Greener Grass: The Modern History of Epithelial Stem Cell Innovation
Abstract
:1. Introduction
2. Early Epithelial Stem Cell Innovations
3. Burns and Breakthroughs
4. Modern Advancements in Epithelial Stem Cell Culture
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Guillot, C.; Lecuit, T. Mechanics of epithelial tissue homeostasis and morphogenesis. Science 2013, 340, 1185–1189. [Google Scholar] [CrossRef]
- Ganz, T. Epithelia: Not just physical barriers. Proc. Natl. Acad. Sci. USA 2002, 99, 3357–3358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stingl, J.; Eirew, P.; Ricketson, I.; Shackleton, M.; Vaillant, F.; Choi, D.; Li, H.I.; Eaves, C.J. Purification and unique properties of mammary epithelial stem cells. Nature 2006, 439, 993–997. [Google Scholar] [CrossRef] [PubMed]
- Melino, G.; Memmi, E.M.; Pelicci, P.G.; Bernassola, F. Maintaining epithelial stemness with p63. Sci. Signal. 2015, 8, re9. [Google Scholar] [CrossRef] [PubMed]
- Yang, A.; Schweitzer, R.; Sun, D.; Kaghad, M.; Walker, N.; Bronson, R.T.; Tabin, C.; Sharpe, A.; Caput, D.; Crum, C.; et al. P63 Is Essential for Regenerative Proliferation in Limb, Craniofacial and Epithelial Development. Nature 1999, 398, 714–718. [Google Scholar] [CrossRef]
- Stepp, M.A.; Zieske, J.D. The corneal epithelial stem cell niche. Ocul. Surf. 2005, 3, 15–26. [Google Scholar] [CrossRef]
- Donne, M.L.; Lechner, A.J.; Rock, J.R. Evidence for lung epithelial stem cell niches. BMC Dev. Biol. 2015, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Senoo, M.; Pinto, F.; Crum, C.P.; McKeon, F. p63 Is Essential for the Proliferative Potential of Stem Cells in Stratified Epithelia. Cell 2007, 129, 523–536. [Google Scholar] [CrossRef] [Green Version]
- Furuse, M.; Hata, M.; Furuse, K.; Yoshida, Y.; Haratake, A.; Sugitani, Y.; Noda, T.; Kubo, A.; Tsukita, S. Claudin-based tight junctions are crucial for the mammalian epidermal barrier: A lesson from claudin-1-deficient mice. J. Cell Biol. 2002, 156, 1099–1111. [Google Scholar] [CrossRef]
- Proksch, E.; Brandner, J.M.; Jensen, J.M. The skin: An indispensable barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef]
- Salmon, J.K.; Armstrong, C.A.; Ansel, J.C. Conferences and Reviews The Skin as an Immune Organ. West J. Med. 1994, 160, 142–152. [Google Scholar]
- Morrison, K.M.; Miesegaes, G.R.; Lumpkin, E.A.; Maricich, S.M. Mammalian Merkel cells are descended from the epidermal lineage. Dev. Biol. 2009, 336, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Agar, N.; Young, A.R. Melanogenesis: A photoprotective response to DNA damage? Mutat. Res.-Fundam. Mol. Mech. Mutagen. 2005, 571, 121–132. [Google Scholar] [CrossRef]
- Tumbar, T.; Guasch, G.; Greco, V.; Blanpain, C.; Lowry, W.E.; Rendl, M.; Fuchs, R. Defining the Epithelial Stem Cell Niche in Skin. Science 2004, 303, 359–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanbokhoven, H.; Melino, G.; Candi, E.; Declercq, W. P63, a story of mice and men. J. Investig. Dermatol. 2011, 131, 1196–1207. [Google Scholar] [CrossRef]
- Blanpain, C.; Lowry, W.E.; Geoghegan, A.; Polak, L.; Fuchs, E. Self-Renewal, Multipotency, and the Existence of Two Cell Populations within an Epithelial Stem Cell Niche. Cell 2004, 118, 635–648. [Google Scholar] [CrossRef]
- Lucey, B.P.; Nelson-Rees, W.A.; Hutchins, G.M. Historical Perspective Henrietta Lacks, HeLa Cells, and Cell Culture Contamination. Arch. Pathol. Lab. Med. 2009, 133, 1463–1467. [Google Scholar] [CrossRef]
- Fisher, H.W.; Puck, T.T. On the Functions of X-Irradiated “Feeder” Cells in Supporting Growth of Single Mammalian Cells. Proc. Natl. Acad. Sci. USA 1956, 42, 900–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Todaro, G.; Green, H. Quantitative studies of the growth of mouse embryo cells in culture and their development into established lines. J. Cell Biol. 1963, 17, 299–313. [Google Scholar] [CrossRef]
- Moore, M.A.S.; Owen, J.J.T. Experimental Studies on the Development of the Thymus. J. Exp. Med. 1967, 126, 715–726. [Google Scholar] [CrossRef] [PubMed]
- Moss, R.W. The life and times of John Beard, DSc (1858–1924). Integr. Cancer Ther. 2008, 7, 229–251. [Google Scholar] [CrossRef] [Green Version]
- Bell, E.T. The development of the thymus. Am. J. Anat. 1905, 5, 29–62. [Google Scholar] [CrossRef] [Green Version]
- Singer, R. Biographical Memoirs: Volume 62. Natl. Acad. Sci. 1993, 62, 17–29. [Google Scholar]
- Damjanov, I.; Solter, D. Experimental teratoma. Curr. Top. Pathol. 1974, 59, 69–129. [Google Scholar] [CrossRef]
- Damjanov, I. The road from teratocarcinoma to human embryonic stem cells. Stem Cell Rev. 2005, 1, 273–276. [Google Scholar] [CrossRef]
- Ingale, Y.; Shankar, A.A.; Routray, S.; Agrawal, M.; Kadam, A.; Patil, T. Ectopic Teeth in Ovarian Teratoma: A Rare Appearance. Case Rep. Dent. 2013, 2013, 970464. [Google Scholar] [CrossRef] [PubMed]
- Stevens, L.C. The development of transplantable teratocarcinomas from intratesticular grafts of pre- and postimplantation mouse embryos. Dev. Biol. 1970, 21, 364–382. [Google Scholar] [CrossRef]
- Rheinwald, J.G.; Green, H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma. Cell 1975, 6, 317–330. [Google Scholar] [CrossRef]
- Rheinwald, J.G.; Green, H. Serial Cultivation of Strains of Human Epidemal Keratinocytes: The Formation of Keratinizing Colonies from Single Cells. Cell 1975, 6, 331–343. [Google Scholar] [CrossRef] [PubMed]
- Mah, P.M.; Jenkins, R.C.; Rostami-Hodjegan, A.; Newell-Price, J.; Doane, A.; Ibbotson, V.; Tucker, G.T.; Ross, R.J. Weight-related dosing, timing and monitoring hydrocortisone replacement therapy in patients with adrenal insufficiency. Clin. Endocrinol. (Oxf.) 2004, 61, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Fernández, J.; Escorsell, A.; Zabalza, M.; Felipe, V.; Navasa, M.; Mas, A.; Lacy, A.M.; Ginès, P.; Arroyo, V. Adrenal insufficiency in patients with cirrhosis and septic shock: Effect of treatment with hydrocortisone on survival. Hepatology 2006, 44, 1288–1295. [Google Scholar] [CrossRef]
- Gaffney, E.V.; Pigott, D. Hydrocortisone Stimulation of Human Mammary Epithelial Cells. Vitr. Cell. Dev. Biol.-Plant 1978, 14, 621–624. [Google Scholar] [CrossRef]
- Green, H.; Kehinde, O.; Thomas, J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc. Natl. Acad. Sci. USA 1979, 76, 5665–5668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simon, M.; Green, H. Enzymatic Cross-Linking of Involucrin and Other Proteins by Keratinocyte Particulates. Cell 1985, 40, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Mudry, A. Jacques-Louis Reverdin (1842–1929) et la greffe épidermique. Forum Médical Suisse—Swiss Med. Forum 2014, 14, 651–653. [Google Scholar] [CrossRef]
- Hauben, D.J.; Baruchin, A.; Mahler, D. On the history of the free skin graft. Ann. Plast. Surg. 1982, 9, 242–246. [Google Scholar] [CrossRef]
- Voigt, C.D.; Williamson, S.; Kagan, R.J.; Branski, L.K. The Skin Bank, 5th ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780323476614. [Google Scholar]
- Strong, D.M. The US Navy Tissue Bank: 50 years on the cutting edge. Cell Tissue Bank. 2000, 1, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Ehrmann, R.L.; Gey, G.O. The growth of cells on a transparent gel of reconstituted rat-tail collagen. J. Natl. Cancer Inst. 1956, 16, 1375–1403. [Google Scholar] [CrossRef] [PubMed]
- Gallico, G.G., III; O’Connor, N.E.; Compton, C.C.; Kehinde, O.; Green, H. Permanent coverage of large burn wounds with autologous cultured human epithelium. N. Engl. J. Med. 1984, 311, 448–451. [Google Scholar] [CrossRef]
- Barrandon, Y.; Green, H. Three clonal types of keratinocyte with different capacities for multiplication. Proc. Natl. Acad. Sci. USA 1987, 84, 2302–2306. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, D.; Senoo, M. Increased p63 phosphorylation marks early transition of epidermal stem cells to progenitors. J. Investig. Dermatol. 2012, 132, 2461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pellegrini, G.; Ranno, R.; Stracuzzi, G.; Bondanza, S.; Guerra, L.; Zambruno, G.; Micali, G.; De Luca, M. The control of epidermal stem cells (holoclones) in the treatment of massive full-thickness burns with autologous keratinocytes cultured on fibrin. Transplantation 1999, 68, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, G.; Dellambra, E.; Golisano, O.; Martinelli, E.; Fantozzi, I.; Bondanza, S.; Ponzin, D.; McKeon, F.; De Luca, M. P63 Identifies Keratinocyte Stem Cells. Proc. Natl. Acad. Sci. USA 2001, 98, 3156–3161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scheraga, H.A. The thrombin-fibrinogen interaction. Biophys. Chem. 2004, 112, 117–130. [Google Scholar] [CrossRef]
- Cuono, C.; Langdon, R.; McGuire, J. Use of Cultured Epidermal Autografts and Dermal Allografts As Skin Replacement After Burn Injury. Lancet 1986, 327, 1123–1124. [Google Scholar] [CrossRef]
- Silver, F.H.; Yannas, I.V.; Salzman, E.W. In vitro blood compatibility of glycosaminoglycan-precipitated collagens. J. Biomed. Mater. Res. 1979, 13, 701–716. [Google Scholar] [CrossRef]
- Yannas, I.V.; Burke, J.F. Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 1980, 14, 65–81. [Google Scholar] [CrossRef]
- Burke, J.F.; Yannas, O.V.; Quinby, W.C.; Bondoc, C.C.; Jung, W.K. Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann. Surg. 1981, 194, 413–427. [Google Scholar] [CrossRef]
- Horch, R.E.; Debus, M.; Wagner, G.; Stark, G.B. Cultured human keratinocytes on type I collagen membranes to reconstitute the epidermis. Tissue Eng. 2000, 6, 53–67. [Google Scholar] [CrossRef]
- Koster, M.I.; Kim, S.; Mills, A.A.; DeMayo, F.J.; Roop, D.R. P63 Is the Molecular Switch for Initiation of an Epithelial Stratification Program. Genes Dev. 2004, 18, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Suh, E.K.; Yang, A.; Kettenbach, A.; Bamberger, C.; Michaelis, A.H.; Zhu, Z.; Elvin, J.A.; Bronson, R.T.; Crum, C.P.; McKeon, F. P63 Protects the Female Germ Line During Meiotic Arrest. Nature 2006, 444, 624–628. [Google Scholar] [CrossRef] [PubMed]
- Bleul, C.C.; Corbeaux, T.; Reuter, A.; Fisch, P.; Mönting, J.S.; Boehm, T. Formation of a functional thymus initiated by a postnatal epithelial progenitor cell. Nature 2006, 441, 992–996. [Google Scholar] [CrossRef] [PubMed]
- Rossi, S.W.; Jenkinson, W.E.; Anderson, G.; Jenkinson, E.J. Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 2006, 441, 988–991. [Google Scholar] [CrossRef]
- Blanpain, C.; Fuchs, E. Epidermal homeostasis: A balancing act of stem cells in the skin. Nat. Rev. Mol. Cell Biol. 2009, 10, 207–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, K.; Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 2006, 126, 663–676. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, M.; Koyanagi, M.; Tanabe, K.; Takahashi, K.; Ichisaka, T.; Aoi, T.; Okita, K.; Mochiduki, Y.; Takizawa, N.; Yamanaka, S. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 2008, 26, 101–106. [Google Scholar] [CrossRef]
- Hacein-Bey-Abina, S.; Von Kalle, C.; Schmidt, M.; McCormack, M.P.; Wulffraat, N.; Leboulch, P.; Lim, A.; Osborne, C.S.; Pawliuk, R.; Morillon, E.; et al. LMO2-Associated Clonal T Cell Proliferation in Two Patients after Gene Therapy for SCID-X1. Science 2003, 302, 415–419. [Google Scholar] [CrossRef]
- Ichida, J.K.; Blanchard, J.; Lam, K.; Son, E.Y.; Chung, J.E.; Egli, D.; Loh, K.M.; Carter, A.C.; Di Giorgio, F.P.; Koszka, K.; et al. A Small-Molecule Inhibitor of Tgf-β Signaling Replaces Sox2 in Reprogramming by Inducing Nanog. Cell Stem Cell 2009, 5, 491–503. [Google Scholar] [CrossRef] [Green Version]
- Rizzino, A. Sox2 and Oct-3/4: A versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscip. Rev. Syst. Biol. Med. 2009, 1, 228–236. [Google Scholar] [CrossRef] [Green Version]
- Sporn, M.B.; Roberts, A.B.; Wakefield, L.M.; Assoian, R.K. Transforming growth factor-β: Biological function and chemical structure. Science 1986, 233, 532–534. [Google Scholar] [CrossRef]
- Chin, D.; Boyle, G.M.; Parsons, P.G.; Coman, W.B. What is transforming growth factor-beta (TGF-β)? Br. J. Plast. Surg. 2004, 57, 215–221. [Google Scholar] [CrossRef]
- Lichti, U.; Anders, J.; Yuspa, S.H. Isolation and short-term culture of primary keratinocytes, hair follicle populations and dermal cells from newborn mice and keratinocytes from adult mice for in vitro analysis and for grafting to immunodeficient mice. Nat. Protoc. 2008, 3, 799–810. [Google Scholar] [CrossRef]
- Suzuki, D.; Senoo, M. Dact1 Regulates the Ability of 3T3-J2 Cells to Support Proliferation of Human Epidermal Keratinocytes. J. Investig. Dermatol. 2015, 135, 2894. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, D.; Pinto, F.; Senoo, M. Inhibition of TGF-β signaling supports high proliferative potential of diverse p63+ mouse epithelial progenitor cells in vitro. Sci. Rep. 2017, 7, 6089. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardhan, A.; Bruckner-Tuderman, L.; Chapple, I.L.C.; Fine, J.D.; Harper, N.; Has, C.; Magin, T.M.; Marinkovich, M.P.; Marshall, J.F.; McGrath, J.A.; et al. Epidermolysis bullosa. Nat. Rev. Dis. Prim. 2020, 6, 78. [Google Scholar] [CrossRef] [PubMed]
- Carter, D.M.; Lin, A.N.; Varghese, M.C.; Caldwell, D.; Pratt, L.A.; Eisinger, M. Treatment of junctional epidermolysis bullosa with epidermal autografts. J. Am. Acad. Dermatol. 1987, 17, 246–250. [Google Scholar] [CrossRef]
- Hirsch, T.; Rothoeft, T.; Teig, N.; Bauer, J.W.; Pellegrini, G.; De Rosa, L.; Scaglione, D.; Reichelt, J.; Klausegger, A.; Kneisz, D.; et al. Regeneration of the entire human epidermis using transgenic stem cells. Nature 2017, 551, 327–332. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, D.; Pinto, F.; Senoo, M. Inhibition of TGF-β Signaling Promotes Expansion of Human Epidermal Keratinocytes in Feeder Cell Co-culture. Wound Repair Regen. 2017, 25, 526–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Year | Authors | Innovation |
---|---|---|
1963 | Todaro and Green | Creation of 3T3 cell line from primary culture of Swiss mouse embryonicfibroblasts |
1975a | Rheinwald and Green | Growth of keratinizing cell line XB derived from mouse teratoma with 3T3 feeder support |
1975b | Rheinwald and Green | Human epidermal keratinocytes serially grown in 3T3 co-culture |
1979 | Green, Kehinde, Thomas | Single cells cultured into stratified colonies that fuse into graft-viable epithelial sheets, addition of EGF and cholera toxin to culture medium |
1984 | Gallico III, O’Connor, Compton, Kehinde, Green | Wounds of two pediatric third degree burn patients successfully covered with human cultured epithelial autografts |
1989 | Rheinwald and Green | Subcloning of 3T3 cells to create 3T3-J2 mouse embryonic fibroblast cell line |
Year | Authors | Innovation |
---|---|---|
1999 | Pellegrini et al. | Preservation of epidermal stem cell holoclones by culturing on fibrin substrate to improve autograft efficiency for full-thickness burn treatment |
2000 | Horch, Debus, Wagner | “Upside-down” method: cultured human keratinocyte layers grown atop collagen membranes and transplanted cell side down onto nude mice wounds |
2009 | Ichida et al. | Proof of Sox2 replacement by small molecule RepSox to inhibit TGF-β signaling and drive reprogramming of differentiated cells into iPS cells |
2017 | Suzuki, Pinto, Senoo | RepSox inhibition of TGF-β signaling enabled long-term p63+ epithelial progenitor expansion |
2017 | Suzuki, Pinto, Senoo | Replacement of 3T3-J2 mouse feeder cells with human feeder cells in primary human keratinocyte culture for fully autologous skin grafts |
2017 | Hirsch et al. | Genetic correction of mutant LAMB3 gene in child with Junctional Epidermolysis Bullosa allowed full epidermal regeneration with transgenic stem cells |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pitt, K.; Mochida, Y.; Senoo, M. Greener Grass: The Modern History of Epithelial Stem Cell Innovation. Life 2023, 13, 688. https://doi.org/10.3390/life13030688
Pitt K, Mochida Y, Senoo M. Greener Grass: The Modern History of Epithelial Stem Cell Innovation. Life. 2023; 13(3):688. https://doi.org/10.3390/life13030688
Chicago/Turabian StylePitt, Keshia, Yoshiyuki Mochida, and Makoto Senoo. 2023. "Greener Grass: The Modern History of Epithelial Stem Cell Innovation" Life 13, no. 3: 688. https://doi.org/10.3390/life13030688
APA StylePitt, K., Mochida, Y., & Senoo, M. (2023). Greener Grass: The Modern History of Epithelial Stem Cell Innovation. Life, 13(3), 688. https://doi.org/10.3390/life13030688