Antimicrobial Activities and Biofilm Inhibition Properties of Trigonella foenumgraecum Methanol Extracts against Multidrug-Resistant Staphylococcus aureus and Escherichia coli
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. GC-MS Analysis of T. foenumgraecum
2.3. Antibiotic Resistance
2.4. Antibacterial Activity of the Extracts
2.4.1. Minimum Inhibitory Concentration and Minimum Bactericidal Concentration
2.4.2. Antibiotic Phytochemical Inhibition Assay
2.5. Antibiofilm Activity Spectrophotometric Assay
2.6. Antibiofilm Activity Microscopic Assay
2.7. Minimum Biofilm Inhibitory Concentration
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vivas, R.; Barbosa, A.A.T.; Dolabela, S.S.; Jain, S. Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microb. Drug Resist. 2019, 25, 890–908. [Google Scholar] [CrossRef]
- López Romo, A.; Quirós, R. Appropriate use of antibiotics: An unmet need. Ther. Adv. Urol. 2019, 11, 1756287219832174. [Google Scholar] [CrossRef] [Green Version]
- Founou, L.L.; Founou, R.C.; Essack, S.Y. Antibiotic resistance in the food chain: A developing-country perspective. Front. Microbiol. 2016, 7, 1881. [Google Scholar] [CrossRef]
- Voidazan, S.; Albu, S.; Toth, R.; Grigorescu, B.-L.; Rachita, A.; Moldovan, I. Healthcare-Associated Infections-A New Pathology in Medical Practice? Int. J. Environ. Res. Public Health 2020, 17, 760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uruén, C.; Chopo-Escuin, G.; Tommassen, J.; Mainar-Jaime, R.C.; Arenas, J. Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics 2021, 10, 3. [Google Scholar] [CrossRef]
- Sharma, D.; Misba, L.; Khan, A.U. Antibiotics versus biofilm: An emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Yu, Z.; Ding, T. Quorum-Sensing Regulation of Antimicrobial Resistance in Bacteria. Microorganisms 2020, 8, 425. [Google Scholar] [CrossRef] [Green Version]
- Butrico, C.E.; Cassat, J.E. Quorum Sensing and Toxin Production in Staphylococcus aureus Osteomyelitis: Pathogenesis and Paradox. Toxins 2020, 12, 156. [Google Scholar] [CrossRef] [PubMed]
- Grande, R.; Puca, V.; Muraro, R. Antibiotic resistance and bacterial biofilm. Expert Opin. Ther. Pat. 2020, 30, 897–900. [Google Scholar] [CrossRef]
- Mishra, R.; Panda, A.K.; De Mandal, S.; Shakeel, M.; Bisht, S.S.; Khan, J. Natural Anti-biofilm Agents: Strategies to Control Bio-film-Forming Pathogens. Front. Microbiol. 2020, 11, 566325. [Google Scholar] [CrossRef] [PubMed]
- Rosato, A.; Sblano, S.; Salvagno, L.; Carocci, A.; Clodoveo, M.L.; Corbo, F.; Fracchiolla, G. Anti-Biofilm Inhibitory Synergistic Effects of Combinations of Essential Oils and Antibiotics. Antibiotics 2020, 9, 637. [Google Scholar] [CrossRef] [PubMed]
- Shriram, V.; Khare, T.; Bhagwat, R.; Shukla, R.; Kumar, V. Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance. Front. Microbiol. 2018, 9, 2990. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Bajpai, V.; Gond, V.; Kumar, A.; Tadigoppula, N.; Kumar, B. Determination of Bioactive Compounds of Fenugreek (Trigonella foenum-graceum) Seeds Using LC-MS Techniques. In Legume Genomics; Springer: Berlin/Heidelberg, Germany, 2020; Volume 2107, pp. 377–393. [Google Scholar]
- Valgas, C.; de Souza, S.M.; Smânia, E.F.A.; Smânia, A., Jr. Screening Methods to Determine Antibacterial Activity of Natural Products. Braz. J. Microbiol. 2007, 38, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Monte, J.; Abreu, A.C.; Borges, A.; Simões, L.C.; Simões, M. Antimicrobial Activity of Selected Phytochemicals against Escherichia Coli and Staphylococcus Aureus and Their Biofilms. Pathogenes 2014, 3, 473–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mathur, T.; Singhal, S.; Khan, S.; Upadhyay, D.J.; Fatma, T.; Rattan, A. Detection of biofilm formation among the clinical isolates of staphylococci: An evaluation of three different screening methods. Indian J. Med. Microbiol. 2006, 24, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Balamurugan, P.; Hema, M.; Gurmeet, K.; Sridharan, V.; Prabu, P.C.; Sumana, M.N.; Adline, P.S. Development of a biofilm inhibitor molecule against multidrug resistant Staphylococcus aureus associated with gestational urinary tract infections. Front. Microbiol. 2015, 6, 832. [Google Scholar] [CrossRef] [PubMed]
- Al-Timimi, L.A.N. Antibacterial and Anticancer Activities of Fenugreek Seed Extract. Asian Pac. J. Cancer Prev. 2019, 20, 3771–3776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mohamed, M.A.; Abdifetah, O.; Hussein, F.A.; Karie, S.A. Antibiotic resistance pattern of Escherichia coli isolates from outpatients with urinary tract infections in Somalia. J. Infect. Dev. Countries 2020, 14, 284–289. [Google Scholar] [CrossRef] [Green Version]
- Poirel, L.; Madec, J.-Y.; Lupo, A.; Schink, A.-K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial Resistance in Escherichia coli. Microbiol. Spectr. 2018, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, Y.; Song, G.; Sun, M.; Wang, J.; Wang, Y. Prevalence and Therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2020, 10, 107. [Google Scholar] [CrossRef] [Green Version]
- Goyal, S.; Gupta, N.; Kumar, A.; Chatterjee, S.; Nimesh, S. Antibacterial, Anticancer and Antioxidant Potential of Silver Nanoparticles Engineered Using Trigonella Foenum-Graecum Seed Extract. IET Nanobiotechnol. 2018, 12, 526–533. [Google Scholar] [CrossRef]
- Yadav, U.S.C.; Baquer, N.Z. Pharmacological effects of Trigonella foenum-graecum L. in health and disease. Pharm. Biol. 2014, 52, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Nagulapalli Venkata, K.C.; Swaroop, A.; Bagchi, D.; Bishayee, A. A small plant with big benefits: Fenugreek (Trigonellafoenum graecum L.) for disease prevention and health promotion. Mol. Nutr. Food Res. 2017, 61, 1600950. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, P.; Sakharkar, M.K.; Lim, C.S.; Tang, T.H.; Sakharkar, K.R. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro. Int. J. Biol. Sci. 2010, 6, 556–568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deryabin, D.; Galadzhieva, A.; Kosyan, D.; Duskaev, G. Plant-derived inhibitors of ahl-mediated quorum sensing in bacteria: Modes of action. Int. J. Mol. Sci. 2019, 20, 5588. [Google Scholar] [CrossRef] [Green Version]
- Asfour, H.Z. Anti-quorum sensing natural compounds. J. Microsc. Ultrastruct. 2018, 6, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Husain, F.M.; Ahmad, I.; Khan, M.S.; Al-Shabib, N.A. Trigonella foenum-graceum (seed) extract interferes with quorum sensing regulated traits and biofilm formation in the strains of Pseudomonas aeruginosa and Aeromonas hydrophila. Evid. Based. Complement. Alternat. Med. 2015, 2015, 879540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alwan, A.M.; Jassim, I.M.; Jasim, G.M. Study of antibacterial activities of seed extract of fenugreek (Trigonella foenum-graecum). Diyala J. Med. 2017, 13, 1. [Google Scholar] [CrossRef]
Peak | Retention Time | Area (%) | Name of the Compound | Formula | RT Index |
---|---|---|---|---|---|
1. | 9.842 | 4.29 | Phenol, 2-methoxy-3-(2-propenyl)- | C10H12O2 | 1082.312 |
2. | 10.664 | 0.20 | Bicyclo [5.2.0] nonane, 2-methylene- | C15H24 | 1102.395 |
3. | 12.653 | 0.21 | 4-Butylbenzoic acid, | C11H14O2 | 1154.181 |
4. | 14.141 | 0.20 | 5,8-Epoxy-3H-2-benzopyran | C11H14O2 | 1187.849 |
5. | 14.830 | 0.56 | 1,2-Benzenedicarboxylic acid | C16H20O4 | 1202.887 |
6. | 15.352 | 0.40 | Hexadecanoic acid, methyl ester | C18H36O2 | 1216.303 |
7. | 15.652 | 6.81 | n-Hexadecanoic acid | C16H32O2 | 1223.808 |
8. | 16.585 | 0.32 | 2,3’-Bipyridine | C10H8N2 | 1246.262 |
9. | 16.708 | 2.36 | 9,12-Octadecadienoic acid | C18H32O2 | 1249.128 |
10. | 17.085 | 25.49 | 9,12,15-Octadecatrienoic acid | C18H30O2 | 1257.781 |
11. | 17.730 | 1.05 | 1,6-Cyclodecadiene | C10H16 | 1272.152 |
12. | 18.207 | 0.84 | 1,15-Pentadecanedioic acid | C15H28O4 | 1282.447 |
13. | 18.341 | 0.51 | 1H-Tetrazole-1-ethanol, 5-amino- | CH3N5 | 1285.291 |
14. | 18.696 | 0.33 | 2-Methyl-Z,Z-3,13-octadecadienol | C19H36O | 1292.726 |
15. | 19.074 | 0.38 | Bicyclo [10.1.0]tridec-1-ene | C13H22 | 1300.619 |
16. | 19.407 | 6.38 | Butyl 9,12-octadecadienoate | C22H40O2 | 1309.122 |
17. | 19.685 | 1.03 | Hexadecanoic acid, 2-hydroxy-1- | C19H38O4 | 1316.111 |
18. | 19.863 | 1.45 | 4,4’-Methylenebisphenol, 2,2’,6’ | C17H20O2 | 1320.533 |
19. | 20.640 | 1.50 | Silane,methylenebis[dimethyl- silane | C9H16Si2 | 1339.387 |
20. | 20.829 | 9.64 | 9,12-Octadecadienoic acid (Z,Z)-... | C21H40O2Si | 1343.865 |
21. | 21.196 | 0.25 | 1,4-Benzenediol, 2,5-bis(1,1-dim | C16H26O | 1352.447 |
22. | 21.352 | 0.22 | Hexahydropyridine, 1-methyl-4-[4 | C13H19NO2 | 1356.05 |
23. | 21.585 | 4.83 | 3H,6H-Thieno [3,4-c]isoxazole | C8H13NOS | 1361.382 |
24. | 21.840 | 0.48 | Benzenesulfonamide | C6H7NO2S | 1367.153 |
25. | 22.018 | 0.50 | Eicosane | C20H42 | 1371.141 |
26. | 22.240 | 0.44 | 1H-Indole, 5-methyl-2-phenyl- | C15H13N | 1376.07 |
27. | 22.340 | 0.51 | 2H-1-Benzopyran-6-ol, 3,4-dihydr | C29H44O2 | 1378.274 |
28. | 22.707 | 23.49 | E,Z-1,3,12-Nonadecatriene | C19H34 | 1386.28 |
29. | 23.062 | 4.17 | gamma.-Tocopherol | C28H48O2 | 1393.902 |
30. | 23.462 | 1.17 | beta.-Sitosterol acetate | C31H52O2 | 1402.912 |
Potency (µg/mL) | S. aureus | E. coli |
---|---|---|
Zone of Inhibition (mm) | ||
50 | - | - |
100 | - | - |
200 | 8 | 10 |
400 | 14 | 15 |
800 | 16 | 18 |
Minimum Inhibitory Concentration (µg/mL) | Minimum Bactericidal Concentration (µg/mL) | |||||||
---|---|---|---|---|---|---|---|---|
Bacterial isolates | 125 | 250 | 500 | 1000 | 125 | 250 | 500 | 1000 |
S. aureus | - | - | + | + | - | - | - | ++ |
E. coli | - | - | + | + | - | - | - | ++ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alenazy, R. Antimicrobial Activities and Biofilm Inhibition Properties of Trigonella foenumgraecum Methanol Extracts against Multidrug-Resistant Staphylococcus aureus and Escherichia coli. Life 2023, 13, 703. https://doi.org/10.3390/life13030703
Alenazy R. Antimicrobial Activities and Biofilm Inhibition Properties of Trigonella foenumgraecum Methanol Extracts against Multidrug-Resistant Staphylococcus aureus and Escherichia coli. Life. 2023; 13(3):703. https://doi.org/10.3390/life13030703
Chicago/Turabian StyleAlenazy, Rawaf. 2023. "Antimicrobial Activities and Biofilm Inhibition Properties of Trigonella foenumgraecum Methanol Extracts against Multidrug-Resistant Staphylococcus aureus and Escherichia coli" Life 13, no. 3: 703. https://doi.org/10.3390/life13030703
APA StyleAlenazy, R. (2023). Antimicrobial Activities and Biofilm Inhibition Properties of Trigonella foenumgraecum Methanol Extracts against Multidrug-Resistant Staphylococcus aureus and Escherichia coli. Life, 13(3), 703. https://doi.org/10.3390/life13030703