Exogenous Melatonin Spray Enhances Salinity Tolerance in Zizyphus Germplasm: A Brief Theory
Abstract
:1. Introduction
2. Response and Adaptation Mechanism under Salinity Stress
2.1. Melatonin and Exclusion of Na+ and Cl−
2.2. Role of Graft Union against Salinity
2.3. Melatonin and Root Architecture under Salinity Stress
2.4. Melatonin and Cuticle Formation in Leaves
2.5. Melatonin Enhances Shelf-Life of Fruits
Fruit Crop Names | Cultivars | Stress Type | Concentrations | Functions | References |
---|---|---|---|---|---|
Banana | Williams | Drought | 0, 40, 60 and 80 µM ppm | Melatonin administration found to be more efficient way for improved growth and yield under abiotic stresses. Melatonin treatments at 80 µM promoted growth and yield metrics. | [53] |
Mango | Guifei | Salinity | 0.5 mM | Melatonin interrupts the ripening and softening in mango fruit. Melatonin delays ethylene production and inhibits ethylene biosynthesis in mangoes. | [84] |
Apple | Malus hupehensis | Salinity | 0.1 µm | This is used as rootstock and this melatonin concentration is effective for improved growth and yield under saline conditions. | [85] |
Grape | Muscat Hamburg | Control of postharvest losses | 0.02, 0.2 and 2 mM L−1 | It can activate defense responses to combat the infection of serious diseases such as B. cinerea in postharvest grapes. | [4] |
Pistachio | Badami-Zarand | Salinity | 0, 25, 50, 75, 100, 125 and 150 μM L−1 | Exogenous application was also linked with higher increase in nutrient uptake. It can also attenuate the salinity damage via enhancing anti-oxidation ability, osmotic activity-adjustment and polyamine biosynthesis. | [86] |
Fruit Crop Names | Concentrations (ng/g) | Functions | References |
---|---|---|---|
Kiwifruit | 0.02 | Its concentration was measured in the seeds of some fruits and showed that melatonin concentration varied from leaves to seeds. However, improved endogenous melatonin increased the plant immunity to survive against adverse conditions. | [52] |
Apple | 0.05 and 0.16 | Endogenous melatonin level was measured in the seeds of apples. The improved level of melatonin in seeds resulted in rapid germination of seeds with healthy growth. | [87] |
Cherry | 18.00 | Bio-fortification of melatonin enhanced endogenous level of melatonin. | [88] |
Banana | 0.01, 0.47 and 0.67 | Seed germination and seedling growth can be improved with application of melatonin because it is a multifunctional molecule discovered two decades ago. | [89] |
Pomegranate | 0.17 | Higher endogenous melatonin concentration was recorded in medicinal crops compared with other crop. | [90] |
Walnut | 3.50 | Phyto-melatonin is a multifunctional molecule found to be more effective for survival of plants against adverse climatic conditions | [91] |
3. Melatonin Acts as a Defense against Salinity Stress Conditions
3.1. Crosstalk of Melatonin and Salinity Stress
3.2. Melatonin-Mediated Tolerance in Zizyphus
4. Melatonin and Mineral Uptake under Salinity Conditions
5. Melatonin Copes with Over-Generation of ROS, Lipid Peroxidation, H2O2 and MDA
6. Melatonin Activates the Fruit Tree Defense System
Melatonin Regulates the Photosynthetic Mechanism
7. Future Horizons
- Research on melatonin-mediated ripening of Zizyphus fruits under salinity-induced conditions is still elusive and much effort is required for further exploration. Crosstalk of melatonin with numerous other phytohormones can regulate different abiotic stresses, especially salt stress, in fruit crops such as the Zizyphus species.
- Alterations in the photo-pigment system and secondary metabolites as affected by exogenous melatonin levels against salt stress must be further explored. Accurate signaling, epigenetic paths and transcriptomic paths of melatonin still remain unknown and require more work on the Zizyphus fruit crop.
- It will be more mechanistic to explore the regulatory contribution of melatonin to alleviating stress tolerance and delivering distinctive immunity in Zizyphus fruit trees. This type of multifunctional phytohormone may possibly emerge as a sustainable alternative for regulating multiple stress responses in fruit trees.
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, R.; Anjum, M.A. Physiological and molecular basis of salinity tolerance in fruit crops. In Fruit Crops; Elsevier: Amsterdam, The Netherlands, 2020; pp. 445–464. [Google Scholar]
- Ahmad, R.; Malik, W.; Anjum, M.A. Genetic diversity and selection of suitable molecular markers for characterization of indigenous Zizyphus germplasm. Erwerbs-Obstbau 2019, 61, 345–353. [Google Scholar] [CrossRef]
- Anjum, M.A.; Haram, A.; Ahmad, R.; Bashir, M.A. Physico-chemical attributes of fresh and dried Indian jujube (Zizyphus mauritiana) fruits. Pak. J. Agric. Sci. 2020, 57, 165–176. [Google Scholar]
- Li, Z.; Zhang, S.; Xue, J.; Mu, B.; Song, H.; Liu, Y. Exogenous melatonin treatment induces disease resistance against Botrytis cinerea on post-harvest grapes by activating defence responses. Foods 2022, 11, 2231. [Google Scholar] [CrossRef]
- Hesami, A.; Bazdar, L.; Shahriari, M.H. Effect of soil salinity on growth, proline, and some nutrient accumulation in two genotypes seedlings of Ziziphus Spina-christi (L.) wild. Commun. Soil Sci. Plant Analy. 2020, 51, 804–815. [Google Scholar] [CrossRef]
- Sherani, J.; Jillani, M.S.; Ahmad, T. Ber (Zizyphus mauritiana L.) production and quality as influenced by different salinity levels in water. Pak. J. Agric. Sci. 2017, 54, 645–652. [Google Scholar]
- Singh, A.; Kumar, A.; Kumar, R.; Sheoran, P.; Yadav, R.K.; Sharma, P.C. Multivariate analyses discern shared and contrasting eco-physiological responses to salinity stress of Ziziphus rootstocks and budded trees. S. Afr. J. Bot. 2022, 146, 573–584. [Google Scholar] [CrossRef]
- Muhammad, H.M.D.; Abbas, A.; Ahmad, R. Fascinating role of silicon nanoparticles to mitigate adverse effects of salinity in fruit trees: A mechanistic approach. Silicon 2022, 14, 8319–8326. [Google Scholar] [CrossRef]
- Wei, W.; Li, Q.T.; Chu, Y.N.; Reiter, R.J.; Yu, X.M.; Zhu, D.H.; Zhang, W.K.; Ma, B.; Lin, Q.; Zhang, J.S.; et al. Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J. Exp. Bot. 2015, 66, 695–707. [Google Scholar] [CrossRef]
- Soni, A.; Kumari, P.; Dhakar, S.; Kumar, N. Mechanisms and strategies for improving drought tolerance in fruit crops. Chem. Sci. Rev. Lett. 2017, 6, 537–1543. [Google Scholar]
- Li, M.; Guo, Y.; Liu, S.; Zhao, Y.; Pang, X.; Li, Y. Autotetraploidization in Ziziphus jujuba Mill. var. spinosa enhances salt tolerance conferred by active, diverse stress responses. Environ. Exper. Bot. 2019, 165, 92–107. [Google Scholar] [CrossRef]
- Back, K. Melatonin metabolism, signaling and possible roles in plants. Plant J. 2021, 105, 376–391. [Google Scholar] [CrossRef]
- Wang, S.Y.; Shi, X.C.; Wang, R.; Wang, H.L.; Liu, F.; Laborda, P. Melatonin in fruit production and postharvest preservation: A review. Food Chem. 2020, 320, 126642. [Google Scholar] [CrossRef]
- Gao, T.; Liu, X.; Tan, K.; Zhang, D.; Zhu, B.; Ma, F.; Li, C. Introducing melatonin to the horticultural industry: Physiological roles, potential applications, and challenges. Hort. Res. Genom. 2022, 187, 627. [Google Scholar] [CrossRef]
- Wang, P.; Yin, L.; Liang, D.; Li, C.; Ma, F.; Yue, Z. Delayed senescence of apple leaves by exogenous melatonin treatment: Toward regulating the ascorbate–glutathione cycle. J. Pineal. Res. 2012, 53, 11–20. [Google Scholar] [CrossRef]
- Li, J.; Liu, J.; Zhu, T.; Zhao, C.; Li, L.; Chen, M. The role of melatonin in salt stress responses. Int. J. Mol. Sci. 2019, 20, 1735. [Google Scholar] [CrossRef]
- Wang, P.; Sun, X.; Li, C.; Wei, Z.; Liang, D.; Ma, F. Long-term exogenous application of melatonin delays drought-induced leaf senescence in apple. J. Pineal. Res. 2013, 54, 292–302. [Google Scholar] [CrossRef]
- Li, C.; Tan, D.X.; Liang, D.; Chang, C.; Jia, D.; Ma, F. Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. J. Exp. Bot. 2015, 66, 669–680. [Google Scholar] [CrossRef]
- Qi, Z.Y.; Wang, K.X.; Yan, M.Y.; Kanwar, M.K.; Li, D.Y.; Wijaya, L.; Alyemeni, M.N.; Ahmad, P.; Zhou, J. Melatonin alleviates high temperature-induced pollen abortion in Solanum lycopersicum. Molecules 2018, 23, 386. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xu, Y.; Bi, Y.; Zhang, B.; Shen, S.; Jiang, T.; Zheng, X. Melatonin treatment inhibits gray mold and induces disease resistance in cherry tomato fruit during postharvest. Post. Biol. Technol. 2019, 157, 110962. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, X.; Reiter, R.J.; Feng, S.; Wang, Y.; Liu, S.; Jin, L.; Li, Z.; Datla, R.; Ren, M. Melatonin attenuates potato late blight by disrupting cell growth, stress tolerance, fungicide susceptibility and homeostasis of gene expression in Phytophthora infestans. Front. Plant Sci. 2017, 8, 1993. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Chen, L.; Gu, P.; Zhan, X.; Zhang, Y.; Hou, C.; Wu, Z.; Wu, Y.F.; Wang, Q.C. Exogenous application of melatonin improves plant resistance to virus infection. Plant Pathol. 2019, 68, 1287–1295. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Jiao, Y.; Chen, C.; Shireen, F.; Zheng, Z.; Imtiaz, M.; Bie, Z.; Huang, Y. Melatonin pretreatment improves vanadium stress tolerance of watermelon seedlings by reducing vanadium concentration in the leaves and regulating melatonin biosynthesis and antioxidant-related gene expression. J. Plant Physiol. 2018, 220, 115–127. [Google Scholar] [CrossRef]
- Awasthi, O.P.; Pathak, R.K.; Pandey, S.D. Sodicity and salinity on survival and nutrient status of four scion cultivars budded on Indian jujube (Zizyphus mauritiana Lamk.). Trop. Agric. 1997, 74, 238–242. [Google Scholar]
- Hooda, P.S.; Sindhu, S.S.; Mehta, P.K.; Ahlawat, V.P. Growth, yield and quality of ber (Zizyphus mauritiana Lamk.) as affected by soil salinity. J. Hortic. Sci. 1990, 65, 589–593. [Google Scholar] [CrossRef]
- Lianying, S.; Yongmin, M.; Jinying, L.; Shiqi, P.; Xiaolin, L.; Fusuo, Z. Effects of arbuscular mycorrhizae on salt tolerance of wild jujube (Zizyphus spinosus Hu) seedlings. Acta Pedol. Sin. 2004, 41, 426–433. [Google Scholar]
- Cui, Y.; Hou, L.; Li, X.; Huang, F.; Pang, X.; Li, Y. In vitro induction of tetraploid Ziziphus jujuba Mill. var. spinosa plants from leaf explants. Plant Cell Tissu Organ Cult. 2017, 131, 175–182. [Google Scholar] [CrossRef]
- Gao, M.; Wang, L.; Li, M.; Sun, P.; Sadeghnezhad, E.; Shi, H.; Qian, J.; Liu, Z.; Liu, M.; Liu, P.; et al. Physiological and transcriptome analysis accentuates microtubules and calcium signaling in Ziziphus jujuba Mill Dongzao’autotetraploids with sensitive cold tolerance. Sci. Hort. 2021, 285, 110183. [Google Scholar] [CrossRef]
- Murthy, B.N.S.; Sankaran, M.; Nitin, P.S. Fruit breeding in India: Achievements and way forward. Int. J. Innov. Hort. 2022, 11, 11–24. [Google Scholar] [CrossRef]
- Zarei, M.; Azizi, M.; Rahemi, M.; Tehranifar, A. Evaluation of NaCl salinity tolerance of four fig genotypes based on vegetative growth and ion content in leaves, shoots, and roots. HortScience 2016, 51, 1427–1434. [Google Scholar] [CrossRef]
- Yaish, M.W.; Patankar, H.V.; Assaha, D.V.; Zheng, Y.; Al-Yahyai, R.; Sunkar, R. Genome-wide expression profiling in leaves and roots of date palm (Phoenix dactylifera L.) exposed to salinity. BMC Genom. 2017, 18, 246. [Google Scholar] [CrossRef]
- Ayyaz, A.; Shahzadi, A.K.; Fatima, S.; Yasin, G.; Zafar, Z.U.; Athar, H.U.R.; Farooq, M.A. Uncovering the role of melatonin in plant stress tolerance. Theor. Exp. Plant Physiol. 2022, 34, 335–346. [Google Scholar] [CrossRef]
- Aref, I.M.; Shetta, N.D. Impact of nitrogen sources on growth of Zizyphus spina-christi (L.) Willd. and Acacia tortilis subsp. tortilis (Forssk.) seedlings grown under salinity stress. Asia. J. Crop Sci. 2013, 5, 416–425. [Google Scholar] [CrossRef]
- Sohail, M.; Saied, A.S.; Gebauer, J.; Buerkert, A. Effect of NaCl salinity on growth and mineral composition of Ziziphus spina-christi (L.) Willd. J. Agric. Rural Develop. Tropic. Subtropic. 2009, 110, 107–114. [Google Scholar]
- Bhatt, M.J.; Patel, A.D.; Bhatti, P.M.; Pandey, A.N. Effect of soil salinity on growth, water status and nutrient accumulation in seedlings of Ziziphus mauritiana (Rhamnaceae). J. Fruit Ornam. Plant Res. 2008, 16, 383–401. [Google Scholar]
- Sankhla, N.; Gehlot, H.S.; Choudhary, R.; Joshi, S.; Dinesh, R. Eco-physiological studies on Indian desert plants: Effect of salt on antioxidant defense systems in Ziziphus spp. In Ecophysiol. Salinity Tolerant Plants; Springer: Dordrecht, The Netherlands, 2008; pp. 201–213. [Google Scholar]
- Bagheri, A.A.; Saadatmand, S.; Niknam, V.; Nejadsatari, T.; Babaeizad, V. Effect of endophytic fungus, Piriformospora indica, on growth and activity of antioxidant enzymes of rice (Oryza sativa L.) under salinity stress. Int. J. Adv. Biol. Biomedic. Res. 2013, 1, 1337–1350. [Google Scholar]
- Mirzaei, J.; Mirzaei, Y.; Naji, H.R. Effect of Funneliformis mosseae on growth, mineral nutrition, biochemical indexes and chlorophyll content of Ziziphus spina-christi seedlings at different salinities. iForest-Biogeosci. For. 2015, 9, 503. [Google Scholar] [CrossRef]
- Zhang, M.; Yang, L.; Hao, R.; Bai, X.; Wang, Y.; Yu, X. Drought-tolerant plant growth-promoting rhizobacteria isolated from jujube (Ziziphus jujuba) and their potential to enhance drought tolerance. Plant Soil 2020, 452, 423–440. [Google Scholar] [CrossRef]
- Li, M.; Hou, L.; Liu, S.; Zhang, C.; Yang, W.; Pang, X.; Li, Y. Genome-wide identification and expression analysis of NAC transcription factors in Ziziphus jujuba Mill.reveal their putative regulatory effects on tissue senescence and abiotic stress responses. Indust. Crop. Product. 2022, 173, 114093. [Google Scholar] [CrossRef]
- Panzade, K.P.; Kale, S.S.; Chavan, N.R.; Hatzade, B. Genome-wide analysis of Hsp70 and Hsp100 gene families in Ziziphus jujuba. Cell Stress Chaperon 2021, 26, 341–353. [Google Scholar] [CrossRef]
- Nejat, N.; Sadeghi, H. Response of Ziziphus spina-christi (L.) willd seedlings to NaC-induced salinity. Agric. Sci. Dig. 2012, 32, 61–65. [Google Scholar]
- Agrawal, R.; Gupta, S.; Gupta, N.K.; Khandelwal, S.K.; Bhargava, R. Effect of sodium chloride on gas exchange, antioxidative defense mechanism and ion accumulation in different cultivars of Indian jujube (Ziziphus mauritiana L.). Photosynthetica 2013, 51, 95–101. [Google Scholar] [CrossRef]
- Choudhary, R.; Gehlot, H.S.; Sankhla, N. Chlorophyll fluorescence, photosynthesis and enzyme activities in ber (Ziziphus rotundifolia) under salinity stress. In Proceedings of the Plant Growth Regulation Society of America-Annual Meeting, Vancouver, BC, Canada, 3–6 August 2003; Volume 30, pp. 119–121. [Google Scholar]
- Xia, J.B.; Zhang, G.C.; Wang, R.R.; Zhang, S.Y. Effect of soil water availability on photosynthesis in Ziziphus jujuba var. spinosus in a sand habitat formed from seashells: Comparison of four models. Photosynthetica 2014, 52, 253–261. [Google Scholar] [CrossRef]
- Alihouri, M. Feasibility study of saline water usage by determining of salinity production function on ber (Ziziphus Spina-Christi). Irrigat. Sci. Eng. 2018, 41, 159–170. [Google Scholar]
- Zhang, L.; Yu, Y.; Chang, L.; Wang, X.; Zhang, S. Melatonin enhanced the disease resistance by regulating reactive oxygen species metabolism in postharvest jujube fruit. J. Food Process. Preservat. 2022, 46, e16363. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Nahar, K.; Fujita, M.; Ahmad, P.; Chandna, R.; Prasad, M.N.V.; Ozturk, M. Enhancing plant productivity under salt stress: Relevance of poly-omics. In Salt Stress in Plants; Springer: Berlin/Heidelberg, Germany, 2013; pp. 113–156. [Google Scholar]
- Huang, W.; Wang, Y.; Jiang, X.; Sun, Y.; Zhao, Z.; Li, S. Protective effect of flavonoids from Ziziphus jujuba cv. Jinsixiaozao against acetaminophen-induced liver injury by inhibiting oxidative stress and inflammation in mice. Molecules 2017, 22, 1781. [Google Scholar] [CrossRef]
- Godara, R.N.; Gadi, B.R. Influence of uniconazole on biochemical parameters and nitrate reductase activity in Ziziphus seedlings under salt stress. Biochem. Cell. Arch. 2015, 15, 461–464. [Google Scholar]
- Chengxiang, X.; Xizeng, X. Effects of silicon on chlorophyll fluorescence and gas exchange of Zizyphus jujuba cv. Jinsi-xiaozao under salt stress. J. Nanjin. Forest. Uni. 2005, 29, 25–28. [Google Scholar]
- Verma, S.S.; Verma, R.P.; Verma, S.K.; Yadav, A.L.; Verma, A.K. Responses of ber (Zizyphus mauritiana Lamk.) varieties to different level of salinity. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 580–591. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, M.; Tu, P. Characterization of water soluble polysaccharides from organs of Chinese Jujube (Ziziphus jujuba Mill. cv. Dongzao). Eur. Food Res. Technol. 2018, 226, 985–989. [Google Scholar] [CrossRef]
- Meena, S.K.; Gupta, N.K.; Gupta, S.; Khandelwal, S.K.; Sastry, E.V.D. Effect of sodium chloride on the growth and gas exchange of young Ziziphus seedling rootstocks. J. Hort. Sci. Biotechnol. 2003, 78, 454–457. [Google Scholar] [CrossRef]
- Chakraborty, K.; Sairam, R.K.; Bhattacharya, R.C. Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol. Biochem. 2012, 51, 90–101. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, R.; Hussain, S.; Anjum, M.A.; Khalid, M.F.; Saqib, M.; Zakir, I.; Hassan, A.; Fahad, S.; Ahmad, S. Oxidative stress and antioxidant defense mechanisms in plants under salt stress. Plant Abiotic Stress Toler. 2019, 191–205. [Google Scholar] [CrossRef]
- Mao, Y.M.; Shen, L.Y.; Wei, W.; Wang, X.L.; Hu, Y.L.; Xu, S.S.; Mao, L.L. Effects of foliar applications of boron and calcium on the fruit quality of ‘Dongzao’ (Zizyphus jujuba Mill.). In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014): III 1116; International Society for Horticultural Science: Leuven, Belgium, 2014; pp. 105–108. [Google Scholar]
- Jing, D.W.; Du, Z.Y.; Ma, H.L.; Ma, B.Y.; Liu, F.C.; Song, Y.G.; Xu, Y.F.; Li, L. Selenium enrichment, fruit quality and yield of winter jujube as affected by addition of sodium selenite. Sci. Hort. 2017, 225, 1–5. [Google Scholar] [CrossRef]
- Julkowska, M.M.; Koevoets, I.T.; Mol, S.; Hoefsloot, H.; Feron, R.; Tester, M.A.; Keurentjes, J.J.; Korte, A.; Haring, M.A.; de Boer, G.J.; et al. Genetic components of root architecture remodeling in response to salt stress. Plant Cell 2017, 29, 3198–3213. [Google Scholar] [CrossRef] [PubMed]
- Drew, M.C.; Saker, L.R. Effects of direct drilling and ploughing on root distribution in spring barley, and on the concentrations of extractable phosphate and potassium in the upper horizons of a clay soil. J. Sci. Food Agric. 1978, 29, 201–206. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, Y.; Testerink, C. Root dynamic growth strategies in response to salinity. Plant Cell Environ. 2022, 45, 695–704. [Google Scholar] [CrossRef]
- Witzel, K.; Matros, A.; Møller, A.L.; Ramireddy, E.; Finnie, C.; Peukert, M.; Rutten, T.; Herzog, A.; Kunze, G.; Melzer, M.; et al. Plasma membrane proteome analysis identifies a role of barley membrane steroid binding protein in root architecture response to salinity. Plant Cell Environ. 2018, 41, 1311–1330. [Google Scholar] [CrossRef]
- Walker, L.; Boddington, C.; Jenkins, D.; Wang, Y.; Grønlund, J.T.; Hulsmans, J.; Kumar, S.; Patel, D.; Moore, J.D.; Carter, A.; et al. Changes in gene expression in space and time orchestrate environmentally mediated shaping of root architecture. Plant Cell 2017, 29, 2393–2412. [Google Scholar] [CrossRef]
- Tiwari, R.K.; Lal, M.K.; Naga, K.C.; Kumar, R.; Chourasia, K.N.; Subhash, S.; Kumar, D.; Sharma, S. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci. Hort. 2020, 272, 109592. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Functions of melatonin in plants: A review. J. Pineal Res. 2015, 59, 133–150. [Google Scholar] [CrossRef]
- Xu, L.; Xiang, G.; Sun, Q.; Ni, Y.; Jin, Z.; Gao, S.; Yao, Y. Melatonin enhances salt tolerance by promoting MYB108A-mediated ethylene biosynthesis in grapevines. Hort. Res. 2019, 6, 114. [Google Scholar] [CrossRef]
- Fan, J.; Xie, Y.; Zhang, Z.; Chen, L. Melatonin: A multifunctional factor in plants. Int. J. Mol. Sci. 2018, 19, 1528. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.K.; Howlader, P. Melatonin plays multifunctional role in horticultural crops against environmental stresses: A review. Environ. Exp. Bot. 2020, 176, 104063. [Google Scholar] [CrossRef]
- Brengi, S.H.; Abd Allah, E.M.; Abouelsaad, I.A. Effect of melatonin or cobalt on growth, yield and physiological responses of cucumber (Cucumis sativus L.) plants under salt stress. J. Saudi Soc. Agric. Sci. 2022, 21, 51–60. [Google Scholar] [CrossRef]
- Yan, Y.; Shi, Q.; Gong, B. Review of melatonin in horticultural crops. In Melatonin-The Hormone of Darkness and Its Therapeutic Potential and Perspectives; IntechOpen: London, UK, 2020; pp. 1–7. [Google Scholar]
- Zahedi, S.M.; Hosseini, M.S.; Fahadi Hoveizeh, N.; Gholami, R.; Abdelrahman, M.; Tran, L.S.P. Exogenous melatonin mitigates salinity-induced damage in olive seedlings by modulating ion homeostasis, antioxidant defense, and phytohormone balance. Physiol. Plant. 2021, 173, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Yavaş, İ.; Hussain, S. Recent Progress on Melatonin-Induced Salinity Tolerance in Plants: An Overview. Turk. J. Agric. Food Sci. Technol. 2022, 10, 1447–1454. [Google Scholar] [CrossRef]
- Ding, H.; Rahman, S. Experimental and theoretical study of wettability alteration during low salinity water flooding—An state of the art review. Colloid Surf. 2017, 520, 622–639. [Google Scholar] [CrossRef]
- Yang, L.; Liu, J.; Wang, X.; Wang, R.; Ren, F.; Zhang, Q.; Shan, Y.; Ding, S. Characterization of volatile component changes in jujube fruits during cold storage by using headspace-gas chromatography-ion mobility spectrometry. Molecules 2019, 24, 3904. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, C.; Zhao, X.; Fei, Z.; Wan, K.; Zhang, Z.; Pang, X.; Yin, X.; Bai, Y.; Sun, X.; et al. The jujube genome provides insights into genome evolution and the domestication of sweetness/acidity taste in fruit trees. PLoS Genet. 2016, 12, e1006433. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, N.; Wang, J.; Cao, Y.; Li, X.; Zhang, H.; Guo, Y. A label-free differential proteomics analysis reveals the effect of melatonin on promoting fruit ripening and anthocyanin accumulation upon postharvest in tomato. J. Pineal. Res. 2016, 61, 138–153. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: Plant growth regulator and/or biostimulator during stress? Trend. Plant Sci. 2014, 19, 789–797. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Z.K.; Chai, H.K.; Cheng, N.; Yang, Y.; Wang, D.N.; Yang, T.; Cao, W. Melatonin treatment delays postharvest senescence and regulates reactive oxygen species metabolism in peach fruit. Postharvest Biol. Technol. 2016, 118, 103–110. [Google Scholar] [CrossRef]
- Aghdam, M.S.; Fard, J.R. Melatonin treatment attenuates postharvest decay and maintains nutritional quality of strawberry fruits (Fragaria × anannasa cv. Selva) by enhancing GABA shunt activity. Food Chem. 2017, 221, 1650–1657. [Google Scholar] [CrossRef]
- Zhai, R.; Liu, J.; Liu, F.; Zhao, Y.; Liu, L.; Fang, C.; Xu, L. Melatonin limited ethylene production, softening and reduced physiology disorder in pear (Pyrus communis L.) fruit during senescence. Post. Biol. Technol. 2018, 139, 38–46. [Google Scholar] [CrossRef]
- Hu, W.; Kong, H.; Guo, Y.; Zhang, Y.; Ding, Z.; Tie, W.; Guo, A. Comparative physiological and transcriptomic analyses reveal the actions of melatonin in the delay of postharvest physiological deterioration of Cassava. Front. Plant Sci. 2016, 7, 736. [Google Scholar] [CrossRef]
- Hu, W.; Yang, H.; Tie, W.; Yan, Y.; Ding, Z.; Liu, Y.; Jin, Z. Natural variation in banana varieties highlights the role of melatonin in postharvest ripening and quality. J. Agric. Food Chem. 2017, 65, 9987–9994. [Google Scholar] [CrossRef]
- Liu, C.; Zheng, H.; Sheng, K.; Liu, W.; Zheng, L. Effects of melatonin treatment on the postharvest quality of strawberry fruit. Post. Biol. Technol. 2018, 139, 47–55. [Google Scholar] [CrossRef]
- Hassan, I.F.; Gaballah, M.S.; Ogbaga, C.C.; Murad, S.A.; Brysiewicz, A.; Bakr, B.M.; Mira, A.; Alam-Eldein, S.M. Does melatonin improve the yield attributes of field-droughted banana under Egyptian semi-arid conditions? J. Water Land Dev. 2022, 221–231. [Google Scholar] [CrossRef]
- Liu, S.; Huang, H.; Huber, D.J.; Pan, Y.; Shi, X.; Zhang, Z. Delay of ripening and softening in “Guifei” mango fruit by postharvest application of melatonin. Post. Biol. Technol. 2020, 163, 111136. [Google Scholar] [CrossRef]
- Kamiab, F. Exogenous melatonin mitigates the salinity damages and improves the growth of pistachio under salinity stress. J. Plant Nutr. 2020, 43, 1468–1484. [Google Scholar] [CrossRef]
- Hattori, A.; Migitaka, H.; Masayaki, I.; Itoh, M.; Yamamoto, K.; Ohtani-Kaneko, R. Identification of melatonin in plant seed its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 1995, 35, 627–634. [Google Scholar]
- Burkhardt, S.; Tan, D.X.; Manchester, L.C.; Hardeland, R.; Reiter, R.J. Detection and quantification of the antioxidant melatonin in Montmorency and Balaton tart cherries (Prunus cerasus). J. Agric. Food Chem. 2001, 49, 4898–4902. [Google Scholar] [CrossRef]
- Dubbels, R.; Reiter, R.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography mass spectrometry. J. Pineal Res. 1995, 18, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Badria, F.A. Melatonin, serotonin, and tryptamine in some Egyptian food and medicinal plants. J. Med. Food. 2002, 5, 153–157. [Google Scholar] [CrossRef]
- Reiter, R.J.; TAN, D.X. Melatonin: An antioxidant in edible plants. Ann. N. Y. Acad. Sci. 2002, 957, 341–344. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Huang, Y.; Bie, Z.; Ahmed, W.; Reiter, R.J.; Niu, M.; Hameed, S. Melatonin: Current status and future perspectives in plant science. Front. Plant Sci. 2016, 6, 1230. [Google Scholar] [CrossRef]
- Back, K.; Tan, D.X.; Reiter, R.J. Melatonin biosynthesis in plants: Multiple pathways catalyze tryptophan to melatonin in the cytoplasm or chloroplasts. J. Pineal Res. 2016, 61, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Tan, D.X.; Lei, Q.; Chen, H.; Wang, L.; Li, Q.T.; Gao, Y.; Kong, J. Melatonin and its potential biological functions in the fruits of sweet cherry. J. Pineal Res. 2013, 55, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Byeon, Y.; Back, K. Melatonin synthesis in rice seedlings in vivo is enhanced at high temperatures and under dark conditions due to increased serotonin N-acetyltransferase and N-acetylserotonin methyltransferase activities. J. Pineal Res. 2014, 56, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Wu, C.; Zhou, X.; Guo, X.; Wang, Y. Screening of Wild Jujube Germplasm Resources Salt-Resistant Root Stock. Xinjiang Agric. Sci. 2018, 55, 269. [Google Scholar]
- Wang, F.; Zhang, X.; Yang, Q.; Zhao, Q. Exogenous melatonin delays postharvest fruit senescence and maintains the quality of sweet cherries. Food Chem. 2019, 301, 125311. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Luo, Z.; Ban, Z.; Jiang, N.; Yang, M.; Li, L. Role of exogenous melatonin involved in phenolic metabolism of Zizyphus jujuba fruit. Food Chem. 2021, 341, 128268. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.A.; Shahid, R.; Ren, M.X.; Mora-Poblete, F.; Arnao, M.B.; Naz, S.; Anwar, M.; Altaf, M.M.; Shahid, S.; Shakoor, A.; et al. Phytomelatonin: An overview of the importance and mediating functions of melatonin against environmental stresses. Physiol. Plant. 2021, 172, 820–846. [Google Scholar] [CrossRef]
- Seely, D.; Wu, P.; Fritz, H.; Kennedy, D.A.; Tsui, T.; Seely, A.J.; Mills, E. Melatonin as adjuvant cancer care with and without chemotherapy: A systematic review and meta-analysis of randomized trials. Integrat. Cancer Therap. 2012, 11, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Suleyman, I.A.; Allakhverdiev, A.S.; Yoshitaka, N.; Masami, I.; Norio, M. Ionic and osmotic effects of NaCl-induced inactivation of photosystems I and II in Synechococcus sp. Plant Physiol. 2000, 123, 1047–1056. [Google Scholar]
- Zhu, J.K.; Hasegawa, P.M.; Bressan, R.A.; Bohnert, H.J. Molecular aspects of osmotic stress in plants. Critic. Rev. Plant Sci. 1997, 16, 253–277. [Google Scholar] [CrossRef]
- Li, C.; Wang, P.; Wei, Z.; Liang, D.; Liu, C.; Yin, L.; Jia, D.; Fu, M.; Ma, F. The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal. Res. 2012, 53, 298–306. [Google Scholar] [CrossRef]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Deng, B.; Xia, C.; Tian, S.; Shi, H. Melatonin reduces pesticide residue, delays senescence, and improves antioxidant nutrient accumulation in postharvest jujube fruit. Posthavest. Biol. Technol. 2021, 173, 111419. [Google Scholar] [CrossRef]
- Tang, Q.; Li, C.; Ge, Y.; Li, X.; Cheng, Y.; Hou, J.; Li, J. Exogenous application of melatonin maintains storage quality of jujubes by enhancing anti-oxidative ability and suppressing the activity of cell wall-degrading enzymes. LWT 2020, 127, 109431. [Google Scholar] [CrossRef]
- Corpas, F.J.; Rodríguez-Ruiz, M.; Muñoz-Vargas, M.A.; González-Gordo, S.; Reiter, R.J.; Palma, J.M. Interactions of melatonin, reactive oxygen species, and nitric oxide during fruit ripening: An update and prospective view. J. Exp. Bot. 2022, 73, 5947–5960. [Google Scholar] [CrossRef]
- Asins, M.J.; Bolarín, M.C.; Pérez-Alfocea, F.; Estañ, M.T.; Martínez-Andújar, C.; Albacete, A.; Villalta, I.; Bernet, G.P.; Dodd, I.C.; Carbonell, E.A. Genetic analysis of physiological components of salt tolerance conferred by Solanum rootstocks. What is the rootstock doing for the scion? Theor. Appl. Genet. 2010, 121, 105–115. [Google Scholar] [CrossRef] [PubMed]
- Goreta, S.; Bucevic-Popovic, V.; Selak, G.V.; Pavela-Vrancic, M.; Perica, S. Vegetative growth, superoxide dismutase activity and ion concentration of salt-stressed watermelon as influenced by rootstock. J. Agric. Sci. 2008, 146, 695–704. [Google Scholar] [CrossRef]
- Estan, M.T.; Martinez-Rodriguez, M.M.; Perez-Alfocea, F.; Flowers, T.J.; Bolarin, M.C. Grafting raises the salt tolerance of tomato through limiting the transport of sodium and chloride to the shoot. J. Exp. Bot. 2005, 56, 703–712. [Google Scholar] [CrossRef]
- Zhan, H.; Nie, X.; Zhang, T.; Li, S.; Wang, X.; Du, X.; Tong, W.; Song, W. Melatonin: A small molecule but important for salt stress tolerance in plants. Int. J. Mol. Sci. 2019, 20, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.X. Melatonin and plants. J. Exp. Bot. 2015, 66, 625–626. [Google Scholar] [CrossRef]
- Zheng, X.; Tan, D.X.; Allan, A.C.; Zuo, B.; Zhao, Y.; Reiter, R.J.; Wang, L.; Wang, Z.; Guo, Y.; Zhou, J.; et al. Chloroplastic biosynthesis of melatonin and its involvement in protection of plants from salt stress. Sci. Rep. 2017, 7, 41236. [Google Scholar] [CrossRef]
- Castañares, J.L.; Bouzo, C.A. Effect of exogenous melatonin on seed germination and seedling growth in melon (Cucumis melo L.) under salt stress. Hortic. Plant J. 2019, 5, 79–87. [Google Scholar] [CrossRef]
- Chang, X.; Sun, J.; Liu, L.; He, W.; Zhao, B. Transcriptome analysis of differentially expressed genes in wild jujube seedlings under salt stress. J. Ame. Soc. Hortic. Sci. 2020, 145, 174–185. [Google Scholar] [CrossRef]
- Parvaiz, A.; Satyawati, S. Salt stress and phyto-biochemical responses of plants-a review. Plant Soil Environ. 2008, 54, 89. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, X.; He, A.; Cao, Y.; Han, Q.; Lu, Y.; Yong, J.W.H.; Huang, J. Mycorrhizal symbiosis reprograms ion fluxes and fatty acid metabolism in wild jujube during salt stress. Plant Physiol. 2022, 189, 2481–2499. [Google Scholar] [CrossRef] [PubMed]
- Afifi, A.A.; Youssef, R.A.; Hussein, M.M. Fourier transform infrared spectometry study on early stage of salt stress in jujube plant. Life Sci. J. 2013, 10, 1973–1981. [Google Scholar]
- Jin, J.; Cui, H.; Lv, X.; Yang, Y.; Wang, Y.; Lu, X. Exogenous CaCl2 reduces salt stress in sour jujube by reducing Na+ and increasing K+, Ca2+, and Mg2+ in different plant organs. J. Hort. Sci. Biotechnol. 2017, 92, 98–106. [Google Scholar] [CrossRef]
- Agathokleous, E.; Zhou, B.; Xu, J.; Ioannou, A.; Feng, Z.; Saitanis, C.J.; Frei, M.; Calabrese, E.J.; Fotopoulos, V. Exogenous application of melatonin to plants, algae, and harvested products to sustain agricultural productivity and enhance nutritional and nutraceutical value: A meta-analysis. Environ. Res. 2021, 200, 111746. [Google Scholar] [CrossRef]
- Liu, J.; Yue, R.; Si, M.; Wu, M.; Cong, L.; Zhai, R.; Yang, C.; Wang, Z.; Ma, F.; Xu, L. Effects of exogenous application of melatonin on quality and sugar metabolism in ‘Zaosu’pear fruit. J. Plant Growth Regul. 2019, 38, 1161–1169. [Google Scholar] [CrossRef]
- Lyu, R.; Wang, R.; Wu, C.; Bao, Y.; Guo, P. Comparative Transcriptome Analysis of Leaves of Sour Jujube Seedlings under Salt Stress. Acta Physiol. Plant. 2021, 44, 119. [Google Scholar] [CrossRef]
- Xu, C.; Ma, Y.; Xu, X. Polyamine contents and polyamine oxidase activities in roots and leaves of two jujube (Ziziphus jujuba Mill.) cultivars with contrary salt tolerance under salt stress. J. Trop. Subtrop. Bot. 2013, 21, 297–304. [Google Scholar]
- Juan, J.I.N.; Yi, W.A.N.G.; Xiao-Yan, L.U.; Hai-Rong, L.I.N.; Hui-Mei, C.U.I. Effects of NaCl stress on ion absorption and distribution in sour jujube seedlings. Acta Hort. Sin. 2015, 42, 853. [Google Scholar]
- Molassiotis, A.; Job, D.; Ziogas, V. Citrus plants: A model system for unlocking the secrets of NO and ROS-inspired priming against salinity and drought. Front. Plant Sci. 2016, 7, 229. [Google Scholar] [CrossRef]
- Bañuelos, G.S. Coping with naturally-high levels of soil salinity and boron in the westside of central California. Perspect. Sci. 2014, 3, 4–6. [Google Scholar] [CrossRef]
- Thangella, P.A.V.; Pasumarti, S.N.B.S.; Pullakhandam, R. Differential expression of leaf proteins in four cultivars of peanut (Arachis hypogaea L.) under water stress. 3 Biotech 2018, 8, 157. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yang, Y. Phospholipids in salt stress response. Plants 2021, 10, 2204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Li, H.; Guo, S.; Wang, S.; Shi, H.; Han, Q.; Bao, A.; Ma, Q. Research advances in higher plant adaptation to salt stress. Acta Pratac. Sin. 2015, 24, 220–236. [Google Scholar]
- Tanou, G.; Job, C.; Rajjou, L.; Arc, E.; Belghazi, M.; Diamantidis, G.; Molassiotis, A.; Job, D. Proteomics reveals the overlapping roles of hydrogen peroxide and nitric oxide in the acclimation of citrus plants to salinity. Plant J. 2009, 60, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Tanou, G.; Ziogas, V.; Belghazi, M.; Christou, A.; Filippou, P.; Job, D.; Fotopoulos, V.; Molassiotis, A. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. Plant Cell Environ. 2014, 37, 864–885. [Google Scholar] [CrossRef]
- Abd-Allatif, A.M.; El Kheshin, M.A.; Rashedy, A.A. Antioxidant Potential of some Mango (Mangifera indica L.) cultivars growing under salinity stress. Egypt. J. Hort. 2015, 42, 654–665. [Google Scholar]
- Muhammed, M.A.; Mohamed, A.K.S.; Qayyum, M.F.; Haider, G.; Ali, H.A. Physiological response of mango transplants to phytohormones under salinity stress. Sci. Hort. 2022, 296, 110918. [Google Scholar] [CrossRef]
- Kamal, A.; Kumar, V.; Muthukumar, M.; Bajpai, A. Morphological indicators of salinity stress and their relation with osmolyte associated redox regulation in mango cultivars. J. Plant Biochem. Biotechnol. 2021, 30, 918–929. [Google Scholar]
- Jazi, M.M.; Seyedi, S.M.; Ebrahimie, E.; Ebrahimi, M.; Moro, D.G. A genome-wide transcriptome map of pistachio (Pistacia vera L.) provides novel insights into salinity-related genes and marker discovery. BMC Genom. 2017, 18, 627. [Google Scholar]
- Kumari, A.; Das, P.; Parida, A.K.; Agarwal, P.K. Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Front. Plant Sci. 2015, 6, 537. [Google Scholar] [CrossRef]
- Kurup, S.S.; Hedar, Y.S.; Al Dhaheri, M.A.; El-Heawiety, A.Y.; Aly, M.A. Morpho-physiological evaluation and RAPD markers-assisted characterization of date palm (Phoenix dactylifera L.) varieties for salinity tolerance. J. Food Agric. Environ. 2009, 7, 3–50. [Google Scholar]
- Chen, Z.; Gu, Q.; Yu, X.; Huang, L.; Xu, S.; Wang, R.; Shen, W.; Shen, W. Hydrogen peroxide acts downstream of melatonin to induce lateral root formation. Annal. Bot. 2018, 121, 1127–1136. [Google Scholar] [CrossRef] [PubMed]
- Singh, Y.; Prajapati, S. Status of horticultural crops: Identifying the Need for transgenic traits. In Genetic Engineering of Horticultural Crops; Academic Press: Cambridge, MA, USA, 2018; pp. 1–21. [Google Scholar]
- Zhao, C.; Nawaz, G.; Cao, Q.; Xu, T. Melatonin is a potential target for improving horticultural crop resistance to abiotic stress. Sci. Hort. 2022, 291, 110560. [Google Scholar] [CrossRef]
- Gong, B.; Shi, Q. Review of melatonin in horticultural crops. Sci. Agric. Sin. 2017, 50, 2326–2337. [Google Scholar]
- Srivastav, M.; Kishor, A.; Dahuja, A.; Sharma, R.R. Effect of paclobutrazol and salinity on ion leakage, proline content and activities of antioxidant enzymes in mango (Mangifera indica L.). Sci. Hort. 2010, 125, 785–788. [Google Scholar] [CrossRef]
- Dayal, V.; Dubey, A.K.; Awasthi, O.P.; Pandey, R.; Dahuja, A. Growth, lipid peroxidation, antioxidant enzymes and nutrient accumulation in Amrapali mango (Mangifera indica L.) grafted on different rootstocks under NaCl stress. Plant Know. J. 2014, 3, 15–22. [Google Scholar]
- El-Dengawy, E.F.A.; EL-Abbasy, U.K.; El-Gobba, M.H. Influence of nano-silicon treatment on growth behavior of ‘Sukkary’and ‘Gahrawy’mango root-stocks under salinity stress. J. Plant Product. 2021, 12, 49–61. [Google Scholar] [CrossRef]
- Pandey, P.; Singh, A.K.; Dubey, A.K.; Dahuja, A. Biochemical and salt ion uptake responses of seven mango (Mangifera indica L.) rootstocks to NaCl stress. J. Hort. Sci. Biotechnol. 2014, 89, 367–372. [Google Scholar] [CrossRef]
- Lata, K.; Srivastav, M.; Dubey, A.K.; Singh, A.K.; Sairam, R.K. Effect of polyamines on seedlings of two mango (Mangifera indica L.) rootstocks under salt stress. Indian J. Plant Physiol. 2011, 16, 258. [Google Scholar]
- Arnao, M.B.; Hernández-Ruiz, J. Growth conditions determine different melatonin levels in Lupinus albus L. J. Pineal Res. 2013, 55, 149–155. [Google Scholar] [CrossRef]
- Reiter, R.J.; Tan, D.X.; Zhou, Z.; Cruz, M.H.C.; Fuentes-Broto, L.; Galano, A. Phytomelatonin: Assisting plants to survive and thrive. Molecules 2015, 20, 7396–7437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Traits | Impacts | References |
---|---|---|
ROS | Its normal production is effective for normal functioning of plants. Its over-generation within cell compartments is indicative of stress conditions which are toxic for plants’ health. | [33] |
MDA | Production of MDA content is indicative of stressed plants. | [34] |
Its reduction is effective for a decrease in lipid peroxidation of membranes that occurs due to an excess of salts. | [35] | |
Higher salt-tolerance mechanism recorded through reduction in lipid peroxidation under salt stress. | [36] | |
H2O2 | The production of H2O2 within plant cells and compartments is indicative of stress conditions faced by plants. Its scavenging is made possible by CAT activity naturally. | [37] |
SOD | It is important to disturb the O2 to form H2O2 and remove the harmfulness of the superoxide anion. | [38] |
POD | POD level is enhanced in Z. spina-christi under high salinity levels which contributes to scavenging of toxic ROS. | [38] |
CAT | It mainly contributes to the reduction of H2O2 which is manufactured in light respiration in Zizyphus species. | [38] |
APX | It also reduces the H2O2 generation in Zizyphus fruit species against osmotic stress conditions. | [39] |
Glutathione | It is involved in maintaining normal cellular redox system of fruit plants either in normal or even in stressed conditions. | [40] |
H2O2 and its derivatives are quickly reduced through glutathione. | [41] | |
It has excellent scavenging potential against salt stress. | [42] | |
Proline | Proline is considered an antioxidant that improves salt tolerance in Zizyphus plants. | [5] |
Proline may act as a signaling molecule in order to maintain osmotic regulation. | [43] | |
Proline synthesis is largely increased in leaves and roots. | [43] | |
GB | It is very well known to regulate photosynthetic pigments and protein stability. Regulation of oxidative injury is necessary for higher yields. Gola cultivars of Z. rotundifolia are salt-tolerant and accumulate more glycine betaine than proline. | [44] |
Photosynthetic pigments | Regulation of photosynthetic machinery is necessary for higher yields. | [45] |
Photosynthetic pigments rupture due to an excess of salts | [46] |
Traits | Functions | References |
---|---|---|
TSS | Decreased nutritional contents, such as TSS, are recorded in fruit trees under saline-induced environments. | [1] |
AsA | It plays a significant role in reducing the hypoxia-induced oxidative injury in plants. | [47] |
Phenolic content | Different phenolic compounds are present in fruit trees which mainly protect fruit trees from salinity stress by acting as a glucose-reservoir for osmoregulation and are essential constituents of the antioxidant defense mechanism. | [47] |
Tocopherols | These have excellent potential to scavenge the excess toxic ROS and lipid radicals in plants. Lipid peroxidation is reduced due to production of tocopherols. These have greater potential to directly repair oxidizing radicals by inhibiting the chain transmission period during lipid auto-oxidation. | [48] |
Flavonoids | Lipoxygenase production is restricted by generation of flavonoids; these also contribute well to improving plant defense system salinity stress conditions. | [49] |
Different sugars | Reducing, non-reducing, and total sugars are drastically reduced due to the excess of salts within fruit tree cells and compartments. | [24] |
TSP | Its concentration is decreased in leaves of Zizyphus fruit crop due to excessive salt concentrations within the plant cells. | [50] |
Species | Cultivars | Applied Concentrations | Duration | Threshold Concentrations | Effects of Salinity | References |
---|---|---|---|---|---|---|
Z. jujuba Mill. | Spinosa | 50, 100 and 150 mM NaCl | 0, 2, 6, 10, and 14 days | 50 mM | Ploidy level can increase salt tolerance. Greater osmotic regulation was recorded in auto-tetraploidization than diploid germplasm of Zizyphus. | [11] |
Z. mauritiana Lamk. | Gola and Umran | 0, 4, 8, 12, and 16 dS m−1 of EC | After one day interval to avoid osmotic stress | 4 dS m−1 of EC | Gola cultivar is more resistant against salt stress due to restoration of physiological and molecular basis. | [43] |
Z. mauritiana and Z. rotundifolia. | Anonymous accessions at seedling stage | 75 and 150 mM NaCl | 4, 7 and 9 days | 75 mM NaCl | Regulation of biochemical and physiological mechanisms due to strong defense system through 10 mg/L of uniconazole | [50] |
Z. jujuba Mill. | Two years grafted seedlings of cultivar Jinsi-xiaozao | 0, 3.0 and 5.0 g kg−1 applied in soil | Salt concentrations were applied on potted culture medium | 3.0 kg−1 applied in soil | Photosynthetic pigments, i.e., chlorophyll a, b, total chlorophyll and Fv/Fo of PSII were reduced by 12.30% and 22.08%, respectively, compared with untreated plants | [51] |
Z. mauritiana Lamk. | Dehli White, Suffon, Karella and Mehmood Wali | Brackish water 11 dsm−1 and 50% brackish water + 50% normal water | Every irrigation when required | 50–60 mM | Dehli White cultivar of jujube is good for marginal lands in Pakistan because of good growth, yield and quality with improved defense system. | [6] |
Z. mauritiana Lamk. | Banarsi Karaka, Narendra Ber Selection-1, Narendra Ber, Selection-2, Narendra Ber Selection-3, Pond and Gola | 0, 4.0, 8.0, 12.0, 16.0 dSm−1 EC | Irrigation was applied alternately to ease the uniform dissemination of salts | 0, 4.0 dSm−1 EC | The Na+ and Cl- in leaves were enhanced due to increase in salinity. Jujube cvs. such as Banarsi Karaka, Narendra Ber, Selection-2 and Ponda can be placed in the tolerant group, and cvs. Narendra Ber Selection-1 and Gola as the semi-tolerant group. These findings may be supportive of commercial cultivation of jujube in salt-pretentious regions. | [52] |
Z. mauritiana Lamk. | One year old budded plant of Umran cultivar | 0, 50, 100, 150 and 200 meq 1−1 of NaCl, CaC12, MgC12 and MgS04 were added in 1:1 (Na: Ca + Mg) and 3:7 (Cl:S04) | Regular irrigation was performed as per plant requirement | 50 mM | Jujube, especially Umran, can be cultivated in salty lands with EC up to 11.30 dSm−1. This is the optimum level of EC at which jujube trees can be grown. The 50% yield reduction was recorded to be associated with a soil EC value of 11.30 dsm−1. | [47] |
Z. jujuba Mill. | Dongzao | 1 g L−1, 2 g L−1, 3 g L−1, 4 g L−1, and 5 g L−1 | Regular irrigation was performed as per plant requirement | 1 & 2 g L−1 | Irrigation with low level of brackish water had little effect on the yield of winter jujube, but it reduced drastically after exceeding the threshold level of 3 g L−1. | [53] |
Z. Spaina-chrsity (L.) and Acacia tortillis subsp. tortillis | Zizyphus spina-christi and Acacia tortillis subsp. tortillis seedlings | The mixed salts of Sodium and Calcium chloride (1:1 v/v) at concentrations of 1000–5000 ppm. | Regular irrigation was performed as per plant requirement | 70 mM | Acacia tortillis subsp. Tortillis is found to be more tolerant compared with Z. Spaina-chrsity (L.) | [33] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, R.; Manzoor, M.; Muhammad, H.M.D.; Altaf, M.A.; Shakoor, A. Exogenous Melatonin Spray Enhances Salinity Tolerance in Zizyphus Germplasm: A Brief Theory. Life 2023, 13, 493. https://doi.org/10.3390/life13020493
Ahmad R, Manzoor M, Muhammad HMD, Altaf MA, Shakoor A. Exogenous Melatonin Spray Enhances Salinity Tolerance in Zizyphus Germplasm: A Brief Theory. Life. 2023; 13(2):493. https://doi.org/10.3390/life13020493
Chicago/Turabian StyleAhmad, Riaz, Meryam Manzoor, Hafiza Muniba Din Muhammad, Muhammad Ahsan Altaf, and Awais Shakoor. 2023. "Exogenous Melatonin Spray Enhances Salinity Tolerance in Zizyphus Germplasm: A Brief Theory" Life 13, no. 2: 493. https://doi.org/10.3390/life13020493
APA StyleAhmad, R., Manzoor, M., Muhammad, H. M. D., Altaf, M. A., & Shakoor, A. (2023). Exogenous Melatonin Spray Enhances Salinity Tolerance in Zizyphus Germplasm: A Brief Theory. Life, 13(2), 493. https://doi.org/10.3390/life13020493