg. Oncol. EJSO 1998, 24, 427–430. [Google Scholar] [CrossRef]
- Giuliano, A.E.; Kirgan, D.M.; Guenther, J.M.; Morton, D.L. Lymphatic Mapping and Sentinel Lymphadenectomy for Breast Cancer. Ann. Surg. 1994, 220, 391–401. [Google Scholar] [CrossRef]
- Krag, D.; Weaver, D.; Alex, J.; Fairbank, J. Surgical resection and radiolocalization of the sentinel lymph node in breast cancer using a gamma probe. Surg. Oncol. 1993, 2, 335–340. [Google Scholar] [CrossRef]
- Turner, R.R.; Ollila, D.W.; Krasne, D.L.; Giuliano, A.E. Histopathologic Validation of the Sentinel Lymph Node Hypothesis for Breast Carcinoma. Ann. Surg. 1997, 226, 271–278. [Google Scholar] [CrossRef]
- Balch, C.M.; Soong, S.-J.; Ross, M.I.; Urist, M.M.; Karakousis, C.P.; Temple, W.J.; Mihm, M.C.; Barnhill, R.L.; Jewell, W.R.; Wanebo, H.J.; et al. Long-Term Results of a Multi-Institutional Randomized Trial Comparing Prognostic Factors and Surgical Results for Intermediate Thickness Melanomas (1.0 to 4.0 mm). Ann. Surg. Oncol. 2000, 7, 87–97. [Google Scholar] [CrossRef]
- Rodrigues, L.K.; Leong, S.P.; Ljung, B.M.; Sagebiel, R.W.; Burnside, N.; Hu, T.L.W.; Ng, B.W.; Miller III, J.R.; Kashani-Sabet, M. Fine needle aspiration in the diagnosis of metastatic melanoma. J. Am. Acad. Dermatol. 2000, 42, 735–740. [Google Scholar]
- Voit, C.A.; van Akkooi, A.C.; Schafer-Hesterberg, G.; Schoengen, A.; Schmitz, P.I.; Sterry, W.; Eggermont, A.M. Rotterdam Criteria for sentinel node (SN) tumor burden and the accuracy of ultrasound (US)-guided fine-needle aspiration cytology (FNAC): Can US-guided FNAC replace SN staging in patients with melanoma? J. Clin. Oncol. 2009, 27, 4994–5000. [Google Scholar]
- Wong, S.L.; Faries, M.B.; Kennedy, E.B.; Agarwala, S.S.; Akhurst, T.J.; Ariyan, C.; Balch, C.M.; Berman, B.S.; Cochran, A.; Delman, K.A.; et al. Sentinel Lymph Node Biopsy and Management of Regional Lymph Nodes in Melanoma: American Society of Clinical Oncology and Society of Surgical Oncology Clinical Practice Guideline Update. Ann. Surg. Oncol. 2018, 25, 356–377. [Google Scholar] [CrossRef]
- Wright, F.C.; Souter, L.H.; Kellett, S.; Easson, A.; Murray, C.; Toye, J.; McCready, D.; Nessim, C.; Ghazarian, D.; Hong, N.J.L.; et al. Primary Excision Margins, Sentinel Lymph Node Biopsy, and Completion Lymph Node Dissection in Cutaneous MelanomA: A Clinical Practice Guideline. Curr. Oncol. 2019, 26, 541–550. [Google Scholar] [CrossRef]
- Battafarano, R.J. Operative Standards for Cancer Surgery, Volume 1: Breast, Lung, Pancreas, Colon. Ann. Thorac. Surg. 2015, 100, 2421. [Google Scholar] [CrossRef]
- Valsecchi, M.E.; Silbermins, D.; de Rosa, N.; Wong, S.L.; Lyman, G.H. Lymphatic Mapping and Sentinel Lymph Node Biopsy in Patients With Melanoma: A Meta-Analysis. J. Clin. Oncol. 2011, 29, 1479–1487. [Google Scholar] [CrossRef]
- Morton, D.L.; Hoon, D.S.; Cochran, A.J.; Turner, R.R.; Essner, R.; Takeuchi, H.; Wanek, L.A.; Glass, E.; Foshag, L.J.; Hsueh, E.C.; et al. Lymphatic mapping and sentinel lymphadenectomy for early-stage melanoma: Therapeutic utility and implications of nodal microanatomy and molecular staging for improving the accuracy of detection of nodal micrometastases. Ann. Surg. 2003, 238, 538–549. [Google Scholar]
- Morton, D.L. Overview and update of the phase III Multicenter Selective Lymphadenectomy Trials (MSLT-I and MSLT-II) in melanoma. Clin. Exp. Metastasis 2012, 29, 699–706. [Google Scholar] [CrossRef]
- Bello, D.M.; Faries, M.B. The Landmark Series: MSLT-1, MSLT-2 and DeCOG (Management of Lymph Nodes). Ann. Surg. Oncol. 2020, 27, 15–21. [Google Scholar] [CrossRef]
- Morton, D.L.; Thompson, J.F.; Cochran, A.J.; Mozzillo, N.; Nieweg, O.E.; Roses, D.F.; Hoekstra, H.J.; Karakousis, C.P.; Puleo, C.A.; Coventry, B.J.; et al. Final trial report of sentinel-node biopsy versus nodal observation in melanoma. N. Engl. J. Med. 2014, 370, 599–609. [Google Scholar] [CrossRef]
- Faries, M.B.; Thompson, J.F.; Cochran, A.J.; Andtbacka, R.H.; Mozzillo, N.; Zager, J.S.; Jahkola, T.; Bowles, T.L.; Testori, A.; Beitsch, P.D.; et al. Completion Dissection or Observation for Sentinel-Node Metastasis in Melanoma. N. Engl. J. Med. 2017, 376, 2211–2222. [Google Scholar] [CrossRef]
- Balch, C.M.; Gershenwald, J.E.; Soong, S.-J.; Thompson, J. Update on the melanoma staging system: The importance of sentinel node staging and primary tumor mitotic rate. J. Surg. Oncol. 2011, 104, 379–385. [Google Scholar] [CrossRef]
- Gershenwald, J.E.; Scolyer, R.A.; Hess, K.R.; Sondak, V.K.; Long, G.V.; Ross, M.I.; Lazar, A.J.; Faries, M.B.; Kirkwood, J.M.; McArthur, G.A.; et al. Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual. CA Cancer J. Clin. 2017, 67, 472–492. [Google Scholar] [CrossRef]
- Massi, D.; Brusa, D.; Merelli, B.; Falcone, C.; Xue, G.; Carobbio, A.; Nassini, R.; Baroni, G.; Tamborini, E.; Cattaneo, L.; et al. The status of PD-L1 and tumor-infiltrating immune cells predict resistance and poor prognosis in BRAFi-treated melanoma patients harboring mutant BRAFV. Ann. Oncol. 2015, 26, 1980–1987. [Google Scholar] [CrossRef]
- Schaper-Gerhardt, K.; Okoye, S.; Herbst, R.; Ulrich, J.; Terheyden, P.; Pföhler, C.; Utikal, J.S.; Kreuter, A.; Mohr, P.; Dippel, E.; et al. PD-L1 status does not predict the outcome of BRAF inhibitor therapy in metastatic melanoma. Eur. J. Cancer 2018, 88, 67–76. [Google Scholar] [CrossRef]
- Moncrieff, M.D.; Lo, S.N.; Scolyer, R.A.; Heaton, M.J.; Nobes, J.P.; Snelling, A.P.; Carr, M.J.; Nessim, C.; Wade, R.; Peach, A.H.; et al. Clinical Outcomes and Risk Stratification of Early-Stage Melanoma Micrometastases From an International Multicenter Study: Implications for the Management of American Joint Committee on Cancer IIIA Disease. J. Clin. Oncol. 2022, 40, 3940–3951. [Google Scholar] [CrossRef]
- Egger, M.E.; Bower, M.R.; Czyszczon, I.A.; Farghaly, H.; Noyes, D.R.; Reintgen, D.S.; Martin, R.C.; Scoggins, C.R.; Stromberg, A.J.; McMasters, K.M. Comparison of Sentinel Lymph Node Micrometastatic Tumor Burden Measurements in Melanoma. J. Am. Coll. Surg. 2014, 218, 519–528. [Google Scholar] [CrossRef]
- Van Akkooi, A.C.J.; De Wilt, J.; Verhoef, C.; Schmitz, P.; Van Geel, A.; Eggermont, A.; Kliffen, M. Clinical Relevance of Melanoma Micrometastases (<0.1 Mm) in Sentinel Nodes: Are These Nodes to Be considered Negative? Ann. Oncol. 2006, 17, 1578–1585. [Google Scholar]
- Norman, J.; Cruse, C.; Espinosa, C.; Cox, C.; Berman, C.; Clark, R.; Saba, H.; Wells, K.; Reintgen, D. Redefinition of cutaneous lymphatic drainage with the use of lymphoscintigraphy for malignant melanoma. Am. J. Surg. 1991, 162, 432–437. [Google Scholar] [CrossRef]
- Thompson, J.F.; Uren, R.F.; Shaw, H.M.; McCarthy, W.H.; Quinn, M.J.; O’Brien, C.J.; Howman-Giles, R.B. Location of sentinel lymph nodes in patients with cutaneous melanoma: New insights into lymphatic anatomy. J. Am. Coll. Surg. 1999, 189, 195–204. [Google Scholar] [CrossRef]
- Reynolds, H.; Walker, C.G.; Dunbar, P.R.; O’Sullivan, M.J.; Uren, R.F.; Thompson, J.; Smith, N.P. Functional anatomy of the lymphatics draining the skin: A detailed statistical analysis. J. Anat. 2020, 216, 344–355. [Google Scholar] [CrossRef]
- Ribero, S.; Osella-Abate, S.; Sanlorenzo, M.; Balagna, E.; Senetta, R.; Fierro, M.T.; Macripò, G.; Macrì, L.; Sapino, A. Node biopsy in thick-melanoma patients (N = 350): What is its prognostic role? Ann. Surg. Oncol. 2015, 22, 1967–1973. [Google Scholar] [CrossRef]
- Krag, D.N.; Meijer, S.J.; Weaver, D.L.; Loggie, B.W.; Harlow, S.P.; Tanabe, K.K.; Laughlin, E.H.; Alex, J.C. Minimal-Access Surgery for Staging of Malignant Melanoma. Arch. Surg. 1995, 130, 654–658. [Google Scholar] [CrossRef]
- Uren, R.F.; Howman-Giles, R.; Thompson, J.; Shaw, H.M.; Quinn, M.J.; O’Brien, C.J.; McCarthy, W.H. Lymphoscintigraphy to identify sentinel lymph nodes in patients with melanoma. Melanoma Res. 1994, 4, 395–399. [Google Scholar] [CrossRef]
- Mudun, A.; Murray, D.R.; Herda, S.C.; Eshima, D.; Shattuck, L.A.; VanSant, J.P.; Taylor, A.T.; Alazraki, N.P. Early stage melanoma: Lymphoscintigraphy, reproducibility of sentinel node detection, and effectiveness of the intraoperative gamma probe. Radiology 1996, 199, 171–175. [Google Scholar] [CrossRef]
- Surasi, D.S.; O’Malley, J.; Bhambhvani, P. 99mTc-Tilmanocept: A novel molecular agent for lymphatic mapping and sentinel lymph node localization. J. Nucl. Med. 2015, 43, 87–91. [Google Scholar]
- Hung, J.C.; Wiseman, G.A.; Wahner, H.W.; Mullan, B.P.; Taggart, T.R.; Dunn, W.L. Filtered technetium-99m-sulfur colloid evaluated for lymphoscintigraphy. J. Nucl. Med. 1995, 36, 1895–1901. [Google Scholar]
- Swetter, S.M.; Thompson, J.A.; Albertini, M.R.; Barker, C.A.; Baumgartner, J.; Boland, G.; Chmielowski, B.; DiMaio, D.; Durham, A.; Fields, R.C.; et al. NCCN Guidelines® Insights: Melanoma: Cutaneous, Version 2.2021: Featured Updates to the NCCN Guidelines. J. Natl. Compr. Cancer Netw. 2021, 19, 364–376. [Google Scholar]
- Vermeeren, L.; Van Der Ploeg, I.M.; Olmos, R.A.V.; Meinhardt, W.; Kroon, B.B.; Nieweg, O.E. SPECT/CT for preoperative sentinel node localization. J. Surg. Oncol. 2010, 101, 184–190. [Google Scholar] [CrossRef]
- Van der Ploeg, I.M.C.; Kroon, B.B.R.; Olmos, R.A.V.; Nieweg, O.E. Evaluation of Lymphatic Drainage Patterns to the Groin and Implications for the Extent of Groin Dissection in Melanoma Patients. Ann. Surg. Oncol. 2009, 16, 2994–2999. [Google Scholar] [CrossRef]
- Chakera, A.H.; Hesse, B.; Burak, Z.; Ballinger, J.R.; Britten, A.; Caracò, C.; Cochran, A.J.; Cook, M.G.; Drzewiecki, K.T.; Essner, R.; et al. EANM-EORTC general recommendations for sentinel node diagnostics in melanoma. Eur. J. Nucl. Med. 2009, 36, 1713–1742. [Google Scholar] [CrossRef]
- Uren, R.F.; Howman-Giles, R.B.; Shaw, H.M.; Thompson, J.; McCarthy, W.H. Lymphoscintigraphy in high-risk melanoma of the trunk: Predicting draining node groups, defining lymphatic channels and locating the sentinel node. Eur. J. Nucl. Med. Mol. Imaging 1993, 34, 1435–1440. [Google Scholar]
- Uren, R.F.; Howman-Giles, R.; Thompson, J.F. Lymphatic drainage from the skin of the back to retroperitoneal and paravertebral lymph nodes in melanoma patients. Ann. Surg. Oncol. 1998, 5, 384–387. [Google Scholar] [CrossRef]
- Bricca, G.M.; Brodland, D.G.; Ren, D.; Zitelli, J.A. Cutaneous head and neck melanoma treated with Mohs micrographic surgery. J. Am. Acad. Dermatol. 2005, 52, 92–100. [Google Scholar] [CrossRef]
- Vidal-Sicart, S.; Pons, F.; Fuertes, S.; Vilalta, A.; Rull, R.; Puig, S.; Palou, J.M.; Ortega, M.; Castel, T. Is the identification of in-transit sentinel lymph nodes in malignant melanoma patients really necessary? Eur. J. Nucl. Med. Mol. Imaging 2004, 31, 945–949. [Google Scholar]
- White, D.C.; Schuler, F.R.; Pruitt, S.K.; Culhane, D.K.; Seigler, H.F.; Coleman, R.E.; Tyler, D. Timing of sentinel lymph node mapping after lymphoscintigraphy. Surgery 1999, 126, 156–161. [Google Scholar]
- Gershenwald, J.E.; Colome, M.I.; Lee, J.E.; Mansfield, P.F.; Tseng, C.H.; Lee, J.J.; Balch, C.M.; Ross, M.I. Patterns of recurrence following a negative sentinel lymph node biopsy in 243 patients with stage I or II melanoma. J. Clin. Oncol. 1998, 16, 2253–2260. [Google Scholar]
- Gannon, C.J.; Rousseau, D.L., Jr.; Ross, M.I.; Johnson, M.M.; Lee, J.E.; Mansfield, P.F.; Cormier, J.N.; Prieto, V.G.; Gershenwald, J.E. Accuracy of lymphatic mapping and sentinel lymph node biopsy after previous wide local excision in patients with primary melanoma. Cancer Interdiscip. Int. J. Am. Cancer Soc. 2006, 107, 2647–2652. [Google Scholar] [CrossRef]
- Sinnamon, A.J.; Neuwirth, M.G.; Bartlett, E.K.; Zaheer, S.; Etherington, M.S.; Xu, X.; Elder, D.E.; Czerniecki, B.J.; Fraker, D.L.; Karakousis, G.C. Predictors of false negative sentinel lymph node biopsy in trunk and extremity melanoma. J. Surg. Oncol. 2017, 116, 848–855. [Google Scholar] [CrossRef]
- McMasters, K.M.; Wong, S.L.; Edwards, M.J.; Ross, M.I.; Chao, C.; Noyes, R.; Viar, V.; Cerrito, P.B.; Reintgen, D.S. Factors that predict the presence of sentinel lymph node metastasis in patients with melanoma. Surgery 2001, 130, 151–156. [Google Scholar] [CrossRef]
- Wrightson, W.R.; Wong, S.L.; Edwards, M.J.; Chao, C.; Reintgen, U.S.; Ross, M.I.; Noyes, R.D.; Viar, V.; Cerrito, P.B.; McMasters, K.M.; et al. Complications Associated With Sentinel Lymph Node Biopsy for Melanoma. Ann. Surg. Oncol. 2003, 10, 676–680. [Google Scholar] [CrossRef]
- Nieweg, O.E.; Estourgie, S.H. What is a sentinel node and what is a false-negative sentinel node? Surg. Oncol. 2004, 11, 169S–173S. [Google Scholar] [CrossRef]
- Nieweg, O.E.; Veenstra, H.J. False-negative sentinel node biopsy in melanoma: An editorial. Melanoma surgery and the impact of sentinel node biopsy. J. Surg. Oncol. 2011, 104, 45. [Google Scholar] [CrossRef]
- Carlson, G.W.; Page, A.J.; Cohen, C.; Parker, D.; Yaar, R.; Li, A.; Hestley, A.; Delman, K.A.; Murray, D.R. Regional Recurrence After Negative Sentinel Lymph Node Biopsy for Melanoma. Ann. Surg. 2008, 248, 378–386. [Google Scholar] [CrossRef]
- Lee, D.Y.; Huynh, K.T.; Teng, A.; Lau, B.J.; Vitug, S.; Lee, J.-H.; Stern, S.L.; Foshag, L.J.; Faries, M.B. Predictors and Survival Impact of False-Negative Sentinel Nodes in Melanoma. Ann. Surg. Oncol. 2016, 23, 1012–1018. [Google Scholar] [CrossRef]
- Jones, E.; Jones, T.S.; Pearlman, N.W.; Gao, D.; Stovall, R.; Gajdos, C.; Kounalakis, N.; Gonzalez, R.; Lewis, K.D.; Robinson, W.; et al. Long-term Follow-up and Survival of Patients Following a Recurrence of Melanoma After a Negative Sentinel Lymph Node Biopsy Result. JAMA Surg. 2013, 148, 456–461. [Google Scholar] [CrossRef]
- Scoggins, C.R.; Martin, R.C.G.; Ross, M.I.; Edwards, M.J.; Reintgen, D.S.; Urist, M.M.; Gershenwald, J.E.; Sussman, J.J.; Noyes, R.D.; Goydos, J.S.; et al. Factors Associated with False-Negative Sentinel Lymph Node Biopsy in Melanoma Patients. Ann. Surg. Oncol. 2010, 17, 709–717. [Google Scholar] [CrossRef]
- Rossi, C.R.; De Salvo, G.L.; Trifirò, G.; Mocellin, S.; Landi, G.; Macripò, G.; Carcoforo, P.; Ricotti, G.; Giudice, G.; Picciotto, F.; et al. The impact of lymphoscintigraphy technique on the outcome of sentinel node biopsy in 1313 patients with cutaneous melanoma: An Italian Multicentric Study (SOLISM-IMI). J. Nucl. Med. 2006, 47, 234–241. [Google Scholar]
- Crystal, J.S.; Thompson, J.F.; Hyngstrom, J.; Caracò, C.; Zager, J.S.; Jahkola, T.; Bowles, T.L.; Pennacchioli, E.; Beitsch, P.D.; Hoekstra, H.J.; et al. Therapeutic value of sentinel lymph node biopsy in patients with melanoma: A randomized clinical trial. JAMA Surg. 2022, 157, 835–842. [Google Scholar]
- Rhodin, K.E.; Beasley, G.M.; Tyler, D.S. Prognostic or Therapeutic—The Role of Sentinel Lymph Node Biopsy in Contemporary Practice. JAMA Surg. 2022, 157, 843–848. [Google Scholar] [CrossRef]
- Castle, J.T.; Adatorwovor, R.; Levy, B.E.; Marcinkowski, E.F.; Merritt, A.; Stapleton, J.L.; Burke, E.E. Completion Lymph Node Dissection for Melanoma Before and After the Multicenter Selective Lymphadenectomy Trial-II in the United States. Ann. Surg. Oncol. 2022, 30, 1184–1193. [Google Scholar] [CrossRef]
- Torjesen, I. Sentinel node biopsy for melanoma: Unnecessary treatment? BMJ 2013, 346, 272. [Google Scholar] [CrossRef]
- McGregor, J.M. Too much surgery and too little benefit? Sentinel node biopsy for melanoma as it currently stands. Br. J. Dermatol. 2013, 169, 233–235. [Google Scholar] [CrossRef]
- Coit, D. Sentinel Lymph Node Biopsy for Melanoma: A Plea to Let the Data Speak. Ann. Surg. Oncol. 2014, 21, 3359–3361. [Google Scholar] [CrossRef] [Green Version]
- Zbytek, B.; Carlson, J.A.; Granese, J.; Ross, J.; Mihm, M.C., Jr.; Slominski, A. Current concepts of metastasis in melanoma. Expert Rev. Dermatol. 2008, 3, 569–585. [Google Scholar] [CrossRef]
- Cheng, Y.-C.; Chang, Y.-A.; Chen, Y.-J.; Sung, H.-M.; Bogeski, I.; Su, H.-L.; Hsu, Y.-L.; Wang, H.-M.D. The Roles of Extracellular Vesicles in Malignant Melanoma. Cells 2021, 10, 2740. [Google Scholar] [CrossRef]
- van der Ploeg, A.P.; Haydu, L.E.; Spillane, A.J.; Quinn, M.J.; Saw, R.P.; Shannon, K.F.; Stretch, J.R.; Uren, R.F.; Scolyer, R.A.; Thompson, J.F. Outcome following sentinel node biopsy plus wide local excision versus wide local excision only for primary cutaneous melanoma: Analysis of 5840 patients treated at a single institution. Ann Surg. 2014, 260, 149–157. [Google Scholar] [CrossRef]
- Leiter, U.; Stadler, R.; Mauch, C.; Hohenberger, W.; Brockmeyer, N.H.; Berking, C.; Sunderkötter, C.; Kaatz, M.; Schatton, K.; Lehmann, P.; et al. Final analysis of DeCOG-SLT trial: No survival benefit for complete lymph node dissection in patients with melanoma with positive sentinel node. J. Clin. Oncol. 2019, 37, 3000–3008. [Google Scholar]
- Han, D.; Zager, J.S.; Shyr, Y.; Chen, H.; Berry, L.D.; Iyengar, S.; Djulbegovic, M.; Weber, J.L.; Marzban, S.S.; Sondak, V.K.; et al. Clinicopathologic Predictors of Sentinel Lymph Node Metastasis in Thin Melanoma. J. Clin. Oncol. 2013, 31, 4387–4393. [Google Scholar] [CrossRef]
- Whiteman, D.C.; Baade, P.D.; Olsen, C.M. More people die from thin melanomas ([=or<, slanted] 1 mm) than from thick melanomas (> 4 mm) in Queensland, Australia. J. Investig. Dermatol. 2015, 135, 1190. [Google Scholar]
- Bartlett, E.K.; Gimotty, P.A.; Sinnamon, A.J.; Wachtel, H.; Roses, R.E.; Schuchter, L.; Xu, X.; Elder, D.E.; Ming, M.; Elenitsas, R.; et al. Clark Level Risk Stratifies Patients with Mitogenic Thin Melanomas for Sentinel Lymph Node Biopsy. Ann. Surg. Oncol. 2014, 21, 643–649. [Google Scholar] [CrossRef]
- Cordeiro, E.; Gervais, M.-K.; Shah, P.S.; Hong, N.J.L.; Wright, F.C. Sentinel Lymph Node Biopsy in Thin Cutaneous Melanoma: A Systematic Review and Meta-Analysis. Ann. Surg. Oncol. 2016, 23, 4178–4188. [Google Scholar] [CrossRef]
- Chang, J.M.; Kosiorek, H.E.; Dueck, A.C.; Leong, S.P.; Vetto, J.T.; White, R.L.; Avisar, E.; Sondak, V.K.; Messina, J.L.; Zager, J.S.; et al. Stratifying SLN incidence in intermediate thickness melanoma patients. Am. J. Surg. 2018, 215, 699–706. [Google Scholar] [CrossRef]
- Bartlett, E.K.; Peters, M.G.; Blair, A.; Etherington, M.S.; Elder, D.E.; Xu, X.G.; Guerry, D.; Ming, M.E.; Fraker, D.L.; Czerniecki, B.J.; et al. Identification of Patients with Intermediate Thickness Melanoma at Low Risk for Sentinel Lymph Node Positivity. Ann. Surg. Oncol. 2016, 23, 250–256. [Google Scholar] [CrossRef]
- Scoggins, C.R.; Bowen, A.L.; Martin, R.C.; Edwards, M.J.; Reintgen, D.S.; Ross, M.I.; Urist, M.M.; Stromberg, A.J.; Hagendoorn, L.; McMasters, K.M. Prognostic Information From Sentinel Lymph Node Biopsy in Patients With Thick Melanoma. Arch. Surg. 2010, 145, 622–626. [Google Scholar] [CrossRef]
- Ariyan, S.; Ali-Salaam, P.; Cheng, D.W.; Truini, C. Reliability of Lymphatic Mapping After Wide Local Excision of Cutaneous Melanoma. Ann. Surg. Oncol. 2007, 14, 2377–2383. [Google Scholar] [CrossRef]
- Yao, K.A.; Hsueh, E.C.; Essner, R.; Foshag, L.J.; Wanek, L.A.; Morton, D.L. Is sentinel lymph node mapping indicated for isolated local and in-transit recurrent melanoma? Ann Surg. 2003, 238, 743. [Google Scholar] [CrossRef]
- Beasley, G.M.; Hu, Y.; Youngwirth, L.; Scheri, R.P.; Salama, A.K.; Rossfeld, K.; Gardezi, S.; Agnese, D.M.; Howard, J.H.; Tyler, D.S.; et al. Sentinel Lymph Node Biopsy for Recurrent Melanoma: A Multicenter Study. Ann. Surg. Oncol. 2017, 24, 2728–2733. [Google Scholar] [CrossRef]
- Bartlett, E.K.; Gupta, M.; Datta, J.; Gimotty, P.A.; Guerry, D.; Xu, X.; Elder, D.E.; Czerniecki, B.J.; Fraker, U.L.; Karakousis, G.C. Prognosis of patients with melanoma and microsatellitosis undergoing sentinel lymph node biopsy. Ann. Surg. Oncol. 2014, 21, 1016–1023. [Google Scholar] [CrossRef]
- Kretschmer, L.; Mitteldorf, C.; Hellriegel, S.; Leha, A.; Fichtner, A.; Ströbel, P.; Schön, M.P.; Bremmer, F. The sentinel node invasion level (SNIL) as a prognostic parameter in melanoma. Mod. Pathol. 2021, 34, 1839–1849. [Google Scholar] [CrossRef]
- Tropea, S.; Del Fiore, P.; Maurichi, A.; Patuzzo, R.; Santinami, M.; Ribero, S.; Quaglino, P.; Caliendo, V.; Borgognoni, L.; Sestini, S.; et al. The role of sentinel node tumor burden in modeling the prognosis of melanoma patients with positive sentinel node biopsy: An Italian melanoma intergroup study (N = 2086). BMC Cancer 2022, 22, 610. [Google Scholar] [CrossRef]
- van der Ploeg, A.P.; van Akkooi, A.C.; Rutkowski, P.; Nowecki, Z.I.; Michej, W.; Mitra, A.; Newton-Bishop, J.A.; Cook, M.; van der Ploeg, I.M.; Nieweg, O.E.; et al. Prognosis in Patients With Sentinel Node–Positive Melanoma Is Accurately Defined by the Combined Rotterdam Tumor Load and Dewar Topography Criteria. J. Clin. Oncol. 2011, 29, 2206–2214. [Google Scholar] [CrossRef]
- Ulmer, A.; Pfefferle, V.; Walter, V.; Granai, M.; Keim, U.; Fend, F.; Sulyok, M.; Bösmüller, H. Reporting of melanoma cell densities in the sentinel node refines outcome prediction. Eur. J. Cancer 2022, 174, 121–130. [Google Scholar] [CrossRef]
- Broman, K.K.; Bettampadi, D.; Pérez-Morales, J.; Sun, J.; Kirichenko, D.; Carr, M.J.; Eroglu, Z.; Tarhini, A.A.; Khushalani, N.; Schabath, M.B.; et al. Surveillance of sentinel node-positive melanoma patients who receive adjuvant therapy without undergoing completion lymph node dissection. Surg. Oncol. 2021, 28, 6978–6985. [Google Scholar] [CrossRef]
- Garrido, M.C.; Bastian, B.C. KIT as a therapeutic target in melanoma. J. Investig. Dermatol. 2010, 130, 20–27. [Google Scholar] [CrossRef]
- Courtney, K.D.; Corcoran, R.B.; Engelman, J.A. The PI3K Pathway As Drug Target in Human Cancer. J. Clin. Oncol. 2010, 28, 1075–1083. [Google Scholar] [CrossRef] [Green Version]
- Yu, C.; Liu, X.; Yang, J.; Zhang, M.; Jin, H.; Ma, X.; Shi, H. Combination of Immunotherapy With Targeted Therapy: Theory and Practice in Metastatic Melanoma. Front. Immunol. 2019, 10, 990. [Google Scholar] [CrossRef]
- McCain, J. The MAPK (ERK) Pathway: Investigational Combinations for the Treatment Of BRAF-Mutated Metastatic Melanoma. PT Peer Rev. J. Formul. Manag. 2013, 38, 96–108. [Google Scholar]
- Hauschild, A.; Grob, J.-J.; Demidov, L.V.; Jouary, T.; Gutzmer, R.; Millward, M.; Rutkowski, P.; Blank, C.U.; Miller, W.H., Jr.; Kaempgen, E.; et al. Dabrafenib in BRAF-mutated metastatic melanoma: A multicentre, open-label, phase 3 randomised controlled trial. Lancet 2012, 380, 358–365. [Google Scholar] [CrossRef]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.-J.; et al. Dabrafenib and trametinib versus dabrafenib and placebo for Val600 BRAF-mutant melanoma: A multicentre, double-blind, phase 3 randomised controlled trial. Lancet 2015, 386, 444–451. [Google Scholar] [CrossRef]
- Hodi, F.S.; Corless, C.L.; Giobbie-Hurder, A.; Fletcher, J.A.; Zhu, M.; Marino-Enriquez, A.; Friedlander, P.; Gonzalez, R.; Weber, J.S.; Gajewski, T.F.; et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. J. Clin. Oncol. 2013, 31, 3182–3190. [Google Scholar]
- Sullivan, R.J.; Atkins, M.B.; Kirkwood, J.M.; Agarwala, S.S.; Clark, J.I.; Ernstoff, M.S.; Fecher, L.; Gajewski, T.F.; Gastman, B.; Lawson, D.H.; et al. An update on the Society for Immunotherapy of Cancer consensus statement on tumor immunotherapy for the treatment of cutaneous melanoma: Version 2. J. Immunother. Cancer 2018, 6, 44. [Google Scholar]
- Broman, K.K.; Hughes, T.M.; Dossett, L.A.; Sun, J.; Carr, M.J.; Kirichenko, D.A.; Sharma, A.; Bartlett, E.K.; Nijhuis, A.A.; Thompson, J.F.; et al. Surveillance of Sentinel Node-Positive Melanoma Patients with Reasons for Exclusion from MSLT-II: Multi-Institutional Propensity Score Matched Analysis. J. Am. Coll. Surg. 2021, 232, 424–431. [Google Scholar] [CrossRef]
- Broman, K.K.; Hughes, T.; Dossett, L.; Sun, J.; Kirichenko, D.; Carr, M.J.; Sharma, A.; Bartlett, E.K.; Nijhuis, A.A.; Thompson, J.F.; et al. Active surveillance of patients who have sentinel node positive melanoma: An international, multi-institution evaluation of adoption and early outcomes after the Multicenter Selective Lymphadenectomy Trial II (MSLT-2). Cancer 2021, 127, 2251–2261. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Kirkwood, J.M.; Grob, J.-J.; Simeone, E.; Grimaldi, A.M.; Maio, M.; Palmieri, G.; Testori, A.; Marincola, F.M.; Mozzillo, N. The role of BRAF V600 mutation in melanoma. J. Transl. Med. 2012, 10, 85. [Google Scholar] [CrossRef]
- Flaherty, K.T.; Robert, C.; Hersey, P.; Nathan, P.; Garbe, C.; Milhem, M.; Demidov, L.V.; Hassel, J.C.; Rutkowski, P.; Mohr, P.; et al. Improved Survival with MEK Inhibition in BRAF-Mutated Melanoma. N. Engl. J. Med. 2012, 367, 107–114. [Google Scholar]
- Richter, K.; Stefura, T.; Macheta, K.; Tempski, J.; Kazoń, J.; Szeremeta, M.; Klimont, P.; Kołodziej-Rzepa, M.; Wojewoda, T.; Wysocki, W.M. Does It Really Pay-Off? Comparison of Lymphadenectomy versus Observational Approach in Skin Melanoma with Positive Sentinel Node Biopsy: Systematic Review and Meta-Analysis. J. Clin. Med. 2022, 11, 3880. [Google Scholar] [CrossRef]
- Kwak, M.; Farrow, N.; Salama, A.; Mosca, P.J.; Hanks, B.A.; Jr, C.L.S.; Beasley, G.M. Updates in adjuvant systemic therapy for melanoma. J. Surg. Oncol. 2019, 119, 222–231. [Google Scholar] [CrossRef]
- Spagnolo, F.; Boutros, A.; Tanda, E.; Queirolo, P. The adjuvant treatment revolution for high-risk melanoma patients. Semin. Cancer Biol. 2019, 59, 283–289. [Google Scholar] [CrossRef]
- Smithy, J.W.; Shoushtari, A.N. Adjuvant PD-1 Blockade in Resected Melanoma: Is Preventing Recurrence Enough? Cancer Discov. 2022, 12, 599–601. [Google Scholar]
- Mocellin, S.; Lens, M.B.; Pasquali, S.; Pilati, P.; Sileni, V.C. Interferon alpha for the adjuvant treatment of cutaneous melanoma. Cochrane Database Syst. Rev. 2013, CD008955. [Google Scholar] [CrossRef]
- Luke, J.J.; Ascierto, P.A.; Carlino, M.S.; Gershenwald, J.E.; Grob, J.-J.; Hauschild, A.; Kirkwood, J.M.; Long, G.V.; Mohr, P.; Robert, C.; et al. KEYNOTE-716: Phase III study of adjuvant pembrolizumab versus placebo in resected high-risk stage II melanoma. Futur. Oncol. 2020, 16, 4429–4438. [Google Scholar] [CrossRef]
- Farrow, N.E.; Raman, V.; Williams, T.P.; Nguyen, K.Y.; Tyler, D.S.; Beasley, G.M. Adjuvant Therapy is Effective for Melanoma Patients with a Positive Sentinel Lymph Node Biopsy Who Forego Completion Lymphadenectomy. Ann. Surg. Oncol. 2020, 27, 5121–5125. [Google Scholar] [CrossRef]
- Torphy, R.J.; Friedman, C.; Ho, F.; Leonard, L.D.; Thieu, D.; Lewis, K.D.; Medina, T.M.; Robinson, W.A.; Gonzalez, R.C.; Stewart, C.L.; et al. Adjuvant Therapy for Stage III Melanoma Without Immediate Completion Lymph Node Dissection. Ann. Surg. Oncol. 2022, 29, 806–815. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Chiarion-Sileni, V.; Grob, J.-J.; Dummer, R.; Wolchok, J.D.; Schmidt, H.; Hamid, O.; Robert, C.; Ascierto, P.A.; Richards, J.M.; et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage III melanoma (EORTC 18071): A randomised, double-blind, phase 3 trial. Lancet Oncol. 2015, 16, 522–530. [Google Scholar] [CrossRef]
- Dummer, R.; Brase, J.C.; Garrett, J.; Campbell, C.D.; Gasal, E.; Squires, M.; Gusenleitner, D.; Santinami, M.; Atkinson, V.; Mandalà, M.; et al. Adjuvant dabrafenib plus trametinib versus placebo in patients with resected, BRAFV600-mutant, stage III melanoma (COMBI-AD): Exploratory biomarker analyses from a randomised, phase 3 trial. Lancet Oncol. 2020, 21, 358–372. [Google Scholar] [CrossRef]
- Schadendorf, D.; Hauschild, A.; Santinami, M.; Atkinson, V.; Mandalà, M.; Sileni, V.C.; Larkin, J.; Nyakas, M.; Dutriaux, C.; Haydon, A.; et al. Patient-reported outcomes in patients with resected, high-risk melanoma with BRAFV600E or BRAFV600K mutations treated with adjuvant dabrafenib plus trametinib (COMBI-AD): A randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 701–710. [Google Scholar] [CrossRef]
- Maio, M.; Lewis, K.; Demidov, L.; Mandalà, M.; Bondarenko, I.; Ascierto, P.A.; Herbert, C.; Mackiewicz, A.; Rutkowski, P.; Guminski, A.; et al. Adjuvant vemurafenib in resected, BRAFV600 mutation-positive melanoma (BRIM8): A randomised, double-blind, placebo-controlled, multicentre, phase 3 trial. Lancet Oncol. 2018, 19, 510–520. [Google Scholar] [CrossRef]
- Eggermont, A.M.M.; Blank, C.U.; Mandalà, M.; Long, G.V.; Atkinson, V.G.; Dalle, S.; Haydon, A.M.; Meshcheryakov, A.; Khattak, A.; Carlino, M.S.; et al. Adjuvant pembrolizumab versus placebo in resected stage III melanoma (EORTC 1325-MG/KEYNOTE-054): Distant metastasis-free survival results from a double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2021, 22, 643–654. [Google Scholar] [CrossRef]
- Ascierto, P.A.; Del Vecchio, M.; Mandalá, M.; Gogas, H.; Arance, A.M.; Dalle, S.; Cowey, C.L.; Schenker, M.; Grob, J.J.; Chiarion-Sileni, V.; et al. Adjuvant nivolumab versus ipilimumab in resected stage IIIB–C and stage IV melanoma (CheckMate 238): 4-year results from a multicentre, double-blind, randomised, controlled, phase 3 trial. Lancet Oncol. 2020, 21, 1465–1477. [Google Scholar]
- Buzaid, A.C.; Sandler, A.B.; Mani, S.; Curtis, A.M.; Poo, W.J.; Bolognia, J.L.; Ariyan, S. Role of computed tomography in the staging of primary melanoma. J. Clin. Oncol. 1993, 11, 638–643. [Google Scholar] [CrossRef]
- Yancovitz, M.; Finelt, N.; Warycha, M.A.; Christos, P.J.; Polsky, D.; Shapiro, R.L.; Do, A.C.P.; Osman, I.; Polsky, D.; Berman, R.S. Role of radiologic imaging at the time of initial diagnosis of stage T1b-T3b melanoma. Cancer 2007, 110, 1107–1114. [Google Scholar] [CrossRef]
- Aloia, T.A.; Gershenwald, J.E.; Andtbacka, R.H.; Johnson, M.M.; Schacherer, C.W.; Ng, C.S.; Cormier, J.N.; Lee, J.E.; Ross, M.I.; Mansfield, P.F. Utility of Computed Tomography and Magnetic Resonance Imaging Staging Before Completion Lymphadenectomy in Patients With Sentinel Lymph Node–Positive Melanoma. J. Clin. Oncol. 2006, 24, 2858–2865. [Google Scholar] [CrossRef]
- Gold, J.S.; Jaques, D.P.; Busam, K.J.; Brady, M.S.; Coit, D.G. Yield and Predictors of Radiologic Studies for Identifying Distant Metastases in Melanoma Patients with a Positive Sentinel Lymph Node Biopsy. Ann. Surg. Oncol. 2007, 14, 2133–2140. [Google Scholar] [CrossRef]
- Rivera, A.M.R.; Alabbas, H.; Ramjaun, A.; Meguerditchian, A.-N. Value of positron emission tomography scan in stage III cutaneous melanoma: A systematic review and meta-analysis. Surg. Oncol. 2014, 23, 11–16. [Google Scholar] [CrossRef]
- Xing, Y.; Bronstein, Y.; Ross, M.I.; Askew, R.L.; Lee, J.E.; Gershenwald, J.E.; Royal, R.; Cormier, J.N. Contemporary Diagnostic Imaging Modalities for the Staging and Surveillance of Melanoma Patients: A Meta-analysis. Gynecol. Oncol. 2010, 103, 129–142. [Google Scholar] [CrossRef]
- Maubec, E.; Lumbroso, J.; Masson, F.; Suciu, V.; Kolb, F.; Mamelle, G.; Cavalcanti, A.; Boitier, F.; Spatz, A.; Aupérin, A.; et al. F-18 fluorodeoxy-D-glucose positron emission tomography scan in the initial evaluation of patients with a primary melanoma thicker than 4 mm. Melanoma Res. 2007, 17, 147–154. [Google Scholar] [CrossRef]
- Wagner, J.D.; Schauwecker, D.; Davidson, D.; Logan, T.; Coleman, J.J., III; Hutchins, G.; Love, C.; Wenck, S.; Daggy, J. Inefficacy of F-18 fluorodeoxy-D-glucose-positron emission tomography scans for initial evaluation in early-stage cutaneous melanoma. Cancer 2005, 104, 570–579. [Google Scholar]
- Brady, M.S.; Akhurst, T.; Spanknebel, K.; Hilton, S.; Gonen, M.; Patel, A.; Larson, S. Utility of Preoperative [(18)]F Fluorodeoxyglucose–Positron Emission Tomography Scanning in High-Risk Melanoma Patients. Ann. Surg. Oncol. 2006, 13, 525–532. [Google Scholar] [CrossRef]
- Schüle, S.C.; Eigentler, T.K.; Garbe, C.; La Fougère, C.; Nikolaou, K.; Pfannenberg, C. Influence of 18F-FDG PET/CT on therapy management in patients with stage III/IV malignant melanoma. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 482–488. [Google Scholar]
- Schröer-Günther, M.A.; Wolff, R.F.; Westwood, M.E.; Scheibler, F.J.; Schürmann, C.; Baumert, B.G.; Sauerland, S.; Kleijnen, J. F-18-fluoro-2-deoxyglucose positron emission tomography (PET) and PET/computed tomography imaging in primary staging of patients with malignant melanoma: A systematic review. Syst. Rev. 2012, 1, 62. [Google Scholar] [CrossRef]
- Ostheimer, C.; Bormann, C.; Fiedler, E.; Marsch, W.; Vordermark, D. Malignant melanoma brain metastases: Treatment results and prognostic factors—A single-center retrospective study. Int. J. Oncol. 2015, 46, 2439–2448. [Google Scholar] [CrossRef]
- Goyal, S.; Silk, A.W.; Tian, S.; Mehnert, J.; Danish, S.; Ranjan, S.; Kaufman, H.L. Clinical management of multiple melanoma brain metastases: A systematic review. JAMA Oncol. 2015, 1, 668–676. [Google Scholar] [CrossRef]
- Margolin, K.; Ernstoff, M.S.; Hamid, O.; Lawrence, D.; McDermott, D.; Puzanov, I.; Wolchok, J.D.; Clark, J.I.; Sznol, M.; Logan, T.F.; et al. Ipilimumab in patients with melanoma and brain metastases: An open-label, phase 2 trial. Lancet Oncol. 2013, 13, 459–465. [Google Scholar] [CrossRef]
- Henderson, M.A.; Burmeister, B.H.; Ainslie, J.; Fisher, R.; Di Iulio, J.; Smithers, B.M.; Hong, A.; Shannon, K.; Scolyer, R.A.; Carruthers, S.; et al. Adjuvant lymph-node field radiotherapy versus observation only in patients with melanoma at high risk of further lymph-node field relapse after lymphadenectomy (ANZMTG 01.02/TROG 02.01): 6-year follow-up of a phase 3, randomised controlled trial. Lancet Oncol. 2015, 16, 1049–1060. [Google Scholar] [CrossRef]
- Lee, R.; Gibbs, J.F.; Proulx, G.M.; Kollmorgen, D.R.; Jia, C.; Kraybill, W.G. Nodal basin recurrence following lymph node dissection for melanoma: Implications for adjuvant radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2000, 46, 467–474. [Google Scholar] [CrossRef]
- Wang, S.-J.; Haffty, B. Radiotherapy as a New Player in Immuno-Oncology. Cancers 2018, 10, 515. [Google Scholar] [CrossRef]
- Tagliaferri, L.; Lancellotta, V.; Fionda, B.; Mangoni, M.; Casà, C.; Di Stefani, A.; Pagliara, M.M.; D’Aviero, A.; Schinzari, G.; Chiesa, S.; et al. Immunotherapy and radiotherapy in melanoma: A multidisciplinary comprehensive review. Hum. Vaccines Immunother. 2022, 18, 1903–1927. [Google Scholar] [CrossRef]
- Theurich, S.; Rothschild, S.I.; Hoffmann, M.; Fabri, M.; Sommer, A.; Garcia-Marquez, M.; Thelen, M.; Schill, C.; Merki, R.; Schmid, T.; et al. Local Tumor Treatment in Combination with Systemic Ipilimumab Immunotherapy Prolongs Overall Survival in Patients with Advanced Malignant Melanoma. Cancer Immunol. Res. 2016, 4, 744–754. [Google Scholar] [CrossRef]
- Sundahl, N.; Seremet, T.; Van Dorpe, J.; Neyns, B.; Ferdinande, L.; Meireson, A.; Brochez, L.; Kruse, V.; Ost, P. Phase 2 Trial of Nivolumab Combined With Stereotactic Body Radiation Therapy in Patients With Metastatic or Locally Advanced Inoperable Melanoma. Int. J. Radiat. Oncol. Biol. Phys. 2019, 104, 828–835. [Google Scholar] [CrossRef]
- Najafi, M.; Jahanbakhshi, A.; Gomar, M.; Iotti, C.; Giaccherini, L.; Rezaie, O.; Cavallieri, F.; Deantonio, L.; Bardoscia, L.; Botti, A.; et al. State of the Art in Combination Immuno/Radiotherapy for Brain Metastases: Systematic Review and Meta-Analysis. Curr. Oncol. 2022, 29, 2995–3012. [Google Scholar] [CrossRef]
- Anker, C.J.; Grossmann, K.F.; Atkins, M.B.; Suneja, G.; Tarhini, A.A.; Kirkwood, J.M. Avoiding Severe Toxicity From Combined BRAF Inhibitor and Radiation Treatment: Consensus Guidelines from the Eastern Cooperative Oncology Group (ECOG). Int. J. Radiat. Oncol. Biol. Phys. 2016, 95, 632–646. [Google Scholar] [CrossRef]
- Ahmed, K.; Stallworth, D.; Kim, Y.; Johnstone, P.S.; Harrison, L.; Caudell, J.; Yu, H.; Etame, A.; Weber, J.; Gibney, G. Clinical outcomes of melanoma brain metastases treated with stereotactic radiation and anti-PD-1 therapy. Ann. Oncol. 2016, 27, 434–441. [Google Scholar] [CrossRef]
- Hiniker, S.M.; Reddy, S.A.; Maecker, H.T.; Subrahmanyam, P.B.; Rosenberg-Hasson, Y.; Swetter, S.M.; Saha, S.; Shura, L.; Knox, S.J. A Prospective Clinical Trial Combining Radiation Therapy With Systemic Immunotherapy in Metastatic Melanoma. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 578–588. [Google Scholar] [CrossRef] [Green Version]
- Chowdhary, M.; Patel, K.R.; Danish, H.H.; Lawson, D.H.; Khan, M.K. BRAF inhibitors and radiotherapy for melanoma brain metastases: Potential advantages and disadvantages of combination therapy. Onco. Targets Ther. 2016, 9, 7149–7159. [Google Scholar] [CrossRef] [Green Version]
Intervention | Population | MSS | DFS | |
---|---|---|---|---|
MSLT-I Morton et al., 2014 [35] | WLE + SNB + CLND for positive nodes vs. WLE + SNB + nodal Observation Median Follow up: 10 years Primary Endpoint: MSS | Thick melanoma (3.5 mm) SLNB: 185 OBS: 126 Intermediate melanoma (1.2–3.5 mm) SLNB: 805 OBS: 522 | Thick melanoma 10-y MSS SNB: 58.9 +/− 4.0% OBS: 64.4 +/− 4.6% HR 1.12; p = 0.56 OS: not reported Intermediate melanoma 10-y MSS: SNB: 81.4 +/− 1.5% OBS: 78.3 +/− 2.0% HR 0.84; p = 0.18 OS: not reported | Thick melanoma 10-y DFS: SLNB: 50.7 +/− 4.0% OBS: 40.5 +/− 4.7% HR 0.70; p = 0.03 Intermediate melanoma 10-y DFS SLNB: 71.3 +/− 1.8% OBS: 64.7 +/− 2.3% HR 0.76; p = 0.01 |
MSLT-II Faries et al., 2017 [38] | CLND vs. OBS with nodal ultrasound. CLND for nodal disease Median follow up: 43 months Primary Endpoint: MSS | ITT analysis n = 1934 Per protocol n = 1755 CLND: 824 OBS: 931 | OBS vs. CLND MSS HR 1.08 95% CI, 0.88–1.34; p = 0.42 DMFS Adjusted HR 1.10 95% CI, 0.92–1.31; p = 0.31 | CLND: 68.6, 1.7% OBS: 63.6, 1.7% log-rank p = 0.05 |
DeCOG-SLT Leiter et al., 2016 [85] | CLND vs. OBS for SNB positive patients Median Follow Up: 35 months Primary Endpoint: DMFS | n = 484 CLND: 242 OBS: 241 | OBS vs. CLND OS HR 1.02 90% CI, 0.68–1.52; p = 0.95 RFS HR 0.959 90% CI, 0.70–1.31; p = 0.83 DMFS HR 1.19 90% CI, 0.83–1.69; p = 0.43 | Regional Recurrence CLND: 8% OBS: 15% |
Trial | Treatment Arms | Population | Key Findings |
---|---|---|---|
ECOG EST 1684 Enrollment: 1984–1990 [118] | IFNα2b vs placebo | Stage IIB–III (AJCC 2nd ed) n = 287 | Median Follow Up: 12.6 years Improved RFS and OS with adjuvant IFNα2b at 5 years 12-year OS not significant Significant adverse events and treatment toxicity |
EORTC 18071 Enrollment: 2008–2011 [122] | Ipilimumab vs placebo | Stage IIIA–IIIC (AJCC 7th ed) n = 951 | Median Follow up: 6.9 years Improved RFS and OS with adjuvant ipilimumab No crossover as ipilimumab was not widely available |
COMBI-AD Enrollment: 2013–2014 [123,124] | dabrafenib + trametinib vs. placebo | Stage IIIA–IIIC (AJCC 7th ed) n = 870 | Median Follow Up: 5 years Improved RFS and DMFS with adjuvant BRAF and MEK inhibitors |
CheckMate 238 Enrollment: 2015 [125] | Nivolumab vs ipilimumab | Stage IIIB–IV (AJCC 7th ed) n = 906 | Median Follow up: 4.25 years Improved RFS with adjuvant nivolumab, similar OS Ipilimumab was not widely available |
KEYNOTE-054 Enrollment: 2015–2016 [126] | Pembrolizumab vs placebo | Stage IIIA–IIIC (AJCC 7th ed) n = 1019 | Median Follow up: 3 years Improved RFS with adjuvant pembrolizumab Fewer survival events than expected |
BRIM 8 Enrollment: 2016–2017 [125] | vemurafenib vs. placebo | Cohort 1: Stage IIC-IIIB Cohort 2: stage IIIC (AJCC 7th ed) n = 184 | Median Follow up: 2.8 years Adjuvant vemurafenib significantly improved DFS in cohort 1 DFS endpoint not met in cohort 2 |
SWOG 1404 Enrollment: 2015–2018 [117] | Pembrolizumab vs. ipilimumab or IFNα2b | Stage IIIA–IIIC (AJCC 7th ed.) n = 1301 | Median Follow up: 4 years Improved RFS, but not OS, with adjuvant pembrolizumab Underpowered for OS events |
KEYNOTE-716 Enrollment: 2018–2020 [119] | Pembrolizumab vs placebo | Stage IIB–IIC (AJCC 8th ed.) n = 976 | Median follow up: 1.5 years Improved RFS with adjuvant pembrolizumab Final survival data pending |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allard-Coutu, A.; Dobson, V.; Schmitz, E.; Shah, H.; Nessim, C. The Evolution of the Sentinel Node Biopsy in Melanoma. Life 2023, 13, 489. https://doi.org/10.3390/life13020489
Allard-Coutu A, Dobson V, Schmitz E, Shah H, Nessim C. The Evolution of the Sentinel Node Biopsy in Melanoma. Life. 2023; 13(2):489. https://doi.org/10.3390/life13020489
Chicago/Turabian StyleAllard-Coutu, Alexandra, Victoria Dobson, Erika Schmitz, Hely Shah, and Carolyn Nessim. 2023. "The Evolution of the Sentinel Node Biopsy in Melanoma" Life 13, no. 2: 489. https://doi.org/10.3390/life13020489
APA StyleAllard-Coutu, A., Dobson, V., Schmitz, E., Shah, H., & Nessim, C. (2023). The Evolution of the Sentinel Node Biopsy in Melanoma. Life, 13(2), 489. https://doi.org/10.3390/life13020489