Astrobiology in Space: A Comprehensive Look at the Solar System
Abstract
:1. Introduction
2. Emergence of Life on Earth
3. Detection of Life beyond Earth
3.1. Mars
3.2. Venus
3.3. Icy Moons of Jupiter and Saturn
3.4. Comets and Asteroids
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Crawford, I.A. Widening Perspectives: The Intellectual and Social Benefits of Astrobiology (Regardless of Whether Extraterrestrial Life Is Discovered or Not). Int. J. Astrobiol. 2018, 17, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Preiner, M.; Asche, S.; Becker, S.; Betts, H.C.; Boniface, A.; Camprubi, E.; Chandru, K.; Erastova, V.; Garg, S.G.; Khawaja, N.; et al. The Future of Origin of Life Research: Bridging Decades-Old Divisions. Life 2020, 10, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Witzany, G. What Is Life? Front. Astron. Space Sci. 2020, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Hays, L.; Achenbach, L.; Bailey, J.; Barnes, R.; Baross, J.; Bertka, C.; Boston, P.; Boyd, E.; Cable, M.; Chen, I.; et al. NASA Astrobiology Strategy 2015; NASA: Washington, DC, USA, 2015. [Google Scholar]
- Cavalazzi, B.; Westall, F. Biosignatures for Astrobiology; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-319-96174-3. [Google Scholar]
- Schwieterman, E.W. Surface and Temporal Biosignatures. In Handbook of Exoplanets; Springer: Berlin/Heidelberg, Germany, 2018; pp. 3173–3201. ISBN 19553337_69. [Google Scholar]
- Morgan, G.J. Emile Zuckerkandl, Linus Pauling, and the Molecular Evolutionary Clock, 1959–1965. J. Hist. Biol. 1998, 31, 155–178. [Google Scholar] [CrossRef]
- Henin, B. Exploring the Ocean Worlds of Our Solar System; Springer: Berlin/Heidelberg, Germany, 2018; ISBN 978-3-319-93475-4. [Google Scholar]
- Walker, S.I.; Packard, N.; Cody, G.D. Re-Conceptualizing the Origins of Life. Philos. Trans. R. Soc. A 2017, 375, 20160337. [Google Scholar] [CrossRef] [Green Version]
- Wöhler, F. Ueber Künstliche Bildung Des Harnstoffs. Ann. Phys. 1828, 88, 253–256. [Google Scholar] [CrossRef] [Green Version]
- Miller, S.L. A Production of Amino Acids under Possible Primitive Earth Conditions. Science 1953, 117, 528–529. [Google Scholar] [CrossRef] [Green Version]
- Criado-Reyes, J.; Bizzarri, B.M.; García-Ruiz, J.M.; Saladino, R.; Ernesto, D.M. The Role of Borosilicate Glass in Miller-Urey Experiment. Sci. Rep. 2021, 11, 21009. [Google Scholar] [CrossRef]
- Ferus, M.; Pietrucci, F.; Saitta, A.M.; Knížek, A.; Kubelík, P.; Ivanek, O.; Shestivska, V.; Civiš, S. Formation of Nucleobases in a Miller-Urey Reducing Atmosphere. Proc. Natl. Acad. Sci. USA 2017, 114, 4306–4311. [Google Scholar] [CrossRef] [Green Version]
- Sasselov, D.D.; Grotzinger, J.P.; Sutherland, J.D. The Origin of Life as a Planetary Phenomenon. Sci. Adv. 2020, 6, eaax3419. [Google Scholar] [CrossRef] [Green Version]
- Neveu, M.; Kim, H.-J.; Benner, S.A. The “Strong” RNA World Hypothesis: Fifty Years Old. Astrobiology 2013, 13, 391–403. [Google Scholar] [CrossRef] [Green Version]
- Fried, S.D.; Fujishima, K.; Makarov, M.; Cherepashuk, I.; Hlouchova, K. Peptides before and during the Nucleotide World: An Origins Story Emphasizing Cooperation between Proteins and Nucleic Acids. J. R. Soc. Interface 2022, 19, 20210641. [Google Scholar] [CrossRef]
- Lancet, D.; Segrè, D.; Kahana, A. Twenty Years of “Lipid World”: A Fertile Partnership with David Deamer. Life 2019, 9, 77. [Google Scholar] [CrossRef] [Green Version]
- Sharov, A.A. Coenzyme World Model of the Origin of Life. Biosystems 2016, 144, 8–17. [Google Scholar] [CrossRef] [Green Version]
- Koonin, E.V.; Martin, W. On the Origin of Genomes and Cells within Inorganic Compartments. Trends Genet. 2005, 21, 647. [Google Scholar] [CrossRef]
- Bose, T.; Fridkin, G.; Davidovich, C.; Krupkin, M.; Dinger, N.; Falkovich, A.H.; Peleg, Y.; Agmon, I.; Bashan, A.; Yonath, A. Origin of Life: Protoribosome Forms Peptide Bonds and Links RNA and Protein Dominated Worlds. Nucleic Acids Res. 2022, 50, 1815–1828. [Google Scholar] [CrossRef]
- Hordijk, W.; Steel, M. Autocatalytic Networks at the Basis of Life’s Origin and Organization. Life 2018, 8, 62. [Google Scholar] [CrossRef] [Green Version]
- Muchowska, K.B.; Varma, S.J.; Chevallot-Beroux, E.; Lethuillier-Karl, L.; Li, G.; Moran, J. Metals Promote Sequences of the Reverse Krebs Cycle. Nat. Ecol. Evol. 2017, 1, 1716–1721. [Google Scholar] [CrossRef] [Green Version]
- Hutchison III, C.A.; Chuang, R.-Y.; Noskov, V.N.; Assad-Garcia, N.; Deerinck, T.J.; Ellisman, M.H.; Gill, J.; Kannan, K.; Karas, B.J.; Ma, L.; et al. Design and Synthesis of a Minimal Bacterial Genome. Science 2016, 351, aad6253. [Google Scholar] [CrossRef] [Green Version]
- Merino, N.; Aronson, H.S.; Bojanova, D.P.; Feyhl-Buska, J.; Wong, M.L.; Zhang, S.; Giovannelli, D. Living at the Extremes: Extremophiles and the Limits of Life in a Planetary Context. Front. Microbiol. 2019, 10, 780. [Google Scholar] [CrossRef] [Green Version]
- Kounaves, S.P.; Hecht, M.H.; Kapit, J.; Gospodinova, K.; DeFlores, L.; Quinn, R.C.; Boynton, W.V.; Clark, B.C.; Catling, D.C.; Hredzak, P.; et al. Wet Chemistry Experiments on the 2007 Phoenix Mars Scout Lander Mission: Data Analysis and Results. J. Geophys. Res. 2010, 115, E00E10. [Google Scholar] [CrossRef] [Green Version]
- Vasavada, A.R. Mission Overview and Scientific Contributions from the Mars Science Laboratory Curiosity Rover After Eight Years of Surface Operations. Space Sci. Rev. 2022, 218, 14. [Google Scholar] [CrossRef] [PubMed]
- McMahon, S.; Cosmidis, J. False Biosignatures on Mars: Anticipating Ambiguity. J. Geol. Soc. Lond. 2022, 179, jgs2021-050. [Google Scholar] [CrossRef]
- ESA. ExoMars Trace Gas Orbiter (TGO). Available online: https://exploration.esa.int/web/mars/-/46475-trace-gas-orbiter (accessed on 14 December 2022).
- Knutsen, E.W.; Villanueva, G.L.; Liuzzi, G.; Crismani, M.M.J.; Mumma, M.J.; Smith, M.D.; Vandaele, A.C.; Aoki, S.; Thomas, I.R.; Daerden, F.; et al. Comprehensive Investigation of Mars Methane and Organics with ExoMars/NOMAD. Icarus 2021, 357, 114266. [Google Scholar] [CrossRef]
- ESA. ExoMars Discovers Hidden Water in Mars’ Grand Canyon. Available online: https://www.esa.int/Science_Exploration/Human_and_Robotic_Exploration/Exploration/ExoMars/ExoMars_discovers_hidden_water_in_Mars_Grand_Canyon (accessed on 14 December 2022).
- Vago, J.L.; Westall, F.; Coates, A.J.; Jaumann, R.; Korablev, O.; Ciarletti, V.; Mitrofanov, I.; Josset, J.-L.; de Sanctis, M.C.; Bibring, J.-P.; et al. Habitability on Early Mars and the Search for Biosignatures with the ExoMars Rover. Astrobiology 2017, 17, 471–510. [Google Scholar] [CrossRef] [Green Version]
- Kminek, G.; Meyer, M.A.; Beaty, D.W.; Carrier, B.L.; Haltigin, T.; Hays, L.E. Mars Sample Return (MSR): Planning for Returned Sample Science. Astrobiology 2022, 22, S1–S4. [Google Scholar] [CrossRef]
- NASA. Mars Sample Return. Available online: https://mars.nasa.gov/msr/ (accessed on 26 December 2022).
- Tian, H.; Zhang, T.; Jia, Y.; Peng, S.; Yan, C. Zhurong: Features and Mission of China’s First Mars Rover. Innovation 2021, 2, 100121. [Google Scholar] [CrossRef]
- Enya, K.; Yamagishi, A.; Kobayashi, K.; Yoshimura, Y. Comparative Study of Methods for Detecting Extraterrestrial Life in Exploration Mission of Mars and the Solar System. Life Sci. Space Res. 2022, 34, 53–67. [Google Scholar] [CrossRef]
- Limaye, S.S.; Mogul, R.; Baines, K.H.; Bullock, M.A.; Cockell, C.; Cutts, J.A.; Gentry, D.M.; Grinspoon, D.H.; Head, J.W.; Jessup, K.-L.; et al. Venus, an Astrobiology Target. Astrobiology 2021, 21, 1163–1185. [Google Scholar] [CrossRef]
- Duzdevich, D.; Petkowski, J.J.; Bains, W.; Cleaves II, H.J.; Carr, C.E.; Borowska, E.I.; Azua-Bustos, A.; Cable, M.L.; Dorrington, G.E.; Grinspoon, D.H.; et al. An Experimental Approach to Inform Venus Astrobiology Mission Design and Science Objectives. Aerospace 2022, 9, 597. [Google Scholar] [CrossRef]
- Seager, S.; Petkowski, J.J.; Carr, C.E.; Grinspoon, D.H.; Ehlmann, B.L.; Saikia, S.J.; Agrawal, R.; Buchanan, W.P.; Weber, M.U.; French, R.; et al. Venus Life Finder Missions Motivation and Summary. Aerospace 2022, 9, 385. [Google Scholar] [CrossRef]
- Baum, D.A. The Origin and Early Evolution of Life in Chemical Composition Space. J. Theor. Biol. 2018, 456, 295–304. [Google Scholar] [CrossRef]
- Akins, A.B.; Lincowski, A.P.; Meadows, V.S.; Steffes, P.G. Complications in the ALMA Detection of Phosphine at Venus. Astrophys. J. Lett. 2021, 907, L27. [Google Scholar] [CrossRef]
- Schuler, T.K.; Bowman, D.C.; Izraelevitz, J.S.; Sofge, D.; Thangavelautham, J. Long Duration Flights in Venus’ Atmosphere Using Passive Solar Hot Air Balloons. Acta Astronaut. 2022, 191, 160–168. [Google Scholar] [CrossRef]
- Garvin, J.B.; Getty, S.A.; Arney, G.N.; Johnson, N.M.; Kohler, E.; Schwer, K.O.; Sekerak, M.; Bartels, A.; Saylor, R.S.; Elliott, V.E.; et al. Revealing the Mysteries of Venus: The DAVINCI Mission. Planet. Sci. J. 2022, 3, 117. [Google Scholar] [CrossRef]
- Eismont, N.; Zubko, V.; Belyaev, A.; Fedyaev, K.; Zasova, L.; Gorinov, D.; Simonov, A.; Nazirov, R. Expansion of Landing Areas on the Venus Surface Using Resonant Orbits in the Venera-D Project. Acta Astronaut. 2022, 197, 310–322. [Google Scholar] [CrossRef]
- de Oliveira, M.R.R.; Gil, P.J.S.; Ghail, R. A Novel Orbiter Mission Concept for Venus with the EnVision Proposal. Acta Astronaut. 2018, 148, 260–267. [Google Scholar] [CrossRef]
- Spilker, L. Cassini-Huygens’ Exploration of the Saturn System: 13 Years of Discovery. Science 2019, 364, 1046–1051. [Google Scholar] [CrossRef]
- NASA. NASA’s Dragonfly Will Fly Around Titan Looking for Origins, Signs of Life. Available online: https://www.nasa.gov/mission_pages/cassini/main/index.html (accessed on 3 February 2023).
- Howell, S.M.; Pappalardo, R.T. NASA’s Europa Clipper—A Mission to a Potentially Habitable Ocean World. Nat. Commun. 2020, 11, 1311. [Google Scholar] [CrossRef] [Green Version]
- ESA Science & Exploration. Juice Jupiter Icy Moons Explorer. Available online: https://www.esa.int/Science_Exploration/Space_Science/Juice (accessed on 26 December 2022).
- NASA. Are Water Plumes Spraying from Europa? In NASA’s Europa Clipper Is on the Case. Available online: https://europa.nasa.gov/news/40/are-water-plumes-spraying-from-europa-nasas-europa-clipper-is-on-the-case/ (accessed on 28 December 2022).
- Maurette, M. Micrometeorites and the Mysteries of Our Origins; Advances in Astrobiology and Biogeophysics; Springer: Berlin/Heidelberg, Germany, 2006; ISBN 978-3-540-25816-2. [Google Scholar]
- Osinski, G.R.; Cockell, C.S.; Pontefract, A.; Sapers, H.M. The Role of Meteorite Impacts in the Origin of Life. Astrobiology 2020, 20, 1121–1149. [Google Scholar] [CrossRef]
- Altwegg, K.; Balsiger, H.; Bar-Nun, A.; Berthelier, J.-J.; Bieler, A.; Bochsler, P.; Briois, C.; Calmonte, U.; Combi, M.R.; Cottin, H.; et al. Prebiotic Chemicals—Amino Acid and Phosphorus—In the Coma of Comet 67P/Churyumov-Gerasimenko. Sci. Adv. 2016, 2, e1600285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- el Sila, J.E.; Glavin, D.P.; Dworkin, J.P. Cometary Glycine Detected in Samples Returned by Stardust. Meteorit. Planet. Sci. 2009, 44, 1323–1330. [Google Scholar] [CrossRef]
- Parker, E.T.; Chan, Q.H.S.; Glavin, D.P.; Dworkin, J.P. Non-Protein Amino Acids Identified in Carbon-Rich Hayabusa Particles. Meteorit. Planet. Sci. 2022, 57, 776–793. [Google Scholar] [CrossRef]
- Lauretta, D.S.; Enos, H.L.; Polit, A.T.; Roper, H.L.; Wolner, C.W.V. OSIRIS-REx at Bennu: Overcoming Challenges to Collect a Sample of the Early Solar System. In Sample Return Missions; Elsevier: Amsterdam, The Netherlands, 2021; pp. 163–194. [Google Scholar]
Category | Explanation |
---|---|
Isotopic patterns | Isotopic patterns requiring biological processes |
Organic matter | Organics formed by biological processes |
Minerals | Composition and/or morphology indicating biological activity |
Chemical signatures | Chemical features requiring biological activity |
Microscopic structures | Biologically formed microtextures, microfossils, and films |
Macroscopic structures | Indications of microbial ecosystems, biofilms, or fossils |
Atmospheric gases | Gases formed by metabolic and/or aqueous processes |
Surface reflectance | Large-scale reflectance features due to biological pigments |
Temporal variability | Variations in atmospheric gases, reflectivity, or macroscopic structures indicating life |
Technosignatures | Indication of a technologically advanced civilization |
Mission | Launch Date | Organisation | Astrobiology Goals |
---|---|---|---|
Mars | |||
Viking 1 | 20 August 1975 | NASA | Looking for indirect signs of microbial life through a series of biology experiments |
Viking 2 | 9 September 1975 | NASA | Looking for indirect signs of microbial life through a series of biology experiments |
Phoenix | 4 August 2007 | NASA | Confirm subsurface presence of water on Mars and investigate the habitability of its polar region |
Mars Science Laboratory (Curiosity rover) | 26 November 2011 | NASA | Investigation of past habitability of Gale crater for microbial life |
ExoMars 2016 (Trace Gas Orbiter) | 14 March 2016 | ESA/Roscosmos | Analysis of trace gases in orbit (i.e., methane) as signs of life |
Tianwen-1 (Zhurong rover) | 23 July 2020 | CNSA | Examination of Martian (sub)surface morphology and composition |
Mars 2020 (Perseverance rover) | 30 July 2020 | NASA | Looks for biosignatures in Jezero crater, past habitability, and caches samples for a later Mars sample return mission |
Mars Sample Return | 2027–2028? | NASA/ESA | Return of samples collected by the Perseverance rover to Earth |
ExoMars 2020 (Rosalind Franklin rover) | 2028? | ESA/? | Drill samples and hunt for biosignatures with its onboard laboratory |
Venus | |||
Venus Express | 9 November 2005 | ESA | Orbiter analyzing Venus’ atmosphere dynamics |
Akatsuki | 20 May 2010 | JAXA | Orbiter analyzing Venus’ atmosphere dynamics |
Venus Life Finder | May 2023? | MIT/Rocket Lab | Set of 3 missions studying Venus’ habitability and hunt for signs of life |
Shukrayaan-1 | December 2024? | ISRO | Orbiter analyzing Venus’ atmosphere chemistry |
DAVINCI | 2029? | NASA | Atmosphere probe analyzing the chemical and isotopic composition |
Venera-D | 2029? | Roscosmos | Orbiter and lander to study Venus’ atmosphere and surface chemistry |
EnVision | 2031? | ESA | Assess (past) habitability of Venus’ surface |
Others | |||
Huygens-Cassini | 15 October 1997 | ESA/NASA | Investigation of the habitability of icy moons Titan and Enceladus |
Stardust | 7 February 1999 | NASA | Sample return mission of the comet Wild 2 |
Hayabusa | 9 May 2003 | JAXA | Sample return mission of the asteroid 25,143 Itokawa |
Rosetta/Philae | 2 March 2004 | ESA | Investigation of the composition of the comet 67P/Churyumov-Gerasimenko |
Hayabusa2 | 3 December 2014 | JAXA | Sample return mission of the asteroid 162,173 Ryugu |
OSIRIS-REx | 8 September 2016 | NASA | Sample return mission of the asteroid 101,955 Bennu |
JUICE | April 2023? | ESA | Investigation of the habitability of Jupiter’s moons Ganymede, Europa, and Callisto |
Europa Clipper | October 2024? | NASA | Investigation of Europa’s surface and water plume |
Dragonfly | June 2027? | NASA | Rotorcraft investigation of Titan’s surface chemistry |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Mol, M.L. Astrobiology in Space: A Comprehensive Look at the Solar System. Life 2023, 13, 675. https://doi.org/10.3390/life13030675
De Mol ML. Astrobiology in Space: A Comprehensive Look at the Solar System. Life. 2023; 13(3):675. https://doi.org/10.3390/life13030675
Chicago/Turabian StyleDe Mol, Maarten L. 2023. "Astrobiology in Space: A Comprehensive Look at the Solar System" Life 13, no. 3: 675. https://doi.org/10.3390/life13030675
APA StyleDe Mol, M. L. (2023). Astrobiology in Space: A Comprehensive Look at the Solar System. Life, 13(3), 675. https://doi.org/10.3390/life13030675