Essential Oil Composition Analysis, Antimicrobial Activities, and Biosystematic Studies on Six Species of Salvia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation of Essential Oils and GC-MS Analysis
2.3. PCA (Principal Component Analysis)
2.4. Antimicrobial Investigations
2.5. Morphological Investigations
2.6. Anatomical Investigations
2.7. Palynological Investigations
3. Results
3.1. Essential Oil Components
3.2. Antimicrobial Activity Studies
3.3. Morphology Properties
3.4. Anatomical Properties
3.5. Palynological Properties
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minhui, L.; Qianquan, L.; Chunhong, Z.; Na, Z.; Zhanhu, C.; Luqi, H.; Peigen, X. An ethnopharmacological investigation of medicinal Salvia plants (Lamiaceae) in China. Acta Pharm. Sin. 2013, 3, 273–280. [Google Scholar]
- Celep, F. Revision of the Genus Salvia L. (Labiatae) in the Mediterranean and The Aegean Geographic Regions of Turkey. Ph.D. Thesis, Orta Doğu Teknik Üniversitesi/Fen Bilimleri Enstitüsü, Ankara, Turkey, 2010. [Google Scholar]
- Karakuş, M.; Baydar, H.; Erbaş, S. Tıbbi Adaçayı (Salvia officinalis L.) Populasyonundan Geliştirilen Klonların Verim ve Uçucu Yağ Özellikleri. J. Field Crops Cent. Res. Inst. 2017, 26, 99–104. [Google Scholar]
- Bahadırlı, N.P. Hatay İlinde Doğal Olarak Yetişen Adaçayı (Salvia Spp.) Populasyonlarının Ssr Markörleri İle Moleküler Karakterizasyonu ve Sitogenetik Analizleri. Master’s Thesis, Mustafa Kemal Üniversitesi Fen Bilimleri Enstitüsü, Antakya, Turkey, 2014. [Google Scholar]
- Celep, F.; Raders, E.; Drew, B. Two new hybrid species of Salvia (S.× karamanensis and S.× doganii) from Turkey: Evidence from molecular and morphological studies. Turk. J. Bot. 2020, 44, 647–660. [Google Scholar]
- Davis, P.H. Flora of Turkey and The East Aegeans Islands; The Edinburg University Press: Edinburgh, UK, 1982; Volume 1–11. [Google Scholar]
- Vural, M.; Adıgüzel, N. A new species from Central Anatolia: Salvia aytachii M. Vural et N. Adıgüzel (Labiatae). Turk. J. Bot. 1996, 20, 531–534. [Google Scholar] [CrossRef]
- Dönmez, A.A. A new species of Salvia (Lamiaceae). Bot. J. Linn. Soc. 2001, 137, 413–416. [Google Scholar] [CrossRef]
- Walker, J.B.; Sytsma, K.L. Staminal evolution in the genus Salvia (Lamiaceae): Molecular phylogenetic evidence for multiple origins of the staminal lever. Ann. Bot. 2007, 100, 375–391. [Google Scholar] [CrossRef]
- Sancar, P.Y.; Demirpolat, A.; Cacan, E. Determination of Genetic Sthisces of Some Alfalfa Taxa (Medicago sativa L.) Cultured in Turkey. Fresenius Environ. Bull. 2021, 30, 860–868. [Google Scholar]
- Sancar, P.Y.; Tukur, U.; Civelek, S.; Kursat, M. The molecular investigations on the subgenus Artemisia Less. of the genus Artemisia L. (Asteraceae) in Turkey. Braz. J. Biol. Inst. Int. De Ecol. 2021, 83. [Google Scholar] [CrossRef]
- Hayta, S.; Dogan, G.; Yüce, E.; Bagci, E. Composition of the essential oil of two Salvia taxa Salvia sclarea and Salvia verticillata subsp. verticillata from Turkey. Nat. Sci. Discov. 2015, 1, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Sancar, P.Y. Çeşitli Bitki Taksonlarında Bazı DNA İzolasyon Yöntemlerinin Karşılaştırmalı Analizi. Uluslararası Doğu Anadolu Fen Mühendislik Ve Tasarım Derg. 2021, 38, 117–128. [Google Scholar] [CrossRef]
- Shanaida, M.; Hudz, N.; Białoń, M.; Kryvtsowa, M.; Svydenko, L.; Filipska, A.; Wieczorek, P.P. Chromatographic profiles and antimicrobial activity of the essential oils obtained from some species and cultivars of the Mentheae tribe (Lamiaceae). Saudi J. Biol. Sci. 2021, 28, 6145–6152. [Google Scholar] [CrossRef]
- Soltanbeigi, A.; Yıldız, M.; Dıraman, H.; Terzi, H.; Sakartepe, E.; Yıldız, E. Growth responses and essential oil profile of Salvia officinalis L. Influenced by water deficit and various nutrient sthisces in the greenhouse. Saudi J. Biol. Sci. 2021, 28, 7327–7335. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.P.; Makunga, N.P.; Ramogola, W.P.N.; Viljoen, A.M. South African Salvia species: A review of biological activities and phytochemistry. J. Ethnopharmacol. 2008, 119, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Kilic, O. Chemical Composition of Fthis Salvia Species from Turkey, a Chemotaxonomic Approach. J. Essent. Oil Bear. Plants 2016, 19, 229–235. [Google Scholar] [CrossRef]
- Ulubelen, A. Cardioactive and antibacterial terpenoids from some Salvia species. Phytochemistry 2003, 64, 395–399. [Google Scholar] [CrossRef]
- Ahmad, M.; Qureshi, R.; Arshad, M.; Khan, M.A.; Zafar, M. Traditional herbal remedies used for the treatment of diabetes from district Attock (Pakistan). Pak. J. Bot. 2009, 41, 2777–2782. [Google Scholar]
- Şenol, F.S.; Orhan, İ.; Celep, F.; Kahraman, A.; Doğan, M.; Yılmaz, G.; Şener, B. Survey of 55 Turkish Salvia taxa for their acetylcholinesterase inhibitory and antioxidant activities. Food Chem. 2010, 120, 34–43. [Google Scholar] [CrossRef]
- Ahmad, M.; Khan, M.P.Z.; Mukhtar, A.; Zafar, M.; Sultana, S.; Jahan, S. Ethnopharmacological survey on medicinal plants used in herbal drinks among the traditional communities of Pakistan. J. Ethnopharmacol. 2016, 184, 154–180. [Google Scholar] [CrossRef]
- Moretti, M.D.L.; Peana, A.T.; Satta, M.A. A study of antiinflammatory and peripheral analgesic actions of Salvia sclarea oil and its main constituents. J. Essent. Oil. Res. 1997, 9, 199–204. [Google Scholar] [CrossRef]
- Doğan, G.; Hayta, Ş.; Demirpolat, A.; Bağcı, E. Composition of The Essential Oil of Endemic Salvia cryptantha (Lamiaceae) Montbret & Aucher Ex Bentham From. Hacettepe J. Biol. Chem. 2017, 3, 315–320. [Google Scholar]
- Hisarlı, N.D. Effect of Salvia absconditiflora Extract on the Gene Expressions of Gsto and Gstz in Mcf-7 And Mda-Mb-231 Cells. Ph.D. Thesis, Orta Doğu Teknik Üniversitesi/Fen Bilimleri Enstitüsü, Ankara, Tukey, 2013. [Google Scholar]
- Flamini, G.; Cioni, P.L.; Morelli, I.; Bader, A. Essential oils of the aerial parts of three Salvia species from Jordan: Salvia lanigera, spinosa and S. syriaca. Food Chem. 2005, 100, 732–735. [Google Scholar] [CrossRef]
- Darwish, M.A.; Cabral, C.; Ali, Z.; Wang, M.; Khan, S.; Jacob, M.; Jain, S.K.; Tekwani, B.; Zulfigar, F.; Khan, I. Salvia ceratophylla L. from South of Jordan: New insights on chemical composition and biological activities. Nat. Prod. Bioprospect. 2020, 10, 307–316. [Google Scholar] [CrossRef]
- Askun, T.; Tumen, G.; Satil, F.; Ates, M. Characterization of the phenolic composition and antimicrobial activities of Turkish medicinal plants. J. Pharm. Biol. 2009, 47, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Askun, T.; Baser, K.H.C.; Tümen, G.; Kürkcüoglu, M. Characterization of essential oils of some Salvia species and their antimycobacterial activities. Turk. J. Biol. 2010, 34, 89–95. [Google Scholar]
- Kahraman, A.; Doğan, M. Comparative study of Salvia limbata C.A. and S. palaestina Bentham (sect. Aethiopis Bentham, Labiatae) from East Anatolia, Turkey. Acta Bot. Croat. 2010, 69, 47–64. [Google Scholar]
- Erdtman, G. Pollen morphology and plant taxonomy 4. Labiatae, Verbenaceae and Avicenniaceae. Sven. Bot. Tidskr. 1945, 39, 279–285. [Google Scholar]
- Cantino, P.D.; Harley, R.M.; Wagstaff, S.J. Genera of Labiatae: Status Classification. In Advanced in Labiatae Science; Harley, R.M., Reynolds, T., Eds.; Royal Botanical Gardens: Kew, UK, 1992. [Google Scholar]
- Silva, E.A.J.D.; Silva, V.P.D.; Alves, C.C.F.; Alves, J.M.; Souchie, E.L.; Barbosa, L.C.D.A. Harvest time on the content and chemical composition of essential oil from leaves of guava. Ciência Rural 2016, 46, 1771–1776. [Google Scholar] [CrossRef] [Green Version]
- Ayoub, I.M.; Abdel-Aziz, M.M.; Elhady, S.S.; Bagalagel, A.A.; Malatani, R.T.; Elkady, W.M. Valorization of Pimenta racemosa Essential Oils and Extracts: GC-MS and LC-MS Phytochemical Profiling and Evaluation of Helicobacter pylori Inhibitory Activity. Molecules 2022, 27, 7965. [Google Scholar] [CrossRef] [PubMed]
- Hazzit, M.; Baaliouamer, A.; Faleiro, M.L.; Miguel, M.G. Composition of the essential oils of Thymus and Origanum species from Algeria and their antioxidant and antimicrobial activities. J. Agric Food. Chem. 2006, 54, 6314–6321. [Google Scholar] [CrossRef] [PubMed]
- Reza, G.H.; Ebrahim, S.; Hossein, H. Analysis by gas chromatography—Mass spectrometry of essential oil from seeds and aerial parts of Ferulago angulata (Schlecht.) Boiss gatheres in Nevakoh and Shahoo, Zagross mountain, west of Iran. Pak. J. Biol. Sci. 2007, 10, 814–817. [Google Scholar]
- Horváth, G.; Bencsik, T.; Ács, K. Chapter 12—Sensitivity of ESBL-Producing Gram-Negative Bacteria to Essential Oils, Plant Extracts, and Their Isolated Compounds. In Antibiotic Resistance; Kon, K., Rai, M., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 239–269. [Google Scholar]
- Tekin, M. A morphological, anatomical and palynological study on Aethionema lepidioides (Brassicaceae) an endangered and endemic species to Turkey. Acta Bot. Croat. 2022, 81, 70–79. [Google Scholar] [CrossRef]
- Davis, A.P.; Barnett, J.R. The leaf anatomy of the genus Galanthus L. (Amaryllidaceae J. St.-Hil.). Bot. J. Linn. Soc. 1997, 123, 333–352. [Google Scholar] [CrossRef]
- Faegri, K.; Iversen, J. Textbook of Pollen Analysis; Hafner Press: New York, NY, USA, 1975. [Google Scholar]
- Ertman, G. Pollen Morphology and Plant Taxonomy Angiosperms; Ronald Press, Wiksell: Stockholm, Sweden, 1952. [Google Scholar]
- Kılıç, N.; Yılmaz Dağdeviren, R.; Caner, H.; Akkemik, Ü. Türkiye’de Kullanılmakta Olan Palinoloji ve Polen Terimleri Üzerine Bir Değerlendirme ve Öneriler. Avrasya Terim Derg. 2020, 8, 98–108. [Google Scholar]
- Majeed, S.; Zafar, M.; Ahmad, M.; Kilic, O.; Sultana, S.; Raza, J.; Jabeen, M. Pollen morphological investigations of family Cactaceae and its taxonomic implication by light microscopy and scanning electron microscopy. Microsc. Res. Tech. 2020, 83, 767–777. [Google Scholar] [CrossRef] [PubMed]
- Ertas, A.; Akdeniz, M.; Yener, I.; Ozturk, M.; Tokul Olmez, O.; Firat, M.; Kolak, U. Essential oil, aroma, and fatty acid profiles of five endemic Salvia taxa from Turkey with chemometric analysis. Chem. Biodivers. 2022, 19, e202100408. [Google Scholar] [CrossRef]
- Baran, P. Salvia argentea L. ve Salvia viridis L. (Lamiaceae) Türleri Üzerinde Morfolojik ve Anatomik bir Araştırma. Ph.D. Thesis, Celal Bayar Üniversitesi/Fen Bilimleri Enstitüsü, Manisa, Turkey, 2005. [Google Scholar]
- Gursoy, N.; Tepe, B.; Akpulat, H.A. Chemical composition and antioxidant activity of the essential oils of Salvia palaestina (Bentham) and S. ceratophylla (L.). Rec. Nat. Prod. 2012, 6, 278. [Google Scholar]
- Bagci, E.; Koçak, A. S. palaestina ve S. tomentosa Türlerinin Uçucu Yag Kompozisyonu, Kemotaksonomik Bir Yaklasim Fırat Üniv. J. Firat Univ. 2008, 20, 35–41. [Google Scholar]
- Mirza, M.; Sefidkon, F. Essential oil composition of two Salvia species from Iran, Salvia nemorosa L. and Salvia reuterana Boiss. Flav. Frag. J. 1999, 14, 230–232. [Google Scholar] [CrossRef]
- Fahimeh, S.; Mazooji, A.; Darzikolaei, S.A. Chemotaxonomy of six Salvia species using essential oil composition markers. J. Med. Plants Res. 2011, 5, 1795–1805. [Google Scholar]
- Sonboli, A.; Babakhani, B.; Mehrabian, A.R. Antimicrobial Activity of Six Constituents of Essential Oil from Salvia. Z. Naturforsch. 2006, 61, 160–164. [Google Scholar] [CrossRef]
- Chialva, F.; Monguzzi, F.; Manitto, P. Composition of Five Salvia species. J. Essent. Oil Res. 1999, 4, 447–455. [Google Scholar] [CrossRef]
- Demirpolat, A. Salvia syriaca L. Türünün Uçucu Yağ Kompozisyonu. Uluslararası Gıda Tarım ve Hayvan Bilimleri Dergisi 2022, 2, 15–19. [Google Scholar]
- Özdemir, E. In Vitro Genotoxicity of 1,8-Cineole (Eucalyptol) Compound Effects. Master’s Thesis, Department of Biology, Cukurova University Institute of Science, Adana, Turkey, 2015. [Google Scholar]
- Şimşek, M.; Duman, R. Investigation of Effect of 1,8-cineole on Antimicrobial Activity of Chlorhexidine Gluconate. Pharmacogn. Res. 2017, 9, 234–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wichtel, M. Teedrogen und Phytopharmaka; Ein Handbuch für die Praxis: Stuttgart, Germany, 2002. [Google Scholar]
- DeBarber, A.E.; Bleyle, L.; Roullet, J.B.; Koop, D.R. w-Hydroxylation of farnesol by mammalian cytochromes P450. Biochim. Biophys. Acta 2004, 1682, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Tan, N.; Satana, D.; Sem, B.; Tan, E.; Altan, H.B.; Demirci, B. Antimycobacterial and antifungal activities of selected four Salvia species. Rec. Nat. Prod. 2016, 10, 593–603. [Google Scholar]
- Ziaei, A.; Ramezani, M.; Wright, L.; Paetz, C.; Schneider, B.; Amirghofran, Z. Identification of spathulenol in Salvia mirzayanii and the immunomodulatory effects. Phytother. Res. 2011, 25, 557–562. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Klun, J.A.; Bryson, C.T.; Kobaisy, M.; Duke, S.O. Isolation and identification of mosquito bite deterrent terpenoids from leaves of American (Callicarpa americana) and Japanese (Callicarpa japonica) beautyberry. J. Agric. Food Chem. 2005, 53, 5948–5953. [Google Scholar] [CrossRef]
- Knobloch, K.; Pauli, A.; Iberl, B.; Wegand, H.; Weis, N. Antibacterial and Antifungal Properties of Essential Oil Components. J. Essent. Oil Res. 1989, 1, 119–128. [Google Scholar] [CrossRef]
- Buchbauer, G.; Jager, W.; Jirovetz, L.; Meyer, F.; Dietrich, F. Effects of Valerian Root Oil, Borneol, Isoborneol, Bornyl acetate and Isobornyl acetate on the Motility of Laboratory Animals (mice) After Inhalation. Pharmazie 1992, 47, 620–622. [Google Scholar]
- Zhang, Q.L.; Bingmei, M.F.; Zhang, J.Z. Borneol, a novel agent that improves central nervous system drug delivery by enhancing blood–brain barrier permeability. Drug Deliv. 2017, 24, 1037–1044. [Google Scholar] [CrossRef] [Green Version]
- Zou, L.; Lin, L.; Hu, H.L.; Wang, Y.; Wang, P.; Zhao, G.; Wang, Z.-G. Effect of borneol on intestinal absorption of muscone in rats. China J. Chin. Mater. Med. 2012, 37, 3490–3493. [Google Scholar]
- Yiğit, D.; Kandemir, A.; Yiğit, N. Antimicrobial Activity of Some Endemic Plants (Salvia cryptantha, Origanum acutidens, Thymus sipyleus ssp. sipyleus). Erzincan Üniversitesi Eğitim Fakültesi Derg. 2002, 4, 77–81. [Google Scholar]
- Yilmaz, İ.; Bülbül, A.S.; Kocabaş, Y.Z. Salvia ceratophylla L. and Ricotia aucheri (Boiss.) B.L. İnvestigation of Biological and Cytotoxic Activities of Burtt Plants in Vitro Conditions. Biyol. Bilim. Araştırma Derg. 2022, 15, 103–111. [Google Scholar]
- Paknejadi, M.; Foroohi, F.; Yousefzadi, M. Antimicrobial activities of the essential oils of five Salvia species from. J. Paramed. Sci. 2012, 3, 12–17. [Google Scholar]
- Yousefzadi, M.; Sonboli, A.; Karimi, F.; Ebrahimi, S.N.; Asghari, B.; Zeinali, A. Antimicrobial activity of some Salvia species essential oils from Iran. Z. Für Nat. 2007, 62, 514–518. [Google Scholar] [CrossRef] [PubMed]
- Pehlivan, M.; Sevindik, M. Antioxidant and Antimicrobial Activities of Salvia multicaulis. Türk Tarım Gıda Bilim Ve Teknol. Derg. 2018, 6, 628–631. [Google Scholar] [CrossRef] [Green Version]
- Sarac, N.; Uğur, A. Antimicrobial activities and usage in folkloric medicine of some Lamiaceae species growing in Mugla, Turkey. Eur. Asia J. Bio Sci. 2007, 4, 28–37. [Google Scholar]
- Özdemir, C.; Şenel, G. The Morphological, Anatomical and Karyological Properties of Salvia sclarae L. Turk. J. Bot. 1999, 23, 7–18. [Google Scholar]
- Çobanoğlu, D. Salvia palestina Bentham’ın Morfolojik Ve Sitolojik Özellikleri. Doğa Tr. Bot. 1987, 215–223. [Google Scholar]
- Metcalfe, C.R.; Chalk, L. Anatomy of Dicotyedon; Clarendon Press: Oxford, UK, 1972; Volume 1, pp. 502–535. [Google Scholar]
- Kahraman, A. Morphology, Anatomy and Systematics of the Genus Salvia L. (Lamiaceae) in East Southeast Anatolia, Turkey. Ph.D. Thesis, Orta Doğu Teknik Üniversitesi, Ankara, Turkey, 2011. [Google Scholar]
- Özler, H.; Pehlivan, S.; Kahraman, A.; Doğan, M.; Celep, F.; Başer, B.; Yavru, A.; Bagherpthis, S. Pollen morphology of the genus Salvia L. (Lamiaceae) in Turkey. Flora 2011, 206, 316–327. [Google Scholar] [CrossRef]
- Özler, H.; Pehlivan, S.; Celep, F.; Dogan, M.; Kahraman, A.; Yavru-Fişne, A.; Baser, B.; Bagherpthis, S. Pollen morphology of Hymenosphace and Aethiopssection of the genus Salvia L. (Lamiaceae) in Turkey. Turk J. Bot. 2013, 37, 1070–1084. [Google Scholar] [CrossRef]
- Kılıç, F.M. Pollen Morphological Investigations of Salvia L. In Southeastern of Turkey and Its Taxonomic Implication. Bangladesh J. Plant Taxon. 2021, 28, 395–403. [Google Scholar] [CrossRef]
- Moon, H.K.; Vinckier, S.; Walker, J.B.; Smets, E.; Huysmans, S.A. Search for phlogenetically informative pollen characters in the subtribe Salviinae (Mentheae: Lamiaceae). Int. J. Plant Sci. 2008, 169, 455–471. [Google Scholar] [CrossRef] [Green Version]
Species | Locality | Collecter |
---|---|---|
S. absconditiflora | B7 Elazığ to Malatya 40 km, 17.06.2019, altitude 1200 m | A. Demirpolat 1123 |
S. ceratophylla | B7 Elazığ to Malatya 20 km steppe, 25.05.2019, altitude of 1400 m | A. Demirpolat 1144 |
S. multicaulis | B8 Bingol to Elazığ 45 km, 10.06.2019, altitude of 1250–1350 m | A. Demirpolat 1167 |
S. syriaca | B7: Elazığ-Baskil fields and wastelands 10.06.2019, 1220–1300 m | A. Demirpolat 1165 |
S. verbenaca | B8: West of Sancak upland slopes, 29.05.2019, altitude of 1250–1300 m | A. Demirpolat 1289 |
S. viridis | B8: Elazig-Bingöl 65. km, fields and wastelands, 17.06.2019 altitude 900–950 m | A. Demirpolat 1128 |
No | Component | RI | RI (lit) (±) | RT | IM | S1 | S2 | S3 | S4 | S5 | S6 |
---|---|---|---|---|---|---|---|---|---|---|---|
1. | α-Thujene | 916 | 917 [33] | 11.196 | RI, MS | 3.09 | 2.45 | 1.28 | 0.49 | 0.09 | 2.50 |
2. | α-Pinene | 938 | 938 [33] | 11.498 | RI, MS | 5.62 | 3.76 | 0.55 | 1.21 | 0.57 | 2.25 |
3. | Camphene | 1035 | 1035 [23] | 12.157 | RI, MS | 0.86 | 1.39 | 2.71 | 2.34 | 0.23 | 2.38 |
4. | β-Pinene | 973 | 973 [33] | 13.521 | RI, MS | 2.50 | 1.98 | 2.06 | 1.04 | 7.21 | 6.31 |
5. | β-Myrcene | 990 | 990 [33] | 14.342 | RI, MS | 0.90 | - | 0.37 | 0.45 | 0.08 | 1.45 |
6. | α-Phellandrene | 1004 | 1004 [33] | 14.929 | RI, MS | 4.97 | - | 1.57 | 0.13 | 0.23 | 0.43 |
7. | Limonene | 1029 | 1029 [33] | 16.184 | RI, MS | 0.51 | 0.56 | - | 1.23 | 0.19 | 1.54 |
8. | 1,8-Cineol | 1095 | 1033 [33] | 16.292 | RI, MS | 17.94 | 12.98 | 11.99 | 11.45 | 14.06 | 3.24 |
9. | γ-Terpinene | 1060 | 1060 [33] | 17.715 | RI, MS | 1.53 | - | - | 0.56 | 0.15 | 0.32 |
10. | Linalool | 1145 | 1148 [23] | 19.849 | RI, MS | 0.94 | 0.78 | 1.09 | - | 0.36 | - |
11. | Camphor | 1185 | 1185 [23] | 22.017 | RI, MS | 4.97 | 3.67 | - | - | 1.46 | 1.46 |
12. | n-Decanal | 1185 | 1204 [33] | 22.957 | RI, MS | - | - | - | - | 0.14 | 0.14 |
13. | Borneol | 1200 | 1199 [23] | 23.165 | RI, MS | 10.4 | 3.56 | 5.74 | 11.0 | 7.02 | 9.65 |
14. | Terpinen-4-ol | 1205 | 1179 [33] | 23.738 | RI, MS | - | - | - | - | - | 0.09 |
15. | Terpinolene | 1210 | 1193 [33] | 24.426 | RI, MS | - | 0.45 | 0.34 | 0.21 | - | 1.57 |
16. | Myrtenol | 1216 | 1216 [23] | 24.644 | RI, MS | - | 1.78 | 2.98 | - | 2.09 | 0.06 |
17. | Thymol | 1297 | 1297 [34] | 29.440 | RI, MS | 1.39 | 2.75 | - | 1.92 | 1.45 | 4.76 |
18. | Carvacrol | 1300 | 1317 [34] | 29.913 | RI, MS | - | - | 0.21 | - | 2.08 | 1.34 |
19. | α-Cubebene | 1323 | 1337 [23] | 32.040 | RI, MS | - | - | 0.67 | 0.34 | - | - |
20. | Eugenol | 1345 | 1359 [33] | 32.391 | RI, MS | 1.23 | - | - | 0.98 | 0.21 | 0.22 |
21. | α-Copaene | 1352 | 1376 [34] | 33.276 | RI, MS | 1.39 | 2.71 | 0.87 | 0.31 | 0.94 | 3.92 |
22. | δ-Cadinene | 1358 | 1529 [33] | 35.663 | RI, MS | 1.45 | 1.76 | 1.54 | - | - | 0.30 |
23. | 5,9-Undecadien | 1411 | 1411 [23] | 35.922 | RI, MS | - | 0.35 | - | - | - | - |
24. | Caryophyllene | 1424 | 1424 [33] | 36.100 | RI, MS | 8.45 | 8.36 | 8.51 | 4.95 | 15.01 | 2.29 |
25. | Bicyclogermacrene | 1443 | 1445 [23] | 36.112 | RI, MS | 1.46 | 2.65 | 5.89 | 11.03 | 3.66 | 6.93 |
26. | α-Humulene | 1418 | 1418 [23] | 36.762 | RI, MS | 0.56 | 1.33 | 2.41 | - | 1.25 | - |
27. | Isobornil asetat | 1467 | - | 37.231 | RI, MS | 0.78 | 0.59 | - | - | 0.98 | 0.98 |
28. | 1,5-EpoxySalvial-4[14]-ene | 1490 | 1490 [23] | 37.542 | RI, MS | 1.72 | 3.91 | 4.64 | 3.97 | 1.22 | 6.83 |
29. | γ-Cadinene | 1514 | 1511 [34] | 37.735 | RI, MS | 0.01 | 0.42 | 0.49 | 0.35 | 0.28 | 0.31 |
30. | Isolongifolene | 1518 | 1517 [23] | 38.081 | RI, MS | - | - | - | - | - | 0.65 |
31. | β-Selinene | 1521 | 1441 [23] | 38.176 | RI, MS | 0.45 | 0.29 | 0.75 | 0.71 | 0.58 | 0.45 |
32. | Germacrene B | 1562 | 1524 [23] | 40.349 | RI, MS | 0.14 | 1.20 | 0.24 | 3.76 | - | 0.25 |
33. | α-Curcumene | 1569 | 1483 [34] | 40.489 | RI, MS | 0.18 | 4.89 | 0.20 | - | 1.04 | - |
34. | Spathulenol | 1572 | 1571 [34] | 42.036 | RI, MS | 9.09 | 20.13 | 18.10 | 13.18 | 11.42 | 9.35 |
35. | Caryophyllene oxide | 1595 | 1578 [34] | 42.241 | RI, MS | 10.14 | 14.68 | 17.20 | 16.15 | 16.18 | 17.54 |
36. | Benzene | 1598 | - | 43.041 | RI, MS | 0.16 | 0.58 | 0.13 | 5.66 | 0.38 | 1.41 |
37. | Aromadendrene oxide | 1650 | 1650 [35] | 44.453 | RI, MS | 0.26 | 1.11 | 0.07 | 0.84 | 0.98 | - |
Total | 100 | 98.62 | 92.60 | 94.26 | 91.54 | 93.83 |
Species | P (μ) | E (μ) | P/E | Ornamentation | Clg (μ) | Clt (μ) | Ex (μ) | Ap (μ) |
---|---|---|---|---|---|---|---|---|
S. absconditiflora | 42.1 ± (0.7) | 50.0 ± (1.8) | 0.84 Suboblate | Reticulate | 28.1 ± (1.1) | 5.9 ± (0.5) | 1.9 ± (0.2) | 6.3 ± (2.7) |
S. ceratophylla | 38.2 ± (2.5) | 43.5 ± (2.8) | 0.87 Suboblate | Reticulate | 25.3 ± (2.0) | 4.2 ± (2.8) | 1.6 ± (0.3) | 5.9 ± (2.4) |
S. multicaulis | 57.2 ± (2.7) | 55.3 ± (1.2) | 1.03 Prolate-spheroidal | Reticulate | 38.6 ± (3.1) | 6.4 ± (0.9) | 1.7 ± (0.3) | 5.7 ± (1.0) |
S. verbenaca | 34.2 ± (0.6) | 29.2 ± (1.2) | 1.17 Subprolate | Reticulate | 23.2 ± (0.9) | 2.5 ± (1–2) | 1.2 ± (0.6) | 7.2 ± (1.5) |
S. viridis | 39.1 ± (2.0) | 44.4 ± (3.3) | 0.88 Oblate-Spheroidal | Reticulate | 25.7 ± (2.7) | 5.7 ± (1.2) | 1.3 ± (0.3) | 6.4 ± (2.6) |
S. syriaca | 36.8 ± (3.3) | 31.7 ± (3.0) | 1.16 Subprolate | Reticulate | 24.6 ± 3.9 | 6.3 ± (1.8) | 1.6 ± (0.3) | 5.0 ± (2.3) |
S. absconditiflora | S. ceratophylla | S. multicaulis | S. verbenaca | S. viridis | S. syriaca | |
---|---|---|---|---|---|---|
Plant stem (cm) | 19–40 | 30–60 | 10–45 | 10–55 | 7–45 | 25–55 |
Hairs of stem | Glandular-Dendroid hairs and sessile glands | Glandular-villous densely above | Glandular-pilose to villous | Eglandular-pilose on below, glandular pilose on stems above | Glandular or eglandular pilose | Eglandular- pubescent below, denser above |
Leaf shapes | Pinnatifid oblong | Pinnatifid oblong | Pinnatifid Ovate to suborbicular | Pinnatifid Oblong to ovate | Pinnatisect Oblong ovate | Linear, oblong to ovate |
Width of the leaf (cm) | 1–3 | 4–8 | 1–4 | 1.5–7 | 1.5–2.5 | 2.5–5 |
Length of leaf (cm) | 1–6 | 12–25 | 2–6 | 2–10 | 1–3 | 2–9.5 |
Petiole (cm) | 0.5–3 | 6–18 | 1.5–6 | 1.2–8 | 2–5 | 3–6 |
Bracts (mm) | 12 × 10 ovate | 12 × 16 ovate | 15 × 10 ovate | 5 × 5 ovate-acuminate | 6 × 10 ovate | 5 × 5 ovate |
Inflorescences | Verticillaster | Paniculate | Verticillaster | Verticillaster | Verticillaster | Verticillaster |
Flowered | 3–5 | 2–5 | 4–10 | 4–6 | 2–5 | 4–6 |
Colors of calyx | Yellowish- Green | Yellowish-Green | Green | Yellowish- Green | Green | Yellowish- Green |
Corolla size (mm) | 15–20 | 15–20 | 15–18 | 12–16 | 12–15 | 8–10 |
Colors of corolla | Light Pink | Lilac | Lilac | Dark Purple | Purple to white | White |
S. absconditiflora | S. ceratophylla | S. multicaulis | S. verbenaca | S. viridis | S. syriaca | |
---|---|---|---|---|---|---|
Stem | ||||||
Cortex layers | 3–4 | 2–4 | 2–4 | 2–4 | 3–7 | 3–5 |
Collenchyma layers | 6–8 | 4–8 | 6–8 | 2–10 | 4–7 | 4–6 |
Phloem layers | 3–5 | 3–5 | 3–5 | 2–5 | 2–5 | 4–9 |
Xylem layers | 5–10 | 3–10 | 3–10 | 3–11 | 6–14 | 8–17 |
Root | ||||||
Periderm layers | 2–5 | 3–4 | 2–4 | 2–4 | 3–5 | 2–5 |
Periderma thickness (μm) | 9–18 | 6–20 | 10–28 | 6–13 | 7–16 | 9–21 |
Cortex layers | 6–15 | 10–14 | 12–18 | 10–17 | 12–20 | 4–9 |
Sclerenchyma layer | 3–5 | 3–5 | 3–5 | 4–8 | 2–3 | 3–6 |
Pith region | 10–17 | 9–15 | 10–18 | 8–15 | 1–3 | 11–17 |
Petiole | ||||||
Petiole shape | Triangular | D-shaped | Triangular | U-shaped with obtuse margins | U-shaped | D-shaped |
Collenchyma cell layers | 2–4 | 3–7 | 4–7 | 3–7 | 3–6 | 3–7 |
Sclerenchyma layer | 4–8 | 5–12 | 1–3 | 3–5 | 2–3 | 4–10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirpolat, A. Essential Oil Composition Analysis, Antimicrobial Activities, and Biosystematic Studies on Six Species of Salvia. Life 2023, 13, 634. https://doi.org/10.3390/life13030634
Demirpolat A. Essential Oil Composition Analysis, Antimicrobial Activities, and Biosystematic Studies on Six Species of Salvia. Life. 2023; 13(3):634. https://doi.org/10.3390/life13030634
Chicago/Turabian StyleDemirpolat, Azize. 2023. "Essential Oil Composition Analysis, Antimicrobial Activities, and Biosystematic Studies on Six Species of Salvia" Life 13, no. 3: 634. https://doi.org/10.3390/life13030634
APA StyleDemirpolat, A. (2023). Essential Oil Composition Analysis, Antimicrobial Activities, and Biosystematic Studies on Six Species of Salvia. Life, 13(3), 634. https://doi.org/10.3390/life13030634