Towards an RNA/Peptides World by the Direct RNA Template Mechanism: The Emergence of Membrane-Stabilizing Peptides in RNA-Based Protocells
Abstract
:1. Introduction
2. Results
2.1. The Plausibility Concerning the Spread of the Protocells Containing MSPG
2.2. Modeling the De Novo Emergence of MSPG in Protocells
2.3. The Plausibility Concerning the Spread of Protocells Containing Both MSPG and a Functional Ribozyme
2.4. Modeling the Emergence of MSPG in Protocells Containing Ribozymes
2.5. The Plausibility Concerning the Spread of Protocells Containing Both MSPG and Another Functional Peptide’s RNA Gene
2.6. Modeling the Takeover of Ribozyme by the RNA Gene Encoding a Peptide with the Same Function in Protocells
3. Discussion
4. Methods
4.1. The Model
4.2. The Setting of Parameters
4.3. Detailed Mechanisms Concerning How Some of the Parameters Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gilbert, W. The RNA world. Nature 1986, 319, 618. [Google Scholar] [CrossRef]
- Joyce, G.F. The antiquity of RNA-based evolution. Nature 2002, 418, 214–221. [Google Scholar] [CrossRef]
- Bernhardt, H.S. The RNA world hypothesis: The worst theory of the early evolution of life (except for all the others). Biol. Direct 2012, 7, 23. [Google Scholar] [CrossRef]
- Higgs, P.G.; Lehman, N. The RNA World: Molecular cooperation at the origins of life. Nat. Rev. Genet. 2015, 16, 7–17. [Google Scholar] [CrossRef]
- Kruger, K.; Grabowski, P.E.; Zaug, A.J.; Sands, J.; Gottschling, D.E.; Cech, T.R. Self-splicing RNA: Autoexcision and autocyclization of ribosomal RNA intervening sequence of Tetrahymena. Cell 1982, 31, 147–157. [Google Scholar] [CrossRef]
- Guerrier-Takada, C.; Gardiner, K.; Marsh, T.; Pace, N.; Altman, S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 1983, 35, 849–857. [Google Scholar] [CrossRef]
- Nissen, P.; Hansen, J.; Ban, N.; Moore, P.B.; Steitz, T.A. The structural basis of ribosome activity in peptide bond synthesis. Science 2000, 289, 920–930. [Google Scholar] [CrossRef]
- Yusupov, M.M.; Yusupova, G.Z.; Baucom, A.; Lieberman, K.; Earnest, T.N.; Cate, J.H.D.; Noller, H.F. Crystal structure of the ribosome at 5.5 angstrom resolution. Science 2001, 292, 883–896. [Google Scholar] [CrossRef]
- Muchowska, K.B.; Varma, S.J.; Moran, J. Nonenzymatic metabolic reactions and life’s origins. Chem. Rev. 2020, 120, 7708–7744. [Google Scholar] [CrossRef]
- Sutherland, J.D. Studies on the origin of life—The end of the beginning. Nat. Rev. Chem. 2017, 1, 0012. [Google Scholar] [CrossRef]
- Kitadai, N.; Maruyama, S. Origins of building blocks of life: A review. Geosci. Front. 2018, 9, 1117–1153. [Google Scholar] [CrossRef]
- Youssef-Saliba, S.; Vallee, Y. Sulfur amino acids: From prebiotic chemistry to biology and vice versa. Synthesis 2021, 53, 2798–2808. [Google Scholar]
- Eschenmoser, A. The search for the chemistry of life’s origin. Tetrahedron 2007, 63, 12821–12843. [Google Scholar] [CrossRef]
- Ma, W. What does “the RNA world” mean to the origin of life? Life 2017, 7, 49. [Google Scholar] [CrossRef]
- Ma, W.; Liang, Y. Chapter 12—Investigating prebiotic protocells for an understanding of the origin of life: A comprehensive perspective combining the chemical, evolutionary and historical aspects. In Probiotic Chemistry and Life’s Origin; Fiore, M., Ed.; The Royal Society of Chemistry: London, UK, 2022; pp. 347–378. [Google Scholar]
- Kurland, C.G. The RNA dreamtime. Bioessays 2010, 32, 866–871. [Google Scholar] [CrossRef]
- Freeland, S.J.; Knight, R.D.; Landweber, L.F. Do proteins predate DNA? Science 1999, 286, 690–692. [Google Scholar] [CrossRef]
- Burton, A.S.; Lehman, N. DNA before proteins? Recent discoveries in nucleic acid catalysis strengthen the case. Astrobiology 2009, 9, 125–130. [Google Scholar] [CrossRef]
- Ciesiolka, J.; Illangasekare, M.; Majerfeld, I.; Nickles, T.; Welch, M.; Yarus, M.; Zinnen, S. Affinity selection-amplification from randomized ribooligonucleotide pools. Methods Enzym. 1996, 267, 315–335. [Google Scholar]
- Yarus, M.; Widmann, J.J.; Knight, R. RNA-amino acid binding: A stereochemical era for the genetic code. J. Mol. Evol. 2009, 69, 429. [Google Scholar] [CrossRef]
- Janas, T.; Widmann, J.J.; Knight, R.; Yarus, M. Simple, recurring RNA binding sites for L-arginine. RNA 2010, 16, 805–816. [Google Scholar] [CrossRef]
- Yarus, M. The genetic code and RNA-amino acid affinities. Life 2017, 7, 13. [Google Scholar] [CrossRef]
- Johnson, D.B.F.; Wang, L. Imprints of the genetic code in the ribosome. Proc. Natl. Acad. Sci. USA 2010, 107, 8298–8303. [Google Scholar] [CrossRef] [Green Version]
- Yarus, M. Amino acids as RNA ligands: A direct-RNA-template theory for the code’s origin. J. Mol. Evol. 1998, 47, 109–117. [Google Scholar] [CrossRef]
- Ma, W. The scenario on the origin of translation in the RNA world: In principle of replication parsimony. Biol. Direct 2010, 5, 65. [Google Scholar] [CrossRef]
- Adamala, K.; Szostak, J.W. Competition between model protocells driven by an encapsulated catalyst. Nat. Chem. 2013, 5, 495–501. [Google Scholar] [CrossRef]
- Szathmary, E.; Demeter, L. Group selection of early replicators and origin of life. J. Theor. Biol. 1987, 128, 463–486. [Google Scholar] [CrossRef]
- Szathmary, E. The origin of replicators and reproducers. Phil. Trans. R. Soc. B Biol. Sci. 2006, 361, 1761–1776. [Google Scholar] [CrossRef]
- Takeuchi, N.; Hogeweg, P. Evolutionary dynamics of RNA-like replicator systems: A bioinformatic approach to the origin of life. Phys. Life Rev. 2012, 9, 219–263. [Google Scholar] [CrossRef] [PubMed]
- Szostak, J.W.; Bartel, D.P.; Luisi, P.L. Synthesizing life. Nature 2001, 409, 387–390. [Google Scholar] [CrossRef]
- Joyce, G.F.; Orgel, L.E. Chapter 2—Progress toward understanding the origin of the RNA World. In The RNA World; Gesteland, R.F., Cech, T.R., Atkins, J.F., Eds.; Cold Spring Harbor Laboratory Press: New York, NY, USA, 2006; pp. 23–56. [Google Scholar]
- Joyce, G.F.; Szostak, J.W. Protocells and RNA self-replication. Cold Spring Harb. Perspect. Biol. 2018, 10, a034801. [Google Scholar] [CrossRef] [PubMed]
- Johnston, W.K.; Unrau, P.J.; Lawrence, M.S.; Glasner, M.E.; Bartel, D.P. RNA-catalyzed RNA polymerization: Accurate and general RNA-templated primer extension. Science 2001, 292, 1319–1325. [Google Scholar] [CrossRef]
- Attwater, J.; Wochner, A.; Holliger, P. In-ice evolution of RNA polymerase ribozyme activity. Nat. Chem. 2013, 5, 1011–1018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cojocaru, R.; Unrau, P.J. Processive RNA polymerization and promoter recognition in an RNA World. Science 2021, 371, 1225–1232. [Google Scholar] [CrossRef] [PubMed]
- Kristoffersen, E.L.; Burman, M.; Noy, A.; Holliger, P. Rolling circle RNA synthesis catalyzed by RNA. eLife 2022, 11, e75186. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Yu, C.; Zhang, W.; Hu, J. Nucleotide synthetase ribozymes may have emerged first in the RNA world. RNA 2007, 13, 2012–2019. [Google Scholar] [CrossRef]
- Unrau, P.J.; Bartel, D.P. RNA-catalyzed nucleotide synthesis. Nature 1998, 395, 260–263. [Google Scholar] [CrossRef]
- Lau, M.W.L.; Cadieux, K.E.C.; Unrau, P.J. Isolation of fast purine nucleotide synthase ribozymes. J. Am. Chem. Soc. 2004, 126, 15686–15693. [Google Scholar] [CrossRef]
- Lau, M.W.L.; Unrau, P.J. A promiscuous ribozyme promotes nucleotide synthesis in addition to ribose chemistry. Chem. Biol. 2009, 16, 815–825. [Google Scholar] [CrossRef]
- Szabo, P.; Scheuring, I.; Czaran, T.; Szathmary, E. In silico simulations reveal that replicators with limited dispersal evolve towards higher efficiency and fidelity. Nature 2002, 420, 340–343. [Google Scholar] [CrossRef]
- Ma, W.; Yu, C.; Zhang, W.; Hu, J. A simple template-dependent ligase ribozyme as the RNA replicase emerging first in the RNA world. Astrobiology 2010, 10, 437–447. [Google Scholar] [CrossRef]
- Ma, W.; Hu, J. Computer simulation on the cooperation of functional molecules during the early stages of evolution. PLoS ONE 2012, 7, e35454. [Google Scholar] [CrossRef]
- Kim, Y.E.; Higgs, P.G. Co-operation between polymerases and nucleotide synthetases in the RNA world. PLoS Comput. Biol. 2016, 12, e1005161. [Google Scholar] [CrossRef] [Green Version]
- Yin, S.; Chen, Y.; Yu, C.; Ma, W. From molecular to cellular form: Modeling the first major transition during the arising of life. BMC Evol. Biol. 2019, 19, 84. [Google Scholar] [CrossRef]
- Mansy, S.S.; Schrum, J.P.; Krishnamurthy, M.; Tobe, S.; Treco, D.A.; Szostak, J.W. Template-directed synthesis of a genetic polymer in a model protocell. Nature 2008, 454, 122–125. [Google Scholar] [CrossRef]
- Mansy, S.S. Membrane transport in primitive cells. Cold Spring Harb. Perspect. Biol. 2010, 2, a002188. [Google Scholar] [CrossRef]
- Takeuchi, N.; Hogeweg, P.; Koonin, E.V. On the origin of DNA genomes: Evolution of the division of labor between template and catalyst in model replicator systems. PLoS Comput. Biol. 2011, 7, e1002024. [Google Scholar] [CrossRef]
- Ma, W.; Yu, C.; Zhang, W.; Wu, S.; Feng, Y. The emergence of DNA in the RNA world: An in silico simulation study of genetic takeover. BMC Evol. Biol. 2015, 15, 272. [Google Scholar] [CrossRef]
- Miller, S.L. A production of amino acids under possible primitive Earth condition. Science 1953, 117, 528–529. [Google Scholar] [CrossRef]
- Ma, W.; Yu, C.; Zhang, W.; Zhou, P.; Hu, J. The emergence of ribozymes synthesizing membrane components in RNA-based protocells. Biosystems 2010, 99, 201–209. [Google Scholar] [CrossRef]
- Ma, W.; Yu, C.; Zhang, W. Circularity and self-cleavage as a strategy for the emergence of a chromosome in the RNA-based protocell. Biol. Direct 2013, 8, 21. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, W. The origin of biological homochirality along with the origin of life. PLoS Comput. Biol. 2020, 16, e1007592. [Google Scholar] [CrossRef]
- Russell, M.J.; Hall, A.J.; Cairns-Smith, A.G.; Braterman, P.S. Submarine hot spring and origin of life. Nature 1988, 336, 117. [Google Scholar] [CrossRef]
- Martin, W.; Baross, J.; Kelley, D.; Russell, M.J. Hydrothermal vents and the origin of life. Nat. Rev. Microbiol. 2008, 6, 805–814. [Google Scholar] [CrossRef]
- Colin-Garcia, M.; Heredia, A.; Cordero, G.; Camprubi, A.; Negron-Mendoza, A.; Ortega-Gutierrez, F.; Beraldi, H.; Ramos-Bernal, S. Hydrothermal vents and prebiotic chemistry: A review. Bol. Soc. Geol. Mex. 2016, 68, 599–620. [Google Scholar] [CrossRef]
- Deamer, D.; Damer, B.; Kompanichenko, V. Hydrothermal chemistry and the origin of cellular life. Astrobiology 2019, 19, 1523–1537. [Google Scholar] [CrossRef]
- Damer, B.; Deamer, D. Coupled phases and combinatorial selection in fluctuating hydrothermal pools: A scenario to guide experimental approaches to the origin of cellular life. Life 2015, 5, 872–887. [Google Scholar] [CrossRef]
- Liang, Y.; Yu, C.; Ma, W. The automatic parameter-exploration with a machine-learning-like approach: Powering the evolutionary modeling on the origin of life. PLoS Comput. Biol. 2021, 17, e1009761. [Google Scholar] [CrossRef]
- Chen, I.A.; Roberts, R.W.; Szostak, J.W. The emergence of competition between model protocells. Science 2004, 305, 1474–1476. [Google Scholar] [CrossRef]
- Donnan, F.G. Theory of membrane equilibria and membrane potentials in the presence of non-dialysing electrolytes. A contribution to physical-chemical physiology. J. Mem. Sci. 1995, 100, 45–55. [Google Scholar] [CrossRef]
- Zimm, B.H. Dynamics of polymer molecules in dilute solution: Viscoelasticity, flow birefringence and dielectric loss. J. Chem. Phys. 2012, 24, 269–278. [Google Scholar] [CrossRef]
Probabilities | Descriptions | Values |
---|---|---|
PAD | An amphiphile decaying into its precursor | 0.01 |
PAF | An amphiphile forming from its precursor | 0.02 |
PAJM | An amphiphile joining the membrane | 0.2 |
PALM | An amphiphile leaving the membrane | 0.001 |
PAPP | An amphiphile precursor permeating through the membrane | 0.9 |
PAT | An RNA template attracting a substrate (by base-pairing) | 0.9 |
PBB | A phosphodiester bond breaking within an RNA chain | 1 × 10−5 |
PCB | A protocell breaking | 2 × 10−4 |
PCD | A protocell dividing | 0.05 |
PCF | Two adjacent protocells fusing with each other | 0.001 |
PFP | The false base-pairing when a template attracts a substrate | 1 × 10−4 |
PMC | A protocell moving | 0.1 |
PMF | A membrane forming | 0.1 |
PMV | A nucleotide/amphiphile/amino acid (or its precursor) moving | 0.9 |
PND | A nucleotide decaying into its precursor | 0.05 |
PNDE | A nucleotide residue decaying at an RNA’s chain end | 0.001 |
PNF | A nucleotide forming from its precursor (non-enzymatic) | 0.02 |
PNFR | A nucleotide forming from its precursor catalyzed by NSR | 0.5 |
PNPP | A nucleotide precursor permeating through the membrane | 0.5 |
PRL | The Random ligation of nucleotides and RNA | 1 × 10−6 |
PSP | The separation of a base pair | 0.5 |
PTL | The template-directed ligation of RNA | 0.5 |
PAABR | An amino acid binding onto an RNA template | 0.9 |
PAAD | An amino acid decaying into its precursor | 0.2 |
PAADE | An amino acid residue decaying at a peptide’s chain end | 0.1 |
PAAF | An amino acid forming from its precursor | 0.1 |
PAAPP | An amino acid precursor permeating through the membrane | 0.9 |
PAATL | Amino acids’ ligation on an RNA template (DRT mechanism) | 0.5 |
PNFP | A nucleotide forming from its precursor catalyzed by NSP | 0.5 |
PPBB | A peptide bond breaking | 0.01 |
PPJM | A peptide joining the membrane | 0.9 |
PPLM | A peptide leaving the membrane | 0.1 |
PPLR | An amino acid or peptide leaving RNA | 0.2 |
Others | Descriptions | Values |
N | The system is defined as an N × N grid | 30 |
TNPB | Total nucleotide precursors introduced in the beginning | 50,000 |
TAPB | Total amphiphile precursors introduced in the beginning | 50,000 |
TAAPB | Total amino acid precursors introduced in the beginning | 50,000 |
FDO | The factor of molecular degradation outside protocells | 20 |
FDW | The factor of molecular degradation within the membrane | 0.1 |
FMSP | The factor concerning the membrane-stabilizing peptide | 1 |
LAM | The lower limit number of amphiphiles to form a membrane | 200 |
LNSR | The length of characteristic sequence of NSR (in nucleotides) | 10 |
LAABS | The length of amino acid-binding sites (in nucleotides) | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Yu, C.; Ma, W. Towards an RNA/Peptides World by the Direct RNA Template Mechanism: The Emergence of Membrane-Stabilizing Peptides in RNA-Based Protocells. Life 2023, 13, 523. https://doi.org/10.3390/life13020523
Shi Y, Yu C, Ma W. Towards an RNA/Peptides World by the Direct RNA Template Mechanism: The Emergence of Membrane-Stabilizing Peptides in RNA-Based Protocells. Life. 2023; 13(2):523. https://doi.org/10.3390/life13020523
Chicago/Turabian StyleShi, Yu, Chunwu Yu, and Wentao Ma. 2023. "Towards an RNA/Peptides World by the Direct RNA Template Mechanism: The Emergence of Membrane-Stabilizing Peptides in RNA-Based Protocells" Life 13, no. 2: 523. https://doi.org/10.3390/life13020523
APA StyleShi, Y., Yu, C., & Ma, W. (2023). Towards an RNA/Peptides World by the Direct RNA Template Mechanism: The Emergence of Membrane-Stabilizing Peptides in RNA-Based Protocells. Life, 13(2), 523. https://doi.org/10.3390/life13020523